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Statistical generalization of regenerative bosonic and fermionic Stirling cycles
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We have constructed a unified framework for generalizing the finite-time thermodynamic behavior of statisti-
cally distinct bosonic and fermionic Stirling cycles with regenerative characteristics. In our formalism, working
fluids consisting of particles obeying Fermi-Dirac and Bose-Einstein statistics are treated on equal footing and
modeled as a collection of noninteracting harmonic and fermionic oscillators. In terms of the frequency and
population of the two oscillators, we have provided an interesting generalization for the definitions of heat and
work that are valid for classical as well as nonclassical working fluids. Based on a generic setting under finite-
time relaxation dynamics, nice results on low- and high-temperature heat transfer rates are derived. Characterized
by equal power, efficiency, entropy production, cycle time, and coefficient of performance, the thermodynamic
equivalence between two types of Stirling cycles is established in the low-temperature “quantum” regime.
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I. INTRODUCTION

The finite-time thermodynamic performance of a large
class of quantum engines and refrigerators has gained a lot of
theoretical interest in recent times [1–8]. The quantum analog
of several classical cycles, such as Otto, Carnot, Stirling,
Ericsson, Brayton, etc., has been introduced in this context
[9–25]. While the efficiency of the Carnot cycle is found to be
independent of the nature of the working medium, efficiencies
of other quantum engines are, in general, dependent on the
properties of the working substance [26–28]. In particular,
the finite-time operation of a quantum Stirling cycle in the
presence of a regenerator [29–36] experiences distinct re-
laxation dynamics for different choices of environment. Its
introduction in the form of an internal heat exchanger (also
known as “economizer” by Stirling) recycles heat within the
hot and cold parts of the cycle and makes the machine more
efficient and economical. Thus, the performance of a Stirling
engine and refrigerators, to a large extent, depends upon the
specific nature of the working substance, heat baths, and their
interactions, and thereby exhibits great diversity and huge
complexity.

Two basic models for the working fluid, namely, har-
monic oscillators [32,33] and spin- 1

2 systems [31,34], are used
to study the regenerative quantum Stirling cycle. However,
the operator algebra describing the quantum harmonic os-
cillator is very different from that of a spin- 1

2 system [37].
Spin- 1

2 operators have no classical analog [13,14] and follow
anticommutation relations compared to harmonic oscillator
operators which follow bosonic commutation relations. Since
spin- 1

2 systems are fermions, they adhere to the Pauli ex-
clusion principle and Fermi-Dirac statistics as opposed to a
harmonic oscillator working medium complying with Bose-
Einstein statistics. As a result, a profound distinction between
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Stirling cycles comprising spin- 1
2 and harmonic oscillator

working mediums is quite natural [31–34]. Keeping in view
this distinctive nature of the two kinds of working substances,
we present a simple unifying model for the finite-time thermo-
dynamics of the quantum Stirling cycle which can treat both
the spin- 1

2 and harmonic oscillator working mediums on an
equal footing. To capture the fermionic character of a spin- 1

2
system, we model this system by a fermionic analog of the
harmonic oscillator which is in one-to-one correspondence
with the Pauli spin matrices [38]. This provides the major
motivation for the study of regenerative Stirling cycles with
fermionic and bosonic oscillators, as undertaken here.

The differential behavior of a fermionic oscillator in com-
parison with the conventional harmonic oscillator has been
emphasized on multiple occasions, particularly in the context
of parametric control, quantum dissipative dynamics, and dis-
sociation of molecular dimers, just to name a few [39–41].
Nevertheless, an in-depth understanding of their thermody-
namic implications in quantized settings deserves its own
merit. Interestingly, we have shown throughout our work that
in spite of substantial differences between the two oscillators
in several respects, many close thermodynamic parallels can
be established between the performance of fermionic and the
more familiar ones for bosonic (harmonic) Stirling cycles.
Based on the unique generalization of heat and work, the num-
ber of thermodynamic quantities of Stirling cycles involving
classical and nonclassical working fluids is computed within
a uniform setup. From the general solutions of population
dynamics, intriguing results on heat transfer rates are derived
under near and far from equilibrium conditions. Performance
characteristics of the engine and refrigerator cycles are inves-
tigated for several interesting cases, with special emphasis on
the low-temperature “quantum” limit.

The present work is organized as follows: In Sec. II, a
basic model of the Stirling cycle is introduced and general
expressions for heat and work are identified. In Sec. III,
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cycle diagrams of a Stirling engine and refrigerators with
regenerative characteristic are discussed and the amount of
heat exchange and work done are obtained for the harmonic
and fermionic counterparts. Based on the quantum master
equation and semigroup approach, the time evolution of the
population dynamics and heat conduction rates are calculated
in Sec. IV. Using closed form expressions for cycle times in
Sec. V, the finite-time performance in Sec. VI for both cycles
is shown to be statistically equivalent at low temperature.
Finally, we conclude in Sec. VII.

II. BASIC FORMALISM

For our study, the working fluid is modeled as a collection
of noninteracting harmonic or fermionic oscillators [38–41].
We introduce the fermionic oscillator in a similar way as the
Hamiltonian of a harmonic (bosonic) oscillator is expressed
in terms of annihilation (â) and creation (â†) operators,

ĤB = h̄ω

2
(â†â + ââ†), (1)

satisfying the commutation relation [â, â†] = 1. The sym-
metrical structure of the Hamiltonians indicates that we are
dealing with Bose particles, while for fermionic systems,
an underlying asymmetry is the natural choice. Thus the
Hamiltonian of a fermionic oscillator with frequency ω is
represented by

ĤF = h̄ω

2
(â†â − ââ†), (2)

in terms of fermionic operators, obeying {â, â†}=1.
With the help of the commutation (anticommutation) rela-

tion of the bosonic (fermionic) operators, the working medium
(or “system”) Hamiltonian of Eqs. (1) and (2) can be ex-
pressed as

Ĥs = h̄ω

(
â†â ± 1

2

)
= h̄ω

(
N̂ ± 1

2

)
. (3)

Here, the plus and minus sign refers to the harmonic and
fermionic oscillator, respectively, while the number operator,
defined as N̂ = â†â, satisfies the eigenvalue equation,

N̂ |nB〉 = nB|nB〉, nB = 0, 1, 2, . . . ,∞
N̂ |nF 〉 = nF |nF 〉, nF = 0, 1, (4)

for the respective oscillators. As a consequence, the Hilbert
space of the harmonic oscillator is unbounded and infinite
dimensional, while that of the fermionic oscillator is bounded
and two dimensional, with operators in one-to-one correspon-
dence with the Pauli spin matrices.

The Hamiltonian of a spin- 1
2 system, H = 1

2 h̄ωσz, where
ω is proportional to the external magnetic field, suggests that
the oscillator’s frequency plays the role of an external field
[14,34]. With this analogy, by varying the magnitude of the
external magnetic field, one can change the oscillator fre-
quency ω in time, and thereby a harmonic (fermionic) Stirling
engine (refrigerator) is carried out along a closed path. Note
that the magnetic field can take on both negative or positive
values, but in both cases the frequency of the oscillator is
always positive.

One pertinent point to keep in mind is that commutation
relations obeyed by bosons having the same algebra as clas-
sical Poisson brackets do not imply fermions which do not
fulfill these algebraic relations, cannot have a classical limit.
The fermionic number operator and the Hamiltonian operator
do have classical limits because they are bilinear in â, â†,
and commute with each other [39–41]. For example, for the
working fluid obeying Fermi-Dirac statistics, quantities such
as work, power, and heat currents can be measured classically
as they are a bilinear combination of the fermionic creation
and annihilation operators. On the other hand, the anticommu-
tation relation obeyed by fermions is very special, appearing
only in quantum mechanics. It incorporates the Pauli exclu-
sion principle, which does not make sense at the classical
level.

To this end, we define the “temperature” of the working
system as a parameter uniquely defined by the ratio of popula-
tions between the different energy levels of the oscillators. For
a fermionic oscillator which has only two levels, this requires
no further assumptions in terms of endoreversibility [13,42].
However, for a harmonic oscillator, the population ratios
between different energy levels may lead to different temper-
atures. In both cases, the statistical average over the quantum
mechanical expectation value of the number operator 〈N̂〉 =
nF

B provides a useful interpretation of the endoreversibility in
terms of the inverse positive temperature βs = 1

KBTs
, through

the relation

n = 〈
nF

B

〉
s = 1

exp(βsh̄ω) ± 1
. (5)

Here, the ± sign refers to the Fermi-Dirac and Bose-Einstein
distribution, respectively, when fermionic (harmonic) oscilla-
tors are used as the working systems of the Stirling cycle.
Notice that the average occupation number of Fermi-Dirac
distribution n = n̄F lies between 0 � n̄F � 1

2 , while for Bose-
Einstein distribution n = n̄B � 0, it has only a lower bound
with no upper bound. This has far-reaching consequences, as
we will explore shortly.

Following Eq. (5), the internal energy of the bosonic
(fermionic) oscillator [Eq. (3)] is given by

E = 〈〈Ĥs〉〉s = h̄ω

(
n ± 1

2

)
. (6)

Immediately, one can infer that the working system may
change its internal energy by changing the frequency of the
oscillator or by changing its population via

dE = h̄

(
n ± 1

2

)
dω + h̄ωdn. (7)

Comparing the above equation with the differential form of
the first law of thermodynamics,

dE = −d W + −d Q, (8)

we can identify the terms on the right-hand side of Eq. (7)
with the inexact differential form of heat and work as

−d Q = h̄ωdn (9)

and

−d W = h̄

(
n ± 1

2

)
dω, (10)
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respectively. Equations (9) and (10) are the first important
result of our analysis. Throughout our paper, we follow the
convention that −d Q is positive if heat is flowing into the
system and −d W is negative if work is done by the system.
Several remarks are now in order:

(i) Since n̄B � 0 and 0 � n̄F � 1
2 , for positive dω, Eq. (10)

says that −d W is always positive for a harmonic oscillator and
negative for a fermionic oscillator, implying that work is done
on the system for the bosonic oscillator while it is done by the
system in the fermionic case.

(ii) Since a harmonic oscillator has a classical analog with
frequency inversely proportional to the volume of the classical
fluid [43], Eq. (10) for negative dω corresponds to work done
by the classical fluid in an expansion process. Such “classical”
correspondence cannot be made for a fermionic oscillator for
which the system frequency is the only physically controllable
parameter.

(iii) Equation (7) can therefore be regarded as the general-
ized version of the first law of thermodynamics [44] that holds
good for both classical and nonclassical fluids having different
statistical properties.

(iv) The above discussion for energy, work, and heat is
calculated for a single fermionic or bosonic oscillator. Hence,
it is justified to multiply by the total number of noninteracting
particles to get the same quantities for the working fluid as a
whole.

(v) As the change in the internal energy over the cycle is
zero, i.e.,

∮
dE = 0, we find from Eqs. (8)–(10) that the total

output work per cycle is

−Wtot = −h̄
∮

(n ± 1/2)dω = h̄
∮

ωdn =
∮

−d Q. (11)

We will use Eq. (11) in the following sections to calculate the
total output (input) work for both types of regenerative Stirling
cycles. However, the present scheme can be generalized to
other engine and refrigerator cycles as well. Notably, such
generalization, especially in the field of quantum thermody-
namic cycles, is not well known.

III. REGENERATIVE STIRLING CYCLE

Cycle diagrams of a quantum Stirling engine and refrig-
erators are shown in Figs. 1 and 2, respectively. Each figure
consists of four strokes, i.e., two isothermal and two isochoric
processes. The direction and the amount of heat flow along
the various strokes have been shown explicitly in both di-
agrams. Since the dependence of n and ω is of Boltzmann
type [Eq. (5)], the isothermal branches of the cycles (AB and
CD) look like exponentials in the n − ω planes, whereas the
isochoric strokes are characterized by the constant frequency
(BC and AD) lines at ω1 and ω2, where without loss of any
generality we set ω1 < ω2 [31–34]. Throughout our paper,
the hot bath temperature is Th and the cold bath temperature
is Tc, which is assumed to be higher than the condensation
temperature of the working fluid [45].

Now, the direction of heat flow and work done can be
understood from Eqs. (9) and (10). In the case of an engine
(Fig. 1), work is negative (for the bosonic case) from A → B,
i.e., work is done by the system along the hot isothermal
branch, while it is positive for the fermionic engine. The

FIG. 1. Schematic n − ω diagram of a quantum Stirling heat
engine with regenerative characteristics.

opposite is true for the cold isothermal branch (C → D) for
which the work done is positive for a harmonic and negative
for a fermionic counter. Keeping in view that the frequency
of the harmonic oscillator is inversely proportional to the
volume of the classical fluid [43], this can be corroborated
with the standard sign convention of work followed by any
classical fluid undergoing isothermal volume expansion and

FIG. 2. Schematic n − ω diagram of a quantum Stirling refriger-
ator with regenerative characteristics.
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compression processes. However, this is no way in contra-
diction with the fermionic engine, once frequency is chosen
as the only relevant system parameter for the nonclassical
fluid. So, in the following sections, we describe the isother-
mal expansion and compression processes only in terms of
frequency change, which will allow us to develop a systematic
treatment for both types of working fluids in a universal way.
In both cases, the heat is absorbed by the system along the hot
isothermal branch and released along the cold one.

In the case of refrigeration, the direction of heat flow gets
reversed to that of engine cycle. Further, the two constant
frequency processes are connected with a regenerator [29–36],
located in between the hot and cold segments of the engine or
refrigerator. It stores heat from one cycle (QBC or QAD) and
uses it in the next cycle (QDA or QCB).

A. REGENERATIVE CHARACTERISTICS

1. Heat engine

The net amount of heat exchange between the working
system and the regenerator can be calculated by adding QBC

and QDA, i.e., �Q = QBC + QDA. Now, we can have three
possibilities [32,34]: (i) �Q = 0, which is the case of perfect
regeneration and we have |QBC | = |QDA|, i.e., the amount of
heat flowing from the working system to the regenerator is
equal to the heat flowing from the regenerator to the working
system. (ii) �Q < 0, i.e., |QBC | > |QDA|, which requires that
the redundant heat in the regenerator must be released in a
timely manner to the cold bath. Otherwise, the temperature
of the regenerator will change and it will not operate nor-
mally. So, the release of heat from the regenerator increases
the amount of heat from QCD to QCD − |�Q| to the cold
bath, while heat transfer from the hot bath to the system re-
mains undisturbed. Lastly, (iii) �Q > 0 implies QBC < QDA,
in which the inadequate heat in the regenerator must be com-
pensated by the heat from the hot bath. This increases the
amount of heat from QAB to QAB + �Q by the hot bath to
the working system, while the heat flowing from the system to
the cold bath is kept constant. As a consequence, heat released
from the hot bath to the working system can be expressed in a
compact form as

Qh = QAB + δ�Q, (12)

where δ = 0 for �Q � 0 and δ = 1 for �Q > 0.

2. Refrigerator

In this case, the total heat exchange is given by �Q =
QAD + QCB. Similar to the engine case, there are also three
possibilities here [31,33]: (i) �Q = 0, i.e., perfect regenera-
tion. (ii) �Q < 0, i.e., |QCB| < |QAD|, so the redundant heat
in the regenerator must be released to the cold bath, which
will decrease the net amount of heat absorption from the
cold bath from QDC to QDC − δ|�Q|. Finally, (iii) �Q > 0
for QCB > QAD, i.e., the inadequate heat in the regenerator
per cycle must be compensated by the hot bath in a timely
manner. So the heat released to the hot bath reduces from
QBA to QBA + �Q, while the heat extracted from the cold bath
into the system remains unaltered. So, the net amount of heat

extracted from the cold bath will be

Qc = QDC − δ|�Q|, (13)

where δ = 0 when �Q � 0 and δ = 1 when �Q < 0.
In order to evaluate the efficiency and coefficient of the

performance of the Stirling cycles, in what follows we will
use Eqs. (11)–(13) to calculate the explicit expressions for the
amount of heat absorption and rejection by the system during
all the processes.

B. BOSONIC VS FERMIONIC ENGINE

In Fig. 1, the isothermal frequency compression process
from A → B occurs at system temperature Ts = T1, when
our system is connected with the hot bath and C → D is an
isothermal compression process at temperature Ts = T2 when
our system is connected with the cold bath. Due to the finite
heat transfer rate, the temperatures T1 and T2 of the working
system in the two isothermal processes are assumed to be
different from the temperatures of the heat baths and they
satisfy the following relationship: Th > T1 > T2 > Tc [32,34].
Now, using Eqs. (5) and (9), one can go ahead and compute
the general form of heat exchange (see the Appendix) during
all four processes of the Stirling engine, as summarized below
for a working fluid with bosonic and fermionic statistics:

QAB = h̄
∫ B

A
ωdn = h̄ω1

e
h̄ω1

KBT1 ± 1
− h̄ω2

e
h̄ω2

KBT1 ± 1

±KBT1 ln

[
1 ± e− h̄ω1

KBT1

1 ± e− h̄ω2
KBT1

]
, (14)

QCD = h̄
∫ D

C
ωdn = h̄ω2

e
h̄ω2

KBT2 ± 1
− h̄ω1

e
h̄ω1

KBT2 ± 1

± KBT2 ln

[
1 ± e− h̄ω2

KBT2

1 ± e− h̄ω1
KBT2

]
, (15)

QBC = h̄
∫ C

B
ω1dn = h̄ω1

e
h̄ω1

KBT2 ± 1
− h̄ω1

e
h̄ω1

KBT1 ± 1
, (16)

QDA = h̄
∫ A

D
ω2dn = h̄ω2

e
h̄ω2

KBT1 ± 1
− h̄ω2

e
h̄ω2

KBT2 ± 1
. (17)

The total output work per cycle can then be calculated as

−Wtot = QAB + QBC + QCD + QDA

= ± 1

β1
ln

(
1 ± e−β1 h̄ω1

1 ± e−β1 h̄ω2

)
± 1

β2
ln

(
1 ± e−β2 h̄ω2

1 ± e−β2 h̄ω1

)
.

(18)

The value of �Q is calculated to be

�Q = QBC + QDA

= h̄ω1

e
h̄ω1

KBT2 ± 1
− h̄ω1

e
h̄ω1

KBT1 ± 1
+ h̄ω2

e
h̄ω2

KBT1 ± 1
− h̄ω2

e
h̄ω2

KBT2 ± 1
.

(19)
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Finally, the efficiency (η) of the engine can be expressed in
view of Eqs. (18) and (12) as

η = −Wtot

Qh
=

[± 1
β1

ln
(

1±e−β1 h̄ω1

1±e−β1 h̄ω2

) ± 1
β2

ln
(

1±e−β2 h̄ω2

1±e−β2 h̄ω1

)]
QAB + δ�Q

.

(20)

C. BOSONIC VS FERMIONIC REFRIGERATOR

In the case of refrigeration (Fig. 2), the process from B →
A is an isothermal frequency expansion at higher temperature
Ts = T ′

1 and D → C is an isothermal frequency compression
at lower temperature Ts = T ′

2 when the system is connected
with the hot and cold bath, respectively. Here, the finite heat
transfer rate leads to the following relationship among the var-
ious temperatures involved in the entire process: T ′

1 > Th >

Tc > T ′
2 [31,33]. In this case, the heat exchange is just the

reverse of that of the engine cycle. Here we summarize the
expressions for heat exchange during all four processes with
bosonic and fermionic fluids:

QBA = h̄ω2

e
h̄ω2

KBT ′
1 ± 1

− h̄ω1

e
h̄ω1

KBT ′
1 ± 1

± KBT ′
1 ln

⎡
⎣1 ± e

− h̄ω2
KBT ′

1

1 ± e
− h̄ω1

KBT ′
1

⎤
⎦,

(21)

QDC = h̄ω1

e
h̄ω1

KBT ′
2 ± 1

− h̄ω2

e
h̄ω2

KBT ′
2 ± 1

± KBT ′
2 ln

⎡
⎣1 ± e

− h̄ω1
KBT ′

2

1 ± e
− h̄ω2

KBT ′
2

⎤
⎦,

(22)

QCB = h̄ω1

e
h̄ω1

KBT ′
1 ± 1

− h̄ω1

e
h̄ω1

KBT ′
2 ± 1

, (23)

QAD = h̄ω2

e
h̄ω2

KBT ′
2 ± 1

− h̄ω2

e
h̄ω2

KBT ′
1 ± 1

. (24)

So, the total work done on the system by the surrounding is
given by

Wtot = |QDC + QCB + QBA + QAD|

=
∣∣∣∣± 1

β ′
2

ln

[
1 ± e−β ′

2 h̄ω1

1 ± e−β ′
2 h̄ω2

]
± 1

β ′
1

ln

[
1 ± e−β ′

1 h̄ω2

1 ± e−β ′
1 h̄ω1

]∣∣∣∣.
(25)

Similarly, the value of �Q can be written as

�Q = QAD + QCB

=
[

h̄ω2

e
h̄ω2

KBT ′
2 ± 1

− h̄ω2

e
h̄ω2

KBT ′
1 ± 1

]

+
[

h̄ω1

e
h̄ω1

KBT ′
1 ± 1

− h̄ω1

e
h̄ω1

KBT ′
2 ± 1

]
. (26)

Now, using Eqs. (25) and (13), the coefficient of performance
(ε) for the refrigerator can be expressed as

ε = Qc

Wtot
= QDC − δ|�Q|∣∣∣∣± 1

β ′
2

ln
(

1±e−β′
2 h̄ω1

1±e−β′
2 h̄ω2

)
± 1

β ′
1

ln
(

1±e−β′
1 h̄ω2

1±e−β′
1 h̄ω1

)∣∣∣∣
. (27)

We emphasize here that Eqs. (14)–(27) are exact and hold
for both bosonic and fermionic working mediums. If the sys-
tem temperatures are equal to the heat bath temperatures, then
it corresponds to the reversible operation of the Stirling cycle
with maximum efficiency and zero power [cf. (20)]. Since real
engines have a finite cycle time, they cannot be in an exact
equilibrium with the heat bath; consequently, their efficiency
is always less than the Carnot bound [46]. The same is true
for the coefficient of performance of a refrigerator. Now, for
the finite power generation and cooling rate, dynamical laws
governing the system evolution must be taken into account,
where the performance of a real machine is strongly governed
by heat transfer rates. So, in the next section, we first for-
mulate the finite-time dynamics [47–49] and then investigate
the heat conduction rate and machine performance at different
temperature scales.

IV. FINITE-TIME FORMULATION

In order to analyze the machine performance, we must
solve the equation of motion that determines the time evolu-
tion of the population for both oscillator working mediums.
This is where the dynamical semigroup approach [50–52]
comes into play. It is shown that dynamical maps with semi-
group properties are generated by an equation of motion with
a general form

dÂ

dt
= i

h̄
[Ĥ , Â] + ∂Â

∂t
+ LD(Â), (28)

where Â is any system operator in the Heisenberg picture and

LD(Â) =
∑

α

γα (V̂ †
α [Â, V̂α] + [V̂ †

α , Â]V̂α ) (29)

comes from the dissipative contribution to the dynamics. V̂ ,
V̂ † are system eigenoperators evaluated in their respective
Hilbert spaces. H is the effective system Hamiltonian and γα

are the phenomenological positive damping coefficients. An
equation of the form of (28) is obtained in the weak-coupling
limit, where the general reduction scheme starting from the
microscopic Hamiltonian can be summarized as follows [52]:

(a) The system-bath combined Hamiltonian is considered
for the dynamical evolution.

(b) A partial trace over the bath degrees of freedom is
carried out to obtain the reduced dynamical map of the system
in terms of V (t ).

(c) Finally, a semigroup property is imposed on these
reduced dynamical maps. The basic assumption is the
Markovity condition, V (t1 + t2) = V (t1)V (t2).

Now, let us consider the free Hamiltonian of the bosonic
(fermionic) oscillator [Eq. (3)] as the working system. Then
we obtain V̂α = â, â† as the eigenoperators of the respective
oscillators satisfying commutation or anticommutation rela-
tions. Further assuming that Â does not have any explicit time
dependence, we obtain, from Eq. (28),

˙̂A = i

h̄
[Hs, Â] + γ−(â†[Â, â] + [â†, Â]â)

+ γ+(â[Â, â†] + [â, Â]â†). (30)
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Substituting Â = N̂ into Eq. (30) and tracing both sides of the
above equation results in the time derivative of the oscillator
populations as

ṅ = 〈LD(N̂ )〉 = 2γ+ ± 2(γ− − γ+)n. (31)

This is the second important result of our analysis which
captures the population dynamics of both kinds of oscillators
within a single framework. Now integrating Eq. (31), we get

ln

[ ∓γ+ ± (γ− ± γ+)n

∓γ+ ± (γ− ± γ+)n(0)

]
= −2(γ− ± γ+)t . (32)

The formal solution of the above differential equation can be
expressed as

n = neq + [n(0) − neq]e−2(γ−±γ+ )t , (33)

where

neq = γ+
γ− ± γ+

(34)

is the asymptotic stationary value of n which must correspond
to the thermal equilibrium value of both oscillators,

neq = 1

eβ h̄ω ± 1
. (35)

Here, β = 1
KBT is determined by the inverse equilibrium

temperature of the reservoir (a heat bath or a regenerator)
depending on the specific strokes of the cycle. Comparing the
above two equations, we get

γ−
γ+

= eβ h̄ω. (36)

Let us make an interesting observation. The above equation
says that γ+ and γ− must satisfy Eq. (36) in order to ensure
that the working system asymptotically reaches its correct
equilibrium state, irrespective of the statistical properties of
the fluid. A determination of the individual values of γ+ and
γ− must be based upon the reservoir correlation functions or,
in other words, specific models of the reservoir and the way it
is coupled to the system oscillators.

One standard parametrization scheme used in the weak-
coupling limit when the reservoir is a thermal field of the
bosonic or fermionic class is given by [40,53]

γ+ = ρ(ω)

eβ h̄ω ± 1
and γ− = ρ(ω)eβ h̄ω

eβ h̄ω ± 1
. (37)

Here, ρ(ω) is the density of states of the reservoir character-
ized by the coupling coefficients with the system. The generic
form of ρ(ω) satisfies a power-law behavior with ρ(ω) ∝ ωm.
For m = 1, the spectral density is Ohmic, for m > 1, it is
super-Ohmic, and for m < 1, it is sub-Ohmic [53,54]. How-
ever, one must note that the above parametrization scheme is
true for a specific bath type such as thermal radiation fields.
An alternative parametrization scheme pioneered by Geva and
Kosloff [13,14],

γ+ = aeqβ h̄ω, γ− = ae(1+q)β h̄ω, (38)

where q and a are constant parameters determined through
a specific system-reservoir model, is more versatile and less
restricted to a particular reservoir type. The significance
of the above simplified parametrization scheme satisfying

Eq. (36) for all temperature ranges is quite apparent from its
widespread applications [13,14,31–34]. Positivity of the coef-
ficients γ+, γ− > 0 implies that the parameter a > 0, where
a−1 defines the timescale of thermal relaxation. At high tem-
perature, both γ+ and γ− become comparable in values. On
the other hand, β → ∞, γ+ → 0, and γ− → ∞ indicates
that q lies between −1 < q < 0. In what follows, we make
use of Eq. (38) to draw a fruitful comparison between our
finite-time thermodynamic results valid for both low- and
high-temperature regimes and the high-temperature results
derived earlier by other researchers using the same form of
the transition rates [14,32,33].

As a consequence, we substitute Eq. (38) into Eqs. (31) to
obtain

ṅ = −2aeqβ h̄ω[(eβ h̄ω ± 1)n − 1]. (39)

Equation (39) plays a crucial role in our analysis. With the
help of Eq. (39), we will calculate the total cycle period in
Sec. V, which will be used in Sec. VI to analyze the finite-time
thermodynamic performance of the Stirling cycles. Before
that, let us investigate the rate of heat conduction with the help
of Eq. (39) for general bosonic and fermionic systems.

HEAT CONDUCTION RATE

The semigroup heat transfer rate [14] is defined by the time
derivative of Eq. (9). By substituting Eq. (39) into Eq. (9), we
obtain

Q̇ = −2h̄ωaeqβ h̄ω[(eβ h̄ω ± 1)n − 1]. (40)

Here, n stands for the working medium populations charac-
terized by the inverse temperature βs, which is different from
the asymptotic equilibrium temperature β of the oscillators.
Replacing n by Eq. (5) in the above equation, Eq. (40) reduces
to

Q̇ = −2h̄ωaeqβ h̄ω

[
eβ h̄ω − eβs h̄ω

eβs h̄ω ± 1

]
, (41)

which is very different from any known phenomenological
laws, such as the linear laws of irreversible thermodynamics,
Q̇ = L(1/Ts − 1/T ), the Stephan-Boltzmann law of black-
body radiation, Q̇ = α(T 4

s − T 4), or the Newtonian law of
heat conduction, Q̇ = κ (Ts − T ) [13]. In all such cases, except
the temperature difference, the effects of all other system
variables are absorbed into the phenomenological constants.
Apart from being phenomenological, these laws are also
derived close to thermal equilibrium, ignoring the complex
relaxation dynamics, such as Eq. (39), which is valid under the
far-from-equilibrium condition and depends on specific work-
ing medium statistics. From Eq. (41), by expanding Q̇ around
βs = β in the first order for two limiting cases, however, one
may arrive at some form of approximate linear laws.

High-temperature limit. In the high-temperature limit,
harmonic and fermionic systems behave differently. For a
harmonic oscillator, with βsh̄ω, β h̄ω 	 1, in Eq. (41), we
find

Q̇ ≈ 2h̄ωa

(
βs − β

βs

)
= Lhigh

HO �T . (42)
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This is precisely the same heat transfer coefficient Lhigh
HO =

2aKBh̄ωβ obtained earlier by Lin et al. [32,33] for the
harmonic oscillator Stirling cycle (both engine or refrigera-
tor), in the high-temperature limit, which was shown to be
independent of the temperature of the substance and the tem-
perature difference between the working substance and the
heat reservoir. It is evident that Eq. (42) can be regarded as the
Newtonian law of heat conduction and the high-temperature
regime can therefore be referred as the “classical” limit [13].
Under the same approximations, Eq. (41) for fermionic oscil-
lator reduces to

Q̇ ≈ ah̄2ω2(βs − β ) = Lhigh
FO

(
1

Ts
− 1

T

)
. (43)

An exactly identical result with Lhigh
FO = ah̄2ω2

KB
was obtained

earlier by Geva and Kosloff [14] for a spin- 1
2 engine at a high-

temperature limit, which is considered to be the linear law of
irreversible thermodynamics.

Low-temperature limit. A very low-temperature limit
(βsh̄ω, β h̄ω � 1) can be referred to as quantum [14] when
we can approximate Eq. (41) as follows:

Q̇ = −2h̄ωaeqβ h̄ω[e(β−βs )h̄ω − 1]. (44)

Although Eq. (44) no longer depends on the statistical prop-
erties of the working fluid, nevertheless it is not restricted to
near-equilibrium situations. Further, assuming |βs − β|h̄ω 	
1, we recover the linear law of irreversible thermodynamics,

Q̇ ≈ 2ah̄2ω2eqβ h̄ω(βs − β ) ≡ Llow

(
1

Ts
− 1

T

)
. (45)

We figure out that although the heat conduction rate becomes
identical for fermionic and bosonic working systems at low
temperature, it strongly depends upon the bath properties via
the parameter q. Since q is always negative, Eq. (45) indi-
cates that the heat transfer rate exponentially decreases with
lowering of temperature and heat exchange slows down as q
becomes more negative. The explicit expression for the heat
transfer coefficient in this regime is given by

Llow = Llow
FO ≡ Llow

HO = 2ah̄2ω2

KB
eqβ h̄ω. (46)

Finally, using Eqs. (44) and (43), we can express the ratio of
the heat transfer coefficients of a fermionic system obeying
the linear law of irreversible thermodynamics as

Lr = Llow
FO

Lhigh
FO

= 2eqβ h̄ω. (47)

Thus, depending on the values of |q|β h̄ω ≶ ln 2, the high-
temperature classical heat transfer coefficient of fermionic
systems may be larger or smaller than the corresponding
coefficient for the low-temperature quantum domain (Fig. 3).
This result is quite remarkable and is a direct outcome of our
present analysis.

V. CYCLE PERIOD

From Eq. (39), we can calculate the time of heat exchange
for the various strokes of the cycle. By integrating Eq. (39),

FIG. 3. The ratio of the heat conduction coefficients, Lr , is plot-
ted as a function of the parameters q and β h̄ω. From Eq. (47), the
|q|β h̄ω = ln 2 line corresponds to the black curve, Lr = 1. Above
the curve, Lr > 1 (red region), and below it, Lr < 1 (blue region).

we obtain

t = − 1

2a

∫ n f

ni

dn

eqβ h̄ω[(eβ h̄ω ± 1)n − 1]
, (48)

where ni and n f are the initial and final values of n along
a given path n(βs, ω) in the n − ω planes (Figs. 1 and
2). Equation (48) describes the general expression for the
time evolution of a harmonic (fermionic) oscillator working
medium coupled with a thermal reservoir. Following Eq. (5),
substituting the values of n as a function of βs and ω and
varying one parameter at a time, while keeping the other fixed,
we can evaluate the generic formula for the time of isothermal
and isochoric branches:

(a) To calculate the time of the isothermal heat exchange
processes, we keep the temperature of the working system
fixed at βs and vary only the frequency ω. We substitute
ni = ni(βs, ωi ), and n f = n f (βs, ω f ) into Eq. (48) and obtain
the expression for arbitrary isothermal processes as

t = h̄βs

2a

∫ ω f

ωi

dω

eqβ h̄ω(eβ h̄ω − eβs h̄ω )(1 ± e−βs h̄ω )
. (49)

(b) In the case of an isochoric process, we keep the fre-
quency unchanged and vary the temperature of the working
substance from βs

i to βs
f . Substituting ni = ni(βs

i , ω) and n f =
n f (βs

f , ω) into Eq. (48), the time of the heat exchange at
constant frequency (isochoric) processes can be found to be

t = h̄ω

2a

∫ βs
f

βs
i

dβs

eqβ h̄ω(eβ h̄ω − eβs h̄ω )(1 ± e−βs h̄ω )
. (50)

A few important points are to be noted here:
(i) For an isothermal process, the fixed temperature β

corresponds to the equilibrium temperature of the working
system determined by the inverse heat bath temperatures (cold
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and hot). On the contrary, it represents the regenerator temper-
atures for the isochoric processes.

(ii) Equations (49) and (50) are true for both refrigeration
and engine cycles. Next we will separately calculate the ex-
plicit expressions for the time involved in various strokes of
the Stirling engine and refrigerators.

A. The case of a Stirling engine

Let us go back to Fig. 1 and calculate the explicit expres-
sions for the time of different individual steps:

(i) Stroke A to B. Setting β = βh and βs = β1 into Eq. (49),
the time required for heat exchange due to this isothermal
process is found to be

t1 = h̄β1

2a

∫ ω2

ω1

dω

eqβh h̄ω(eβ1 h̄ω − eβh h̄ω )(1 ± e−β1 h̄ω )
. (51)

(ii) Stroke C to D. Substituting β = βc and βs = β2 into
Eq. (49), we obtain the time required for heat exchange for
this isothermal process as

t3 = h̄β2

2a

∫ ω2

ω1

dω

eqβc h̄ω(eβc h̄ω − eβ2 h̄ω )(1 ± e−β2 h̄ω )
. (52)

(iii) Stroke B to C. For this constant frequency process, we
put β = β1r and ω = ω1 into Eq. (50); then the time required
to complete the stroke takes the form of

t2 = h̄ω1

2a

∫ β2

β1

dβs

eqβ1r h̄ω1 (eβ1r h̄ω1 − eβs h̄ω1 )(1 ± e−βs h̄ω1 )
, (53)

where β1r is the inverse temperature of the regenerator when
heat is released from the working system to the regenerator at
constant frequency ω = ω1, so that β1r > βs.

(iv) Stroke D to A. Finally, setting β = β2r and ω = ω2 into
Eq. (50), the time for this constant frequency process reduces
to

t4 = h̄ω2

2a

∫ β2

β1

dβs

eqβ2r h̄ω2 (eβs h̄ω2 − eβ2r h̄ω2 )(1 ± e−βs h̄ω2 )
. (54)

Here, β2r is the inverse temperature of the regenerator when
heat is transferred from the regenerator to the working system
at constant frequency ω = ω2, implying that β2r < βs.

As a result, the total cycle period is calculated to be
τE = t1 + t2 + t3 + t4. (55)

It is clear from Eqs. (51)–(54) that cycle periods will be differ-
ent for bosonic and fermionic engines in general. Evaluation
of the integrals of Eqs. (51)–(54) in closed form for the general
case is a formidable task. A closed form analytical solution
can be found only in the high- and low-temperature limits.
Before we turn our attention to those solutions, we would
like to make some general remarks about the integrands in
Eqs. (51)–(54). The presence of statistical (1 ± e−x ) factors in
the denominator of Eqs. (51)–(54) is responsible for the differ-
ential behavior between the fermionic and harmonic Stirling
cycles. This difference disappears in the low-temperature
quantum domain as the contribution from exponential terms
becomes negligibly small. As a result, both oscillators become
statistically equivalent in this temperature regime. This has
profound implications for the thermodynamic performance of
both cycles. The situation gets dramatically different beyond
this quantum regime. Although it is possible to obtain some
closed form solutions even at the high-temperature limit, the

nature of the explicit expressions differs significantly between
the two oscillator systems.

Now, let us first evaluate the explicit expressions at the
low-temperature limit, which will be used in Sec. VI. Since
−1 < q < 0, if we consider Eq. (51) for example, we can
approximate it at low temperature as follows:

t1  h̄β1

2a

∫ ω2

ω1

e−(β1+βhq)h̄ωdω

= β1

2a(β1 + βhq)
(e−(β1+βhq)h̄ω1 − e−(β1+βhq)h̄ω2 )

= 1

2a(1 + αhq)
(e−(1+αhq)β1 h̄ω1 − e−(1+αhq)β1 h̄ω2 ), (56)

where we have used the fact that αh = βh

β1
= T1

Th
< 1. Similarly,

we can approximate Eq. (52) as

t3  h̄β2

2a

∫ ω2

ω1

e−βc (1+q)h̄ωdω

= β2

2a(1 + q)βc
(e−βc (1+q)h̄ω1 − e−βc (1+q)h̄ω2 )

= 1

2a(1 + q)αc
(e−αc (1+q)β2 h̄ω1 − e−αc (1+q)β2 h̄ω2 ), (57)

where we have used the parameter αc = βc

β2
= T2

Tc
> 1.

The calculation of t2 and t4 is a little involved. First, we
approximate Eqs. (53) and (54) as

t2  h̄ω1

2a

∫ β2

β1

e−β1r (1+q)h̄ω1 dβs (58)

and

t4  h̄ω2

2a

∫ β2

β1

e−(βs+β2r q)h̄ω2 dβs. (59)

In order to solve Eq. (58) and (59), we need an extra as-
sumption. Let us assume β1r ∝ βs and β2r ∝ βs, which means
β1r (β2r ) and βs are linearly dependent with proportionality
constants γ1 > 1 and γ2 < 1, respectively [cf. Eqs. (53) and
(54)]. With this assumption, Eqs. (58) and (59) can be simpli-
fied as follows:

t2 = h̄ω1

2aγ1(1 + q)h̄ω1
(e−γ1(1+q)β1 h̄ω1 − e−γ1(1+q)β2 h̄ω1 ) (60)

and

t4 = h̄ω2

2a(1 + γ2q)h̄ω2
(e−(1+γ2q)β1 h̄ω2 − e−(1+γ2q)β2 h̄ω2 ). (61)

Thus, one can approximate the low-temperature expression
for the engine cycle period as

τ low
E = 1

2a(1 + αhq)
(e−(1+αhq)β1 h̄ω1 − e−(1+αhq)β1 h̄ω2 )

+ 1

2a(1 + q)αc
(e−αc (1+q)β2 h̄ω1 − e−αc (1+q)β2 h̄ω2 )

+ 1

2a(1 + q)γ1
(e−γ1(1+q)β1 h̄ω1 − e−γ1(1+q)β2 h̄ω1 )

+ 1

2a(1 + γ2q)
(e−(1+γ2q)β1 h̄ω2 − e−(1+γ2q)β2 h̄ω2 ).

(62)
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Notice that Eq. (62) is the same for both oscillators at the low-
temperature region, which is characteristically different from
the high-temperature results, derived by others [31–34]:

t1 = β1

4a(β1 − βh)
ln

(
ω2

ω1

)
, (63)

t3 = β2

4a(βc − β2)
ln

(
ω2

ω1

)
, (64)

t2 = 1

4a

∫ β2

β1

dβ ′

β1r − β ′ , (65)

t4 = 1

4a

∫ β2

β1

dβ ′

β ′ − β2r
, (66)

for spin- 1
2 fermions, and

t1 = ω2 − ω1

2ah̄ω2ω1(β1 − βh)
, (67)

t3 = ω2 − ω1

2ah̄ω2ω1(βc − β2)
, (68)

t2 = 1

2ah̄ω1

∫ β2

β1

dβ ′

β ′(β1r − β ′)
, (69)

t4 = 1

2ah̄ω2

∫ β2

β1

dβ ′

β ′(β ′ − β2r )
, (70)

for harmonic oscillator working mediums. One can immedi-
ately understand that at high temperature, the cycle period
for both oscillators is very distinct in nature, whereas at low
temperature, they become exactly identical. Second, we find
that the time required for the heat exchange at very low tem-
perature heavily depends on the specific model of the reservoir
through the q parameter [Eq. (62)], whereas it is independent
of the bath characteristics in the high-temperature range. As
an upshot of this consequence, the finite-time thermodynamic
behavior of bosonic and fermionic engines is shown to be
equivalent in the low-temperature regime, while they largely
deviate in the opposite limit. An analogous situation is also
obtained for refrigeration. So, in essence, we expect that these
two oscillator working mediums behave in an identical fash-
ion only in the low-temperature region, and beyond this, they
perform very differently from each other. For completeness,
we briefly mention the cycle period for refrigeration at the
low-temperature limit, which will be helpful to analyze the
machine performance in Sec. VI.

B. The case of a Stirling refrigerator

Like the heat engine, one can compute the time for various
strokes of the refrigerator (see Fig. 2). For β = βc and βs = β ′

2
in Eq. (49), the time required for the heat exchange at constant
temperature T ′

2 is given by

t ′
1 = h̄β ′

2

2a

∫ ω1

ω2

dω

eqβc h̄ω(eβc h̄ω − eβ ′
2 h̄ω )(1 ± e−β ′

2 h̄ω )
. (71)

Analogously, for β = βh and βs = β ′
1 in Eq. (49), the time of

the isothermal process from B to A at temperature T ′
1 is found

to be

t ′
3 = h̄β ′

1

2a

∫ ω2

ω1

dω

eqβh h̄ω(eβh h̄ω − eβ ′
1 h̄ω )(1 ± e−β ′

1 h̄ω )
. (72)

Exactly in the same way as we have done before, for β = β ′
1r

in Eq. (50), the time of heat exchange from A to D at constant
frequency ω = ω2 reduces to

t ′
4 = h̄ω2

2a

∫ β ′
2

β ′
1

dβs

eqβ ′
1r h̄ω2 (eβ ′

1r h̄ω2 − eβs h̄ω2 )(1 ± e−βs h̄ω2 )
. (73)

Here, β ′
1r is the inverse temperature of the regenerator and

β ′
1r > β ′ because heat is flowing from the working system to

the regenerator. Finally, putting β = β ′
2r into Eq. (50), the time

of heat exchange from C to B at constant frequency ω = ω1 is
calculated to be

t ′
2 = h̄ω1

2a

∫ β ′
1

β ′
2

dβs

eqβ ′
2r h̄ω1 (eβ ′

2r h̄ω1 − eβs h̄ω1 )(1 ± e−βs h̄ω1 )
, (74)

where β ′
2r is also the inverse temperature of the regenerator

with β ′
2r < β ′, as heat is flowing from the regenerator to the

working system in this case. So, we find the total cycle time
as

τR = t ′
1 + t ′

2 + t ′
3 + t ′

4. (75)

Similar to the engine case, in the low-temperature limit,
Eqs. (71) and (72) are reduced to the following forms:

t ′
1 = h̄β ′

2

2a

∫ ω2

ω1

e−(β ′
2+qβc )h̄ωdω

= β ′
2

2a(β ′
2 + qβc)

(e−(β ′
2+qβc )h̄ω1 − e−(β ′

2+qβc )h̄ω2 ) (76)

and

t ′
3 = h̄β ′

1

2a

∫ ω2

ω1

e−(1+q)βh h̄ωdω

= β ′
1

2a(1 + q)βh
(e−(1+q)βh h̄ω1 − e−(1+q)βh h̄ω2 ). (77)

For Eqs. (73) and (74), we proceed exactly in the same way as
we did earlier. First, we approximate Eqs. (73) and (74) as

t ′
2 = h̄ω1

2a

∫ β ′
2

β ′
1

e−(βs+qβ ′
2r )h̄ω1 dβs (78)

and

t ′
4 = h̄ω2

2a

∫ β ′
2

β ′
1

e−(1+q)β ′
1r h̄ω2 dβs. (79)

Next, we assume β ′
1r and β ′

2r are linearly dependent, i.e.,
β ′

1r = bβs and β ′
2r = b′βs, where b, b′ are proportionality con-

stants. From Eqs. (78) and (79), we get

t ′
2 = 1

2a(1 + qb′)
(e−(1+qb′ )β ′

1 h̄ω1 − e−(1+qb′ )β ′
2 h̄ω1 ) (80)

and

t ′
4 = 1

2a(1 + q)b
(e−(1+q)bβ ′

1 h̄ω2 − e−(1+q)bβ ′
2 h̄ω2 ). (81)
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Thus we calculate the following form of the total cycle period
at low temperature:

τ low
R = 1

2a(1 + qα′
c)

(e−(1+qα′
c )β ′

2 h̄ω1 − e−(1+qα′
c )β ′

2 h̄ω2 )

+ 1

2a(1 + q)α′
h

(e−(1+q)α′
hβ

′
1 h̄ω1 − e−(1+q)α′

hβ
′
1 h̄ω2 )

+ 1

2a(1 + qb′)
(e−(1+qb′ )β ′

1 h̄ω1 − e−(1+qb′ )β ′
2 h̄ω1 )

+ 1

2a(1 + q)b
(e−(1+q)bβ ′

1 h̄ω2 − e−(1+q)bβ ′
2 h̄ω2 ), (82)

where α′
h = βh

β ′
1

> 1 and α′
c = βc

β ′
2

< 1. We will use this equa-
tion in Sec. VI.

VI. LOW-TEMPERATURE EQUIVALENCE OF BOSONIC
AND FERMIONIC STIRLING CYCLES

A. Bosonic vs fermionic engine

The efficiency (η) and power output (P) are two important
quantities to analyze the performance of an engine [55]. Using
Eqs. (18), (12), and (55), η and P can be expressed as

η = −Wtot

Qh
=

[± 1
β1

ln
(

1±e−β1 h̄ω1

1±e−β1 h̄ω2

) ± 1
β2

ln
(

1±e−β2 h̄ω2

1±e−β2 h̄ω1

)]
QAB + δ�Q

(83)

and

P = −Wtot

τE
=

[± 1
β1

ln
(

1±e−β1 h̄ω1

1±e−β1 h̄ω2

) ± 1
β2

ln
(

1±e−β2 h̄ω2

1±e−β2 h̄ω1

)]
t1 + t2 + t3 + t4

. (84)

Now we can have three possibilities: (i) low-temperature or
quantum limit (βα h̄ωi � 1 or h̄ωi � KBTα; α = 1, 2 and i =
1, 2); (ii) intermediate regime (β1h̄ωi 	 1 and β2h̄ωi � 1);
and (iii) high-temperature or classical limit (βα h̄ωi 	 1 or
h̄ωi 	 KBTα; α = 1, 2 and i = 1, 2). A fourth possibility is
simply unphysical since it implies that the temperature of
the hot branch is lower than the temperature of the cold
one. Characterized by the energy and temperature scales of
the working materials as we mentioned earlier, close re-
semblances between two kinds of engines are expected in
the low-temperature range, whereas they operate distinctively
once they are away from this temperature scale. Second, the
finite-time thermodynamic analysis in the intermediate regime
becomes a nontrivial task since it requires the evaluation of
complicated integrals for the cycle period which can be done
only by numerical means. Therefore, we focus our attention
only on the low-temperature quantum regime, where both
types of engines exhibit a close thermodynamic kinship to
each other.

We have explored that the low-temperature thermodynamic
equivalence of bosonic and fermionic Stirling engines is an
upshot of the fact that all the physical quantities possess
identical expressions in this temperature range, i.e., both en-
gines attain the same expressions for heat, work, power, and
efficiency, and even the same entropy production rate (σ ), as
given below:

�Q = h̄ω1(e−β2 h̄ω1 − e−β1 h̄ω1 ) + h̄ω2(e−β1 h̄ω2 − e−β2 h̄ω2 ),
(85)

−Wtot = 1

β1
(e−β1 h̄ω1 − e−β1 h̄ω2 ) + 1

β2
(e−β2 h̄ω2 − e−β2 h̄ω1 ),

(86)

Qh =
(

h̄ω1 + 1

β1

)
e−β1 h̄ω1 −

(
h̄ω2 + 1

β1

)
e−β1 h̄ω2 , (87)

Qc = h̄ω2e−β1 h̄ω2 − h̄ω1e−β1 h̄ω1 + 1

β2
(e−β2 h̄ω2 − e−β2 h̄ω1 ),

(88)

η =
1
β1

(e−β1 h̄ω1 − e−β1 h̄ω2 ) + 1
β2

(e−β2 h̄ω2 − e−β2 h̄ω1 )(
h̄ω1 + 1

β1

)
e−β1 h̄ω1 − (

h̄ω2 + 1
β1

)
e−β1 h̄ω2

, (89)

P =
1
β1

(e−β1 h̄ω1 − e−β1 h̄ω2 ) + 1
β2

(e−β2 h̄ω2 − e−β2 h̄ω1 )

τ low
E

, (90)

σ = �S

τ low
E

= −βhQh + βcQc

τ low
E

, (91)

where �S is the entropy production determined by Eqs. (87)
and (88).

As a consequence, not only are their reversible operations
identical, but their finite-time thermodynamic performances
also become equivalent. This is the most interesting ob-
servation of our analysis. We stress that the reason behind
the thermodynamic equivalence between the bosonic and
fermionic Stirling cycles at low temperature is statistical in
origin and is different in status from the thermodynamic
equivalence observed between the various engine cycles at
small action limit [56]. In the present case, the origin of the
equivalent performance can be attributed to the remarkable
similarities between each and every expression of harmonic
engine to that of the fermionic engine. In the latter case, heat
and work are significantly different within the cycle strokes,
although they become equivalent over a full cycle period as a
consequence of the symmetric rearrangement theorem [56].

From Eqs. (89) and (90), we can see that the efficiency
and power of both engines strongly depend upon q, i.e., on
the specific system-reservoir model. This behavior is truly
contrasting in respect to high-temperature engine performance
which has no q dependence. As the temperature is high
enough, the equipartition theorem holds and the efficiency of
the bosonic engine reduces to a classical Carnot bound with
perfect regenerative characteristics [32]:

�Q = QBC + QDA = 0, (92)

−Wtot = (β2 − β1)

β1β2
ln

(ω2

ω1

)
, (93)

Qh = 1

β1
ln

(ω2

ω1

)
> 0, (94)

Qc = 1

β2
ln

(ω1

ω2

)
< 0, (95)

η = 1 − β1

β2
, (96)

P = −Wtot

τ
high
E

, (97)
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where

τ
high
HO = d

(
1

β1 − βh
+ 1

βc − β2

)
+ γ

(
1

β1
− 1

β2

)
, (98)

with d = ω2−ω1
2ah̄ω1ω2

and γ as the proportionality constants.
On the contrary, without any classical correspondence, the
efficiency of the fermionic engine does not approach the clas-
sical Carnot bound. Yet it may work as an engine in this
high-temperature regime determined by the following set of
quantities [34]:

�Q = h̄2
(
ω2

1 − ω2
2

)
(β1 − β2)

4
> 0, (99)

Qh = h̄2
(
ω2

2 − ω2
1

)
(β1 + 2β2)

8
> 0, (100)

Qc = −3β2

8
h̄2

(
ω2

2 − ω2
1

)
< 0, (101)

−Wtot = h̄2
(
ω2

2 − ω2
1

)
(β2 − β1)

8
, (102)

η = β2 − β1

2β2 − β1
, (103)

P = −Wtot

τ
high
FO

, (104)

where

τ
high
FO = β1

4a(β1 − βh)
ln

(
ω2

ω1

)
+ β2

4a(βc − β2)
ln

(
ω2

ω1

)
+ γ (β2 − β1). (105)

The fact that the power output strongly depends on the q
parameter at the low-temperature scale, while it is indepen-
dent in the classical limit, plays a significant role on the
power maximization of the engine. It is found that the Curzon-
Ahlborn bound always holds in the high-temperature limit
[13,48], irrespective of the details of the model, and, inter-
estingly, the efficiency at maximum power for both harmonic
and spin- 1

2 engines is shown to abide by the Carzon-Albhron
bound in this temperature range. The presence of the q factor,
on the other hand, makes the generic optimization scheme
impossible at the low-temperature scale. Yet, for a given
choice of system-reservoir interaction, the engine efficiency at
maximum power is found to always be less than the Curzon-
Alhborn bound and asymptotically approaches the maximum
possible value with the increase of temperature (Fig. 4).

B. Bosonic vs fermionic refrigerator

Using Eqs. (25), (13), and (75), we can obtain the expres-
sions for the coefficient of performance (ε), power input (P),
and cooling rate (R) as

ε = Qc

Wtot
= QDC − δ|�Q|∣∣∣∣± 1

β ′
2

ln
(

1±e−β′
2 h̄ω1

1±e−β′
2 h̄ω2

)
± 1

β ′
1

ln
(

1±e−β′
1 h̄ω2

1±e−β′
1 h̄ω1

)∣∣∣∣
, (106)

P = Wtot

τR
=

∣∣∣∣± 1
β ′

2
ln

(
1±e−β′

2 h̄ω1

1±e−β′
2 h̄ω2

)
± 1

β ′
1

ln
(

1±e−β′
1 h̄ω2

1±e−β′
1 h̄ω1

)∣∣∣∣
t ′
1 + t ′

2 + t ′
3 + t ′

4

, (107)

FIG. 4. Efficiency η (green) and dimensionless power P∗ =
P

aKBT1
(blue) plotted as a function of β1 h̄ω1 for the parameter set

ω2 = 2ω1, β2 = 2β1 (T1 = 2T2), αh = γ2 = 0.6, αc = γ1 = 1.4, and
q = −0.05. The red dotted curve represented by the Curzon-Albhorn
bound sets the highest possible efficiency at maximum power, where
η ≈ 1/(1 + β1 h̄ω1) [cf. (89)], for the choice of parameters.

R = Qc

τR
= QDC − δ|�Q|

t ′
1 + t ′

2 + t ′
3 + t ′

4

. (108)

Similar to the engine, we can have three different regions
of operation, but we will analyze only the low-temperature
regime, which is the most interesting regime for refrigeration
as well. Like the engine, the refrigeration mode also possesses
identical expressions between various quantities of bosonic
and fermionic Stirling cycles:

�Q = h̄ω1(e−β ′
1 h̄ω1 − e−β ′

2 h̄ω1 ) + h̄ω2(e−β ′
2 h̄ω2 − e−β ′

1 h̄ω2 ),
(109)

Qc = h̄ω1e−β ′
2 h̄ω1 − h̄ω2e−β ′

2 h̄ω2 + 1

β ′
2

(e−β ′
2 h̄ω1 − e−β ′

2 h̄ω2 ),

(110)

Wtot =
∣∣∣∣ 1

β ′
2

(e−β ′
2 h̄ω1 − e−β ′

2 h̄ω2 ) + 1

β ′
1

(e−β ′
1 h̄ω2 − e−β ′

1 h̄ω1 )

∣∣∣∣,
(111)

ε = Qc

Wtot
= (β ′

2h̄ω1 + 1)e−β ′
2 h̄ω1 − (β ′

2h̄ω2 + 1)e−β ′
2 h̄ω2

β ′
2

β ′
1
(e−β ′

1 h̄ω1 − e−β ′
1 h̄ω2 ) + (e−β ′

2 h̄ω2 − e−β ′
2 h̄ω1 )

,

(112)

P =
1
β ′

1
(e−β ′

1 h̄ω1 − e−β ′
1 h̄ω2 ) + 1

β ′
2
(e−β ′

2 h̄ω2 − e−β ′
2 h̄ω1 )

τ low
R

, (113)
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and

R =
h̄ω1e−β ′

2 h̄ω1 − h̄ω2e−β ′
2 h̄ω2 + 1

β ′
2
(e−β ′

2 h̄ω1 − e−β ′
2 h̄ω2 )

τ low
R

.

(114)
Our main result is the thermodynamical equivalence of

Stirling cycles in the quantum regime of small temperature.
By introducing appropriate temperature scales for the working
system, we have shown that when it is small compared to
all relevant energy scales of the system, both cycle types
become equivalent. This equivalence emerges because, for
small temperature, the population of both oscillators becomes
indistinguishable. Remarkably, the equivalence also holds for
the overall cycle period and heat transfer rates. This is an arti-
fact of the fact that at low temperatures, most of the population
of the harmonic oscillator working medium lies in the first
two levels so that the bosonic oscillator is behaving like a
two-level fermionic oscillator.

VII. CONCLUSION

In this work, we have presented a statistical generalization
of bosonic and fermionic Stirling cycles with regenerative
characteristics. The approach is based on oscillator models of
a working fluid that represents two distinct types of quantum
Stirling cycles, with bounded and unbounded Hamiltonians
of fermionic and bosonic statistics. The advantage of the pro-
posed oscillator scheme is that it provides a unified framework
where both kinds of working systems can be depicted by the
same set of physical parameters. This enables a meaningful
comparison between two distinct types of statistical cycles,
and thus constitutes an essential ingredient of our theory. We
now summarize our major conclusions as follows:

(i) The generalization of heat and work in terms of change
in frequency and population of the bosonic and fermionic os-
cillators can serve as a universal paradigm for the generalized
version of the first law of thermodynamics valid for both types
of statistics.

(ii) Apart from the Newtonian law of heat conduction
obeyed by a harmonic oscillator cycle at high temperature,
near-equilibrium heat transfer rates between the fermionic and
bosonic working systems and the heat reservoirs exhibit, in
general, a linear law of irreversible thermodynamics. While
it is independent of the properties of the bath in the classical
limit for both types of working fluids, their generic as well as
the low-temperature heat transfer coefficients strongly depend
upon the particular choice of reservoir models.

(iii) The reversible and irreversible performance of both the
Stirling cycles become thermodynamically equivalent in the
quantum limit. Equivalence also holds for low-temperature
heat transfer rates and the behavior of cycle times. The validity
regime of the equivalent performance is expressed in terms
of energy and temperature scales of the working medium.
Beyond this low-temperature quantum limit, the two models
differ significantly; however, the nature of their maximum
power behavior is analogous at both the high- and low-
temperature limits.

(iv) Although the low-temperature equivalence of the
harmonic and fermionic engine (refrigerator) is explicitly ob-
tained for regenerative Stirling cycles, our general conclusions
are expected to hold for other engine (refrigerator) cycles as
well since any nondegenerate multilevel system reduces to a
two-state fermionic oscillator at very low temperature.
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APPENDIX: DERIVATION OF THE HEAT EXCHANGE

From the population given by Eq. (5) of our working
medium, we can write

h̄ω = KBT ln

(
1 ∓ n

n

)
. (A1)

Using Eq. (9), the amount of heat exchange at constant tem-
perature T (i.e., isothermal process) can be calculated as

Qi→ f =
∫ n f

ni

h̄ωdn = KBT
∫ n f

ni

ln

(
1 ∓ n

n

)
dn (A2a)

= KBT

[∫ n f

ni

ln(1 ∓ n)dn −
∫ n f

ni

ln(n)dn

]
(A2b)

= KBT

[
n ln

(
1 ∓ n

n

)
∓ ln(1 ∓ n)

]∣∣∣∣∣
n f

ni

(A2c)

= KBT

[
n f ln

(
1 ∓ n f

n f

)
− ni ln

(
1 ∓ ni

ni

)

± ln

(
1 ∓ ni

1 ∓ n f

)]
(A2d)

= h̄ω f

e
h̄ω f
KBT ± 1

− h̄ωi

e
h̄ωi

KBT ± 1
± KBT ln

⎡
⎣1 ± e− h̄ω f

KBT

1 ± e− h̄ωi
KBT

⎤
⎦,

(A2e)

where ωi and ω f are, respectively, the frequencies of the initial
and final states. Similarly, we can calculate the amount of heat
exchange at constant frequency ω as

Qi→ f = h̄ω

∫ n f

ni

dn = h̄ω(n f − ni ) (A3a)

= h̄ω

(
1

e
h̄ω

KBTf ± 1
− 1

e
h̄ω

KBTi ± 1

)
, (A3b)

where Ti and Tf are, respectively, the initial and final temper-
atures for the process i → f .
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