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Multifractal magnetoconductance fluctuations in mesoscopic systems
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We perform a multifractal detrended fluctuation analysis of the magnetoconductance data of two standard
types of mesoscopic systems: a disordered nanowire and a ballistic chaotic billiard, with two different lattice
structures. We observe in all cases that multifractality is generally present and that it becomes stronger in
the quantum regime of conduction, i.e., when the number of open scattering channels is small. We argue that
this behavior originates from correlations induced by the magnetic field, which can be characterized through
the distribution of conductance increments in the corresponding “stochastic time series,” with the magnetic
field playing the role of a fictitious time. More specifically, we show that the distributions of conductance
increments are well fitted by q Gaussians and that the value of the parameter q is a useful quantitative measure
of multifractality in magnetoconductance fluctuations.
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I. INTRODUCTION

Universal conductance fluctuations (UCF) are among the
most remarkable phenomena of mesoscopic physics [1,2].
From a physical perspective, UCF can be traced back to
quantum interference effects caused by multiple wave scat-
terings inside the sample. Furthermore, UCF are ubiquitous
in that they have been observed in a great deal of phase-
coherent electron transport systems, from diffusive nanowires
[3–7] to ballistic chaotic billiards [8–14]. There is, how-
ever, a fundamental difference in the scattering mechanism
of diffusive nanowires and ballistic chaotic billiards. In the
former, the leading mechanism is impurity scattering, which
induces Anderson localization when the sample’s length ex-
ceeds the localization length, while in the latter one has
elastic scattering taking place at the boundaries of the billiard.
Notwithstanding this difference, UCF in both systems can be
studied within a single perspective, by seeking to characterize
more fully the statistical nature of the conductance fluctua-
tions in all cases.

UCF have been observed in a variety of experimental
situations, such as by varying the strength of an externally
applied magnetic field to a metallic sample, in which case
they can also be called universal magnetoconductance fluc-
tuations [15]. Furthermore, they have also been observed
by varying the Fermi energy of different types of samples
and the numerical value of the variance of the conductance,
measured in units of e2/h, agrees with that calculated from
magnetoconductance data. This means that UCF depend nei-
ther on the dimensions nor on the degree of disorder of the
device, at least in a certain range of values of these param-
eters, hence the name universal [16]. As a matter of fact,
UCF can even be seen as sample-to-sample fluctuations in

the conductance of samples with different disorder or border
configurations [17].

Among the many interesting features of UCF, one that
we would like to point out is the fact that they have been
shown to be fractals. For instance, it was reported in Ref. [3]
that the UCF of quasiballistic gold nanowires induced by a
varying magnetic field have a fractal nature. This fractality
was attributed to the existence of long-lived states with chaotic
trajectories close to regular classical orbits, which are charac-
teristic of systems with a corresponding classical phase space
that is neither fully chaotic nor integrable.

In the case of ballistic chaotic billiards, fractal behavior of
UCF as a function of an externally applied magnetic field was
observed for a soft wall stadium [8] and a Sinai billiard [8–11]
in high-mobility semiconductor heterojunctions. Furthermore,
using a semiclassical approach to compute the transmission
amplitudes of a nanostructured system [18], Ketzmerick [19]
showed that the UCF of ballistic chaotic billiards are fractals
and computed the fractal dimension DF . More specifically,
from the magnetoconductance, i.e., the conductance incre-
ments �G as a function of magnetic field variation �B at a
fixed Fermi energy,

�G = G(B + �B) − G(B), (1)

Ketzmerick proved that the second moment of the magne-
toconductance scales with �B as 〈(�G)2〉 ∼ (�B)γ , where
γ = 1 − DF /2. This behavior was shown to be a consequence
of the power-law tail of the probability density, P(T ) ∼ T −γ ,
for an electron to stay in the cavity up to time T , which is
a known feature of systems with a hierarchical phase space
structure which have a mixed (regular and chaotic) dynamics.

Recently, the fractal nature of UCF came up again
after a somewhat unexpected experimental detection of
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FIG. 1. Schematics of disordered graphene nanowires connected
to leads (red) with two boundary configurations: (a) armchair and
(b) zigzag, and of (c) a graphene chaotic billiard.

multifractality in the conductance fluctuations of a single-
layer graphene sample [20]. In practical terms, multifractality
means that it is not enough to determine just a single scaling
exponent, such as γ , which is related to the usual fractal di-
mension [19] (see above), to describe fluctuations, but instead
an infinite number of scaling exponents becomes necessary to
fully characterize the fluctuation statistics. Differently from
the experimental observations of fractality, as in Ref. [3],
where the number of propagating wave modes in the leads
are large (semiclassical regime), the multifractal behavior
emerges when there is just one propagating wave mode in the
leads (extreme quantum regime), more specifically, close to
the charge-neutrality (Dirac) point of single-layer graphene
[20]. Besides, the authors of Ref. [20] conjectured that the
experimental observation of multifractality might be an ev-
idence of an incipient Anderson localization near the Dirac
point, since this appears to be the most plausible cause for
the multifractal behavior. However, as we will show with
the results of this paper, this conjecture deserves a deeper
analysis. More specifically, we will argue that multifractality
in UCF stems from certain quantum correlations induced by
the magnetic field.

In this work, we present a systematic numerical study
of the multifractal spectrum of the conductance fluctua-
tions obtained by varying a perpendicularly applied magnetic
field to two kinds of mesoscopic graphene devices: disor-
dered nanowires and ballistic chaotic billiards (see Fig. 1).
Furthermore, we also present results of standard confined two-
dimensional electron gases (dots and wires), in order to make
direct comparisons with the results for our graphene systems.
Our analysis suggests that multifractality is a common feature
of conductance fluctuations of all types of mesoscopic devices
in the quantum regime of conduction. It means that magneto-
conductance fluctuations of disordered nanowires and ballistic
chaotic billiards show multifractal behavior when the num-
ber of open scattering channels is sufficiently small, which

in turn led us to discard proximity to phase transitions as
a necessary cause of multifractal conductance fluctuations
(MCF). Instead, we argue that MCF are related to certain
types of quantum correlations [21,22], which are present in the
quantum regime and are lost when the system enters into the
semiclassical regime of conduction. To be more specific, it has
been shown using the trajectory-based semiclassical approach
[23–25] that characteristics of quantum transport observables
can be calculated via sums over classical scattering trajecto-
ries. Furthermore, correlations between such trajectories can
be organized diagrammatically and have been shown to dis-
appear in the dominant semiclassical regime (large number
of scattering channels) and give exact results in the extreme
quantum regime (small number of scattering channels). We
believe that these trajectory correlations induced by the mag-
netic field are the ones that are captured by the multifractal
analysis and by the fat tails of the distribution of conductance
increments, which incidently are one of the features of inter-
mittency in fluid turbulence.

II. METHODS

In this section, we briefly introduce the scattering model
used to obtain the magnetoconductance series as well as the
method we used to perform the multifractal analysis of the
numerical data.

A. Scattering model

We consider electronic transport through three different
graphene mesoscopic devices connected to two leads, as il-
lustrated in Fig. 1. Two of them are disordered graphene
nanowires, namely (a) armchair (AGNR) and (b) zigzag
nanoribbons (ZGNR), and the third is (c) a graphene chaotic
billiard (GCB). Electronic transport through the devices can
be described by the scattering matrix

S =
(

r t ′
t r′

)
, (2)

where t (t ′) and r (r′) are transmission and reflection blocks,
respectively. The conductance can be calculated from the
Landauer-Büttiker relation

G = 2e2

h
Tr(t†t ), (3)

which is valid in the linear regime and at low temperatures.
The numerical calculations of the conductance were per-
formed using the Kwant software [26], which is a Green’s
function–based algorithm that computes, among other quan-
tities, the transport observables of a system described via a
tight-binding approach. The tight-binding Hamiltonian for a
single-layer graphene device is given by

H = t0
∑
〈i, j〉

c†
i c je

iθi j +
∑

i

εic
†
i ci, (4)

where the indices i and j run over all lattice sites and 〈i, j〉
denotes nearest neighbors. The first term of Eq. (4) represents
the usual electron hopping between lattice sites, ci (c†

i ) are
the annihilation (creation) operators, t0 is the hopping energy,
which has a typical experimental value around 2.8 eV, and
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θi j = −(e/h̄)
∫ j

i A · dl is the Peierls phase factor related to the
externally applied magnetic field. We use the gauge condition
given by A = (−By, 0, 0), so that B = (0, 0, B) is the mag-
netic field, which we measure in terms of the dimensionless
magnetic flux φ = �/�0, where � = Ba2 is the flux through
an enclosed area a2 of the lattice and �0 = h/e is the flux
quantum. The second term of Eq. (4) is an Anderson disorder
term that is realized by an on-site electrostatic potential εi

which varies randomly from site to site according to a uniform
distribution in the interval (−U/2,U/2), where U indicates
the disorder strength.

B. Multifractal analysis

We shall first introduce a dimensionless conductance g =
G/(2e2/h), which will be used throughout this work. Now let
gk ≡ g(φk ), k = 1, . . . , M, be the conductance series obtained
by varying the magnetic flux φ, at fixed increments �φ, for
a given system, where M is the total number of values of φ

chosen; see below for the specific increments in the magnetic
flux for each system. As the magnetic field can be viewed as
playing the role of a fictitious time, we may regard the data
set {gk} as an effective “time series.” Our treatment of the data
series is based on the multifractal detrended fluctuation anal-
ysis (MF-DFA) [27]. In order to apply the MF-DFA, we first
divide the time series into Ns = M/s nonoverlapping windows
of size s. The main idea of this method is then to determine
the pth order fluctuation function

Fp(s) =
(

1

2Ns

2Ns∑
j=1

[
F 2

s ( j)
]p/2

)1/p

(5)

for an appropriate range of values of the exponent p, say from
some finite negative value to its opposite (positive) value. In
Eq. (5), we define

F 2
s ( j) = 1

s

s∑
i=1

{g̃[( j − 1)s + i] − Pj (i)}2, (6)

where

g̃(i) =
i∑

k=1

(gk − 〈g〉) (7)

represents a zero-mean profile of the original series gk and
Pj (i) is a polynomial fit to the profile g̃(i) over the jth segment
of size s. In our analysis, we have considered only linear fits,
so that Eq. (6) implements a local linear detrending in each
segment.

Once we have determined the set of functions Fp(s), we
study their scaling with the window size s according to the
following relation:

Fp(s) ∼ sH (p), (8)

where H (p) is the generalized Hurst exponent. Here we have
considered p ranging from −5 to 5 with steps of 0.2. We
recall that H (2) is the Hurst exponent defined in the standard
fractal analysis [28]. If H (p) is p dependent, we say that the
corresponding series is multifractal, while if H (p) does not
change as p is changed, we say that we have a monofractal

series. We also define

τ (p) = pH (p) − 1, (9)

such that we have the multifractal singularity spectrum f (α)
defined as a Legendre transformation of τ (p):

f (α) = αp − τ (p). (10)

From the point of view of the singularity spectrum f (α), we
know that multifractal time series are characterized by a broad
f (α), while monofractal ones by a narrow f (α). In other
words, the strength of the multifractality can be seen as the
width of f (α), �α = αmax − αmin, such that as �α → 0, we
have a loss of multifractality.

III. RESULTS

In this section, we show the numerical calculation of the
conductance series as a function of the magnetic flux φ. We
begin by analyzing the two types of disordered graphene
nanowires, followed by the GCB (see Fig. 1).

A. Disordered nanowires

The disordered graphene nanowires were designed as arm-
chair (AGNR) and zigzag (ZGNR) nanoribbons, as illustrated
by Fig. 1. The length of the AGNR and ZGNR samples
are LA = 127a and LZ = 124

√
3a, respectively, while their

widths are WA = 11
√

3a and WZ = 67a/2, where a = 2.46 Å
is the graphene lattice constant. In order to implement the
numerical calculations of the magnetoconductance series, the
Fermi energy and disorder strength U = 1.30t0 are kept fixed,
while the magnetic flux is varied with increments �φ =
1×10−5.

Figure 2 shows typical conductance series as functions
of magnetic flux of AGNR (left) and ZGNR (right) for four
different values of the number N of propagating wave modes
in the leads, which are N = 1, 2, 5, 10 for AGNR and N =
1, 3, 5, 11 for ZGNR. The integer number N is defined as
N = kFW/π , where W is the width of either lead and kF is
the Fermi wave number, which implies that the Fermi energy
is tuned for a specific value of N to be achieved.

Applying the multifractal analysis to 10 different disorder
realizations of the conductance series, we obtained the results
shown in Fig. 3. Figures 3(a) and 3(c) show the mean Hurst
exponent, given by Eq. (8), as a function of the order p for
AGNR and ZGNR, respectively. Both show a strong variation
of H (p) with p at the extreme quantum regime (N = 1).
However, there is still a variation for larger values of N ,
but it becomes weaker as N increases, i.e., when the system
enters into the semiclassical regime. Hence the results suggest
that conductance fluctuations are multifractal, and that this
behavior is stronger in the quantum regime of conduction.

Furthermore, Figs. 3(b) and 3(d) show the mean multifrac-
tal spectrum f (α), Eq. (10), as a function of the α parameter
for AGNR and ZGNR, respectively. The narrowing of the
singularity spectrum f (α), which can be measured by the
decrease of �α, indicates the weakening of the multifractality
of the magnetoconductance fluctuations as N increases from 1
to higher values, for both AGNR and ZGNR. This means that,
in the extreme quantum regime, the system exhibits MCF, i.e.,
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FIG. 2. Single realizations of the magnetic field-induced conductance fluctuations of graphene disordered wires with armchair boundaries
with (a) N = 1, (b) N = 2, (c) N = 5, (d) N = 10 propagating channels are shown on the left panel and with zigzag boundaries with (e)
N = 1, (f) N = 3, (g) N = 5, (h) N = 11 propagating channels are shown on the right panel. The conductance is given in units of 2e2/h and
the magnetic flux in units of Ba2/(h/e).

conductance fluctuations have strong multifractal behavior, ir-
respective of any proximity to a localization transition. On the
other hand, for N > 1 the multifractality weakens and tends
to become monofractal in the semiclassical regime (N 	 1).

To finalize this section, we also report a multifractal
analysis of the conductance series of laterally confined two-
dimensional electron gases (2DEG) with a square lattice, with
length L = 198a and width W = 30a, and disorder strength
U = 0.65t0, as in [4]. The conductance series as a function of
magnetic flux were obtained with increments given by �φ =
2×10−5. Figures 3(e) and 3(f) show the mean Hurst exponent
and multifractal spectrum of the 2DEG, respectively. These
results suggest that the conductance fluctuations of 2DEG
devices have multifractal behavior in the extreme quantum
regime (N = 1) and that this multifractality becomes weaker
in the semiclassical regime, as shown above for graphene
nanoribbons. This indicates that MCF are not a specific fea-
ture of graphene nanowires.

B. Chaotic billiards

Now, we will discuss the multifractal analysis of the con-
ductance series of ballistic graphene chaotic billiards (GCB),
whose schematics are shown in Fig. 1(c). The tight-binding
Hamiltonian is given by Eq. (4) without the Anderson disorder
term, i.e., the disorder strength is kept null, U = 0. The GCB
design follows that of Refs. [12,13].

Figure 4 shows typical conductance series as functions of
the magnetic flux of GCB. They were obtained by tuning the
Fermi energy in order to set the number of propagating modes
in the leads to N = 1, 2, 5, 10, and using magnetic flux incre-
ments given by �φ = 5×10−6. The multifractal analysis of
the conductance series is shown in Figs. 5(a) and 5(b), where
the mean values of H (p) and f (α) were obtained from 10

different conductance series, changing the billiard boundaries.
Figures 5(a) and 5(b) have the same multifractal behavior ob-
served in disordered nanowires (Fig. 3). This means that both
dependence of H (p) on p and the value of �α decrease when
N increases, which indicates a weakening of the multifractal
behavior, as expected.

We have also performed electronic transport calculations
of chaotic billiards modeled as confined two-dimensional
electron gases with a square lattice (2DCB). The conduc-
tance series were obtained tuning the Fermi energy in order
to set the number of propagating modes in the leads to
N = 1, 2, 5, 10, and using magnetic flux increments �φ =
1×10−5. The mean values of H (p) and f (α) obtained from
10 different conductance series are shown in Figs. 5(c) and
5(d), respectively. It is quite clear that 2DCB show the same
multifractal behavior observed both in disordered nanowires
(Fig. 3) and GCB, as can be seen in Figs. 5(a) and 5(b). In
this case, one can clearly see a crossover from multifractal
to monofractal behavior as N increases, since H (p) becomes
approximately independent of p (which can be seen by a
flattening of curve H (p) when N changes from 1 to 10) and
�α → 0 when N increases.

IV. DISTRIBUTION OF CONDUCTANCE INCREMENTS

In order to gain a deeper understanding of MCF for all
mesoscopic devices considered in this paper, we studied the
distribution of conductance increments, given by Eq. (1),
which can be seen as a measure of the electronic transport
response due to a small magnetic field perturbation. Besides,
conductance increments can carry information about certain
quantum correlations (induced by the magnetic field) inside
the scattering region.
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FIG. 3. Left panel shows the mean generalized Hurst exponent
H (p) of the conductance fluctuations of (a) graphene disordered
wires with armchair boundaries with N = 1, 2, 5, 10 propagating
channels, (c) graphene disordered wires with zigzag boundaries with
N = 1, 3, 5, 11 propagating channels, and (e) two-dimensional elec-
tron gases with a square lattice with N = 1, 2, 5, 10 propagating
channels. The right panel shows the multifractal singularity spectrum
of the conductance fluctuations of (b) graphene disordered wires
with armchair boundaries with N = 1, 2, 5, 10 propagating chan-
nels, (d) graphene disordered wires with zigzag boundaries with
N = 1, 3, 5, 11 propagating channels, and (f) two-dimensional elec-
tron gases with a square lattice with N = 1, 2, 5, 10 propagating
channels.

For convenience, we introduce the normalized con-
ductance increments (NCI), x = �g/�φ, where �g =
g(φ + �φ) − g(φ), for a fixed Fermi energy. This normaliza-
tion only widens the tails of the distribution without loss of
information. Figure 6 shows NCI histograms from the conduc-
tance series of GCB with N = 1, 2, 5, 10 propagating modes
in the leads (filled circles). To build the NCI histograms for the
GCB, we have combined all 10 realizations of this system; see
Sec. III B.

Interestingly, we observe that one can fit well all NCI
histograms with the q-Gaussian probability density function:

P(x) =
√

β

Cq
[1 + (q − 1)β(x − x0)2]

1
1−q , (11)

with

Cq =
√

π�
( 3−q

2(q−1)

)
√

q − 1�
(

1
q−1

) ,
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FIG. 4. Single realizations of the magnetic field-induced con-
ductance fluctuations of graphene chaotic billiards with (a) N = 1,
(b) N = 2, (c) N = 5, (d) N = 10 propagating channels. The con-
ductance is given in units of 2e2/h and the magnetic flux in units of
Ba2/(h/e).

where 1 < q < 3, β is a measure of the width of the distri-
bution, and x0 is its mean. We remark that Eq. (11) can be
formally derived from a maximization of the Tsallis entropy
[29]. Note that, when q → 1, P(x) converges to the Gaussian
distribution. Therefore, values of q different from 1 can be
seen as a measure of non-Gaussianity. In Fig. 6 we show the
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FIG. 5. Left panel shows the mean generalized Hurst exponent
H (p) of conductance fluctuations of (a) graphene chaotic billiards
with N = 1, 2, 5, 10 propagating channels and (c) chaotic billiards
with a square lattice with N = 1, 2, 5, 10 propagating channels.
The right panel shows the multifractal singularity spectrum of con-
ductance fluctuations of (b) graphene chaotic billiards with N =
1, 2, 5, 10 propagating channels and (d) chaotic billiards with a
square lattice with N = 1, 2, 5, 10 propagating channels.
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FIG. 6. NCI histograms of MCF data of graphene chaotic bil-
liards divided by the flux step �φ with N = 1 (blue squares), N =
2 (red squares), N = 5 (green squares), N = 10 (maroon squares)
propagating channels, which were obtained from the same series
we have used to perform the multifractal analysis in Sec. III.
The solid lines show the best fits with a q-Gaussian function.
Notice that the peak of the distribution becomes narrower as
N decreases. The parameter values of the q-Gaussian functions
which best fit the points are q = 2.09 ± 0.05, 2.09 ± 0.06, 1.73 ±
0.05, 1.34 ± 0.07, β = 2375 ± 335, 4022 ± 643, 952 ± 79, 364 ±
31 and x0 = 0.011 ± 0.001, 0.009 ± 0.001, 0.013 ± 0.001, 0.016 ±
0.001, for N = 1, 2, 5, 10, respectively. The curves have been arbi-
trarily shifted in the vertical direction for clarity.

NCI histograms (filled circles), together with the best fit by
q-Gaussian functions (solid lines), with q values given by q =
2.09 ± 0.05, 2.09 ± 0.06, 1.73 ± 0.05, 1.34 ± 0.07, for N =
1, 2, 5, 10, respectively. (In Fig. 6 the curves have been arbi-
trarily shifted in the vertical direction for clarity.)

In Fig. 6, we observe two important features of the ex-
treme quantum regime (N = 1), namely the distributions have
heavy tails and sharp peaks around zero, which means that
they are highly non-Gaussian. Furthermore, as N increases,
both the heavy tails and the sharp peaks tend to become
less pronounced, thus indicating that the NCI distributions
perform a crossover from a non-Gaussian behavior in the
extreme quantum regime (N = 1) to a Gaussian behavior in
the semiclassical regime (N 	 1). This behavior can be re-
lated to a gradual loss of correlations induced by the magnetic
field in the stochastic process associated with the conductance
series as N becomes large [30], which can be quantified by a
decrease of q as N increases. In other words, we expect q → 1
for N 	 1, as seen in the trend observed in Fig. 6. Finally,
we observed similar behaviors for all NCI distributions in the
other mesoscopic devices considered in this paper: AGNR,
ZGNR, 2DEG, and 2DCB, as will be discussed in Sec. V.

V. DISCUSSION OF THE RESULTS

Experimental observations of multifractality in the conduc-
tance fluctuations of single-layer graphene were reported in

Ref. [20]. There the authors showed that conductance fluctua-
tions originated from the variation of an applied magnetic field
to a high-mobility single-layer graphene exhibit multifractal
scaling under two conditions, namely very low temperature
and proximity to the charge-neutrality (Dirac) point, i.e., the
extreme quantum regime. They suggested that the experi-
mental measurements and analysis presented evidence of an
incipient Anderson localization near the Dirac point as the
most plausible cause for this multifractality. Multifractality in
disordered quantum systems is indeed observed, for example,
in the scaling of the eigenfunctions in the vicinity of an Ander-
son transition [31]; and the key idea presented in [20] was that
the wave function multifractal behavior is simply transferred
to multifractality in conductance fluctuations.

In the present study, we have performed a multifractal
analysis of the magnetic flux-induced conductance fluctua-
tions in three types of disordered nanowires (Fig. 3) and two
different ballistic chaotic billiards (Fig. 5), and observed that
in the quantum regime they all exhibit multifractal scaling.
The first consequence of our study is that the multifractal
behavior is not a specific feature of single-layer graphene,
but a generic feature of the quantum regime of fluctuations.
Second, our results give evidence that MCF are not nec-
essarily related to an incipient Anderson localization, since
there is no localization effect in ballistic chaotic billiards. We
suggest that MCF are rather a consequence of the ubiquitous
quantum-mechanical interference which characterizes meso-
scopic phenomena. More specifically, we argue that MCF
are caused by correlations induced by the external magnetic
field in the stochastic process associated with the conductance
series. Interestingly, there is a very natural interpretation for
correlations (induced by the magnetic field) that are strong in
the quantum regime and are gradually lost when the system
enters into the semiclassical regime of conduction. In the lan-
guage of the trajectory-based semiclassical approach, they are
described as correlations between semiclassical trajectories
near close encounters [21–25].

Moreover, from the results given in Sec. III, we extract
three arguments to sustain the notion that multifractality is
a generic feature of conductance fluctuations of mesoscopic
systems in the quantum regime. First, the conductance fluctu-
ations of both disordered and ballistic systems are multifractal
in the quantum regime, as can be observed if one compares
the results in Figs. 3 and 5. Second, the fluctuations are
multifractal for both square and hexagonal lattice structures,
which leads us to believe that, for systems made of material
other than graphene, results similar to those presented in [20]
may be observed. Last, in the case of graphene nanoribbons,
the multifractal nature of the conductance fluctuations of the
system is independent of the geometry of the boundaries,
since the results presented in the top [(a), (b)] and middle [(c),
(d)] panels of Fig. 3 for graphene nanoribbons with armchair
and zigzag boundaries, respectively, are equivalent.

The central result of this paper is shown in Fig. 7. On
the left panel, we plot �α as a function of N . Although the
conductance fluctuations of both ballistic chaotic billiards and
disordered nanowires are multifractal in the extreme quantum
regime (N = 1), there is a weakening of the multifractal be-
havior as one increases the number N of propagating modes
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FIG. 7. Dependence of (a) the width of the multifractal singularity spectrum f (α) with N and of (b) the value of q that best fits the data
of the distribution of conductance increments divided by �φ. The black squares, blue circles, red diamonds, green up triangles, and violet
down triangles represent the results for two-dimensional chaotic billiards with a square lattice (2DCB), two-dimensional electron gases with a
square lattice (2DEG), graphene chaotic billiards (GCB), armchair graphene nanoribbons (AGNR), and zigzag graphene nanoribbons (ZGNR),
respectively.

in the leads, which is evidenced by a corresponding decrease
in the width �α with the increase of N for all the systems
considered. As it is well known, the presence of correlations
in time series is one of the possible origins of multifrac-
tality [27], and this source can be tracked by performing
the multifractal analysis of the shuffled time series. Indeed,
we have performed the multifractal analysis of the shuffled
magnetic field-induced conductance fluctuations in one of the
10 realizations of 2DCB (square lattice) and observed that
the generalized Hurst exponent H (p) is approximately inde-
pendent of p, with value H (p) 
 0.5, which means that the
shuffled series is monofractal, and this happens because all
correlations previously present are erased with the shuffling
procedure.

The presence or absence of correlations in our conductance
fictitious-time series can also be studied from the point of view
of the distribution of conductance increments, as the ones
shown in Fig. 6. This distribution is expected to be Gaussian
when the series are completely uncorrelated. In Sec. IV, we re-
marked that all NCI distributions can be fitted by a q-Gaussian
distribution, given by Eq. (11). The values of q are shown in
the right panel of Fig. 7 as functions of N . We can clearly see
both �α and q decrease with N , which means that the loss of
multifractal scaling can be directly associated with the loss of
correlation of the conductance time series.

One interesting final remark is that the q-Gaussian function
is a special case of the class of universal functions which can
be used to describe hierarchical systems; specifically it corre-
sponds to the case of systems with dynamical variables with
probability density functions with power-law tails and whose
stochastic dynamics has a single hierarchical level [32,33].

With this in mind, we conclude that MCF can be thought of
as related to the hierarchical nature of the stochastic process
of the conductance in terms of the magnetic field, which
opens a different point of view to explore multifractality in
mesoscopic phenomena.

VI. CONCLUSIONS

We have observed that the magnetic field-induced con-
ductance fluctuations of mesoscopic conductors, which were
numerically obtained via a tight-binding approach, are multi-
fractal. Our analysis led us to conclude that this multifractality
is not originated by an incipient Anderson transition, as
pointed out in [20], where an experimental observation of
MCF was reported, but rather by statistical correlations
induced by the externally applied magnetic field in the
stochastic process of the corresponding conductance series.
Additionally, we have shown that the distribution of conduc-
tance increments, or magnetoconductance, is well fitted by
the q-Gaussian function, which is a very important heavy-
tailed distribution with many applications. It remains an open
possibility to study the MCF generated by changing other
parameters, such as the Fermi energy of the system.
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