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Measurement-based quantum heat engine in a multilevel system
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We compare quantum Otto engines based on two different cycle models: a two-bath model, with a standard
heat source and sink, and a measurement-based protocol, where the role of heat source is played by a quantum
measurement. We furthermore study these cycles using two different “working substances”: a single qutrit (spin-
1 particle) or a pair of qubits (spin-1/2 particles) interacting via the XXZ Heisenberg interaction. Although both
cycle models have the same efficiency when applied on a single-qubit working substance, we find that both can
reach higher efficiencies using these more complex working substances by exploiting the existence of “idle”
levels, i.e., levels that do not shift while the spins are subjected to a variable magnetic field. Furthermore, with an
appropriate choice of measurement, the measurement-based protocol becomes more efficient than the two-bath
model.
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I. INTRODUCTION

The fast development of new technologies into the
nanoscale makes quantum effects no longer negligible. Thus
there is a natural need to understand which, if any, quantum ef-
fects may enhance thermodynamic processes. This emerging
subject, known as quantum thermodynamics [1], has received
attention from different fields, such as quantum information
[2–7], quantum optics [8–12], and resource theory [13,14].

A main focus of this field has been the study of quantum
heat engines (QHEs), i.e., heat engines that work with a small
quantum system as the working substance. Recently, several
such models have been analyzed, such as those based on spin
systems [15–26], harmonic oscillators [27–31], trapped ions
[32,33], and others [34–38]. We should mention that already
in 1959 a three-level maser was analyzed as a thermal engine
[39].

One of the main issues when treating small quantum sys-
tems thermodynamically is deciding how to classify energy
transfer processes as heat or work. In the classical macro-
scopic scenario it is clear that heat is a process where energy is
transferred by microscopic degrees of freedom in uncontrol-
lable, random ways and associated with entropy production.
Work, on the other hand, is the energy transfer through a
macroscopic and controllable degree of freedom. Such a dif-
ference is fundamental, since thermodynamics’ main practical
concern is how to convert heat that is “freely” available in
nature into work, and that is the purpose of a heat engine.

There are already some definitions that are used in most
analyses of QHE, but with no clear picture of the role of
entanglement or other quantum correlations in the operation
of the engine [10,15,20,34,35,37,40–45].

Recently it was proposed that, since a quantum measure-
ment is a random and irreversible process, any energy it
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transfers to or from the measured system may be consid-
ered as a form of heat (quantum heat) Thus one can have a
new kind of engine with one of the thermal baths replaced
by a quantum measurement [46–50]. In this scenario, one
can furthermore consider using either selective measurements
and feedback (a Maxwell demon [46,51–55]) or nonselective
measurements and no feedback [26,56–58]. In the latter case,
the postmeasurement state is taken as the appropriate average
over all possible measurement results. In other words, the
measurement is treated as a quantum channel. In this article
we will only consider this scenario, and we will use the
expressions “quantum measurement” and “quantum channel”
interchangeably. We should mention that there are also pro-
posals where the measurement acts as an external source of
work [59].

Yi et al. [56] studied the use of such a nonselective mea-
surement in an Otto-type cycle. This cycle is composed of two
quantum adiabatic strokes, where no heat transfer occurs, one
conventional isochoric stroke, where the system equilibrates
with an external cold reservoir without realizing work, and
one measurement stroke, which plays the role of the hot
thermal reservoir. They pointed out that measurements whose
Kraus operators are all Hermitian (in particular, projective
measurements) always increase the energy of the system in
this cycle, and can thus play the role of the engine’s heat
source. They then showed that, for working substances whose
energy gaps all vary by the same ratio in the adiabatic strokes,
such as a harmonic oscillator or noninteracting qubits, the
cycle’s efficiency is independent of the specific measurement
made, and has in fact the same value as when these systems
interact with a conventional hot thermal bath. Thus at least in
these simple examples, a measurement-based engine has no
advantage over a conventional two-bath one.

Das and Ghosh [57] later investigated whether this con-
clusion still holds in more complex scenarios. They studied
the same measurement-based protocol in the cases of two
coupled qubits, and of one qubit coupled with a general spin
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S, interacting via an isotropic Heisenberg Hamiltonian. They
found that the efficiency can indeed be greater in these cases,
but it was not clear if this was an effect of the coupling, of the
measurement, or both. They also did not compare their results
with the corresponding efficiency values of an engine with the
same coupled qubits but using two thermal baths.

Recently, some of us have shown [60] that efficiency gains
in this corresponding two-qubit, two-bath model come not
from entanglement or any quantum correlation, but just from
the way the various system levels channel heat during the cy-
cle. More specifically, an efficiency increase is possible when
some levels are “idle,” in the sense that they do not couple
to the external work sink, i.e., they do not shift during the
adiabatic strokes. Any heat absorbed from one bath by these
levels cannot be converted into work, and must be deposited
in the other bath. Channeling this heat flow from the cold to
the hot bath allows more heat to flow in the opposite sense
through the coupled levels, thus increasing efficiency.

Here we seek to better understand if and how a
measurement-based engine without feedback can have greater
performance than the corresponding two-thermal-bath model.
With this aim we first study and compare both kinds of Otto
cycle in the case of a toy model with just three energy levels.
Since this qutrit system is not divisible into subsystems, there
is no question of any efficiency gains being due to entangle-
ment or other quantum correlations.

As in Ref. [60], we find that efficiency gains (relative
to the uncoupled-qubits case) occur when one of the qutrit
levels is “idle.” Moreover, we find that the measurement-
based protocol allows a fine-tuning of the reversed heatflow
mechanism, which can result in even larger efficiencies than
in the corresponding two-bath model. Finally, we explore the
same possibility in the case of two qubits interacting via an
anisotropic Heisenberg Hamiltonian.

The structure of the paper is as follows: In Sec. II we briefly
review quantum Otto engines composed of two quantum adi-
abatic strokes and two isochoric interactions with thermal
reservoirs. In Sec. III we review how the hot reservoir may
be replaced by a nonselective quantum measurement, and we
show that in fact any unital measurement can be used in this
way. In Sec. IV we apply both protocols to a qutrit system
and find the conditions for achieving an efficiency higher than
the qubit limit η0 = 1 − 1/r, where r = λmax/λmin is the ratio
between the higher and lower values of the adiabatic param-
eter λ. Next, in Sec. V, we use two interacting qubits as our
working substance and study the role of the interaction in the
efficiency. Finally, we conclude by explaining the mechanisms
behind the increase in efficiency.

II. QUANTUM OTTO ENGINE

In this section, we review the Otto heat engine model in
the quantum regime. Let us first briefly introduce the concepts
of work and heat in the quantum setting. We first define the
internal energy of the system as the energy expectation value

U = 〈H〉 = Tr[ρH]. (1)

Then, in any infinitesimal process we can state the first law of
thermodynamics for quantum systems as [61–65]

dU = Tr[dρH] + Tr[ρdH] = δQ + δW, (2)

where dU is the change in the system’s average energy, and
we have defined work, W , as the change in the average energy
due to a change in external and controllable parameters of H.
Heat, Q, on the other hand, is defined as the change in the av-
erage energy when all controllable parameters are fixed; these
changes usually come from interactions with the environment.
It is worth mentioning that these interpretations are valid only
for weak system-bath coupling [63–65].

A standard thermal engine consists of a “working sub-
stance” (WS), a system that undergoes a cycle during which
it interacts with two thermal baths at different temperatures.
Through this cyclic process, some of the heat flowing between
the baths is converted into work. Let us consider that our WS
is a generic quantum system governed by the Hamiltonian

H(λ) =
∑

n

En(λ)|En(λ)〉〈En(λ)| (3)

with λ some tunable external parameter. We will also as-
sume that after sufficient time in contact with a thermal
bath at inverse temperature β = 1/(kBT ), the system reaches
the corresponding Gibbs thermal equilibrium state, ρ(λ) =
e−βH(λ)/Z (λ), with Z (λ) = Tr[e−βH(λ)] the partition function.

The Otto cycle consists of four processes (strokes): two
adiabatic ones, where there is no heat exchange, and two
“isochoric” [66] ones, where there is no work exchange.

First stroke: The first stroke is an isochoric process in
which the working substance thermalizes with a cold heat bath
at inverse temperature βc = 1/(kBTc). No work is done in this
step, since λ is fixed at λi, and only heat is released by the
system into the bath. Following the definition given above,
this heat exchange is

Qc =
∑

n

En(λi)
(
pc

n − ph
n

)
, (4)

where pc(h)
n = exp[−βc(h)En(λi( f ) )]/Z (λi( f ) ) are occupation

probabilities of the nth energy level of the system in thermal
equilibrium with the cold (hot) bath, described by the density
matrix ρ(λi( f ) ).

Second stroke: In this step, we detach the working sub-
stance from the cold heat bath and let the external parameter
adiabatically change from its initial value to a final one,
λi → λ f . Thus, the only contribution to energy change is in
the form of work; there is no heat. In this paper, we assume
for simplicity that this is a true quantum adiabatic evolution,
where there is no change in the energy occupation probabil-
ities, whereas the energy eigenvalues and eigenstates evolve
smoothly from those of H(λi) to those of H(λ f ) [67]. This
requires the timescale for the change in λ to be at least as
large as the inverse of the smallest relevant energy gap. In
particular, no level crossings can occur. It is important to note
that, although the probabilities pc

n at the end of this step are
therefore those of the thermal state ρ(λi ), the corresponding
state will generally not be thermal with respect to the final
Hamiltonian H(λ f ). It is still, however, a “passive” state,
i.e., an energy-diagonal state where the probabilities pn are
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monotonically nonincreasing with energy En, and thus it con-
tains no ergotropy [68].

Third stroke: This is another isochoric process in which
the working substance is put in thermal contact with a hot
heat bath at inverse temperature βh = 1/(kBTh) < βc. After
the system thermalizes with the bath, it absorbs the energy

Qh =
∑

n

En(λ f )
(
ph

n − pc
n

)
. (5)

Again, no work is done during this process.
Fourth stroke: This process is similar to the second stroke.

Here, the external parameter is changed back to the initial
value, λ f → λi, and the occupation probabilities remain fixed
at ph

n. Only work is performed and no heat is exchanged.
Due to energy conservation in a cyclic process, the total

work done by the system is equal to the negative sum of the
total heat transferred during steps 1 and 3:

W = −(Qh + Qc) = −
∑

n

�En�pn, (6)

where �En = Eh
n − Ec

n , �pn = ph
n − pc

n, and W < 0 indicates
work performed by the system. The efficiency of the cycle is

η = − W

Qh
. (7)

III. ENGINES BASED ON UNITAL MEASUREMENTS

Let us now consider a measurement-based Otto engine, as
proposed by Yi et al. [56], where the interaction with the
hot bath in the third stroke above is replaced by a general
trace-preserving measurement process E , characterized by
Kraus operators {Mα} satisfying

∑
α M†

αMα = 1. The density
operator after the measurement is

ρM = E (ρ(λ f )) =
∑

α

Mαρ(λ f )M†
α. (8)

As mentioned before, the quantum-mechanical nature of the
measurement will generally disturb the system, and in partic-
ular its energy, in random and irreversible ways. Therefore,
various authors have argued that any energy transferred in this
process should also be interpreted as a form of heat [46,48].

Since we want the measurement to play the role of the
hot bath, we must ensure that, on average, it will increase the
system’s energy, i.e., that

〈�E〉 = Tr{[ρM − ρ(λ f )]H(λ f )} � 0. (9)

In Ref. [56], it was shown that when ρ(λ f ) is a passive
state (as is the case here), Eq. (9) is indeed always satisfied
for “minimally disturbing measurements” (MDMs), namely
those where Mα = M†

α are all Hermitian [69]. This choice
seems, however, to have been motivated more by mathe-
matical convenience than by physical considerations. From
a physical standpoint, it is more natural to consider the full
set of unital channels, those that map the identity operator
to itself, i.e., satisfy

∑
α MαM†

α = 1, since these channels
increase the von Neumann entropy S = −Trρ ln ρ for all input
states, S(E (ρ)) � S(ρ) [70]. Note that the MDMs considered
in Ref. [56] are a special case within this class.

In fact, we can show that Eq. (9) remains true for arbitrary
unital channels:

Theorem 1. If E is a unital, completely positive quantum
channel and ρ is a passive quantum state with respect to
Hamiltonian H, then Tr{[E (ρ) − ρ]H} � 0.

Since this statement is possibly of more general interest,
and requires a somewhat more general argument than the one
presented in Ref. [56], we give a full proof in Appendix A.

Let us now consider the heat and work exchanges for
this measurement-based engine. The only difference from the
conventional one is that after the third stroke, the state of the
system is ρM instead of the thermal state ρ(λ f ) at inverse
temperature βh. Thus Eqs. (4) and (5) can be rewritten as

QM
c =

∑
n

En(λi)
[
pc

n − pM
n

]
� 0, (10)

QM
h =

∑
n

En(λ f )
[
pM

n − pc
n

]
� 0, (11)

where

pM
n ≡ 〈En(λ f )|ρM |En(λ f )〉 (12)

are the populations of the energy basis states after the mea-
surement [71]. Similarly, the work is given by

W = −
∑

n

[En(λ f ) − En(λi)]
[
pM

n − pc
n

]
. (13)

The engine efficiency is therefore

η =
∑

n[En(λ f ) − En(λi)]
[
pM

n − pc
n

]
∑

n En(λ f )
[
pM

n − pc
n

] . (14)

All these expressions are identical to those for a two-bath
engine, apart from the correspondence between pM

n and ph
n.

In particular, consider a scenario where all the energy gaps
change by the same ratio r when λ is adiabatically increased,
i.e.,

En(λ f ) − Em(λ f ) = r[En(λi ) − Em(λi )], ∀n, m. (15)

In this case, as has already been shown both for the two-bath
case [34] and for the measurement-based one [56], η does not
depend on the probability changes �pn, but only on r:

η = r − 1

r
= 1 − 1

r
≡ η0. (16)

In these cases, it does not matter if the heat comes from a
thermal interaction or a measurement process, since the effi-
ciency does not depend on the temperatures of the reservoirs,
nor on the choice of measurement. One way to understand
this correspondence is to note that, when Eq. (15) holds, the
system’s state does retain a thermal form during the adiabatic
strokes, with an effective temperature that depends on λ. Thus,
here the thermodynamic and quantum notions of an adiabatic
process do coincide [34].

This, however, raises the following question: are there cir-
cumstances where we can improve the efficiency of a quantum
Otto engine beyond η0? The previous discussion shows this
requires at least one level gap that does not adiabatically
shift with the same ratio as the others. One way to realize
this possibility is by using a working substance composed
of interacting spin-1/2 particles, as studied for the two-bath
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model in Ref. [16] and for the measurement-based model
in Ref. [57]. Improvements in efficiency were found in both
works. However, no clear physical explanation for this effect
was given.

More recently, after analyzing this same system for the
two-bath case, some of us have found that it does pos-
sess a simple mechanism for efficiency increase [60]. This
mechanism does not depend on any correlations, but on the
exploitation of reversed heat fluxes (from the cold bath to the
hot) via uncoupled levels. In the next section, we show that the
same mechanism can also be present in a measurement-based
engine, and can in fact deliver an even greater improvement in
efficiency.

IV. QUTRIT AS A WORKING SUBSTANCE

A two-level system (qubit) only has a single energy gap,
so Eq. (15) is trivially satisfied. In other words, the simplest
possible Otto engine where we can hope to see an increase in
η beyond η0 has a three-level (or qutrit) working substance. In
the following, we consider a qutrit governed by the Hamilto-
nian

H =

⎡
⎢⎣

0 B 0

B 0 0

0 0 −J

⎤
⎥⎦, (17)

where B > 0 plays the role of the adiabatic parameter λ,
shifting between values Bi and B f , while J > 0 is kept fixed.
This toy model can be considered as a simplification of the
coupled-qubit system studied in [16,60]. Physically it could,
for instance, be realized in a three-level atom with a V -type
level structure, with two initially degenerate upper levels
Raman-coupled via the lower one. The eigenvalues and eigen-
states are

Eigenvalues Eigenstates

+B |+〉 = (|0〉 + |1〉)/
√

2

−B |−〉 = (|1〉 − |0〉)/
√

2

−J |2〉

(18)

The resulting heat exchanges are given by

Qh = −J (�p−J ) + B f (�pB) − B f (�p−B), (19)

Qc = +J (�p−J ) − Bi(�pB) + Bi(�p−B), (20)

and the work by

W = (B f − Bi )(�pB − �p−B), (21)

where �pn = ph
n − pc

n for the two-bath model, �pn = pM
n −

pc
n for the measurement model, and we have labeled each

probability by their corresponding energy.

Using terminology introduced in Ref. [60], the energy lev-
els ±B are “working” levels, since they shift with the adiabatic
parameter. Level −J , which does not shift, is “idle.” As shown
more generally in Ref. [60], the presence of idle levels allows
one to either increase or decrease the efficiency of an Otto
cycle away from η0. Indeed, in the current example, the effi-
ciency is

η

η0
= 1 + J

�p−J

Qh
. (22)

We should mention that, while normally the timescale for an
adiabatic process increases with the inverse of the smallest
energy gap, here this is not necessary, since a time-dependent
change B(t ) introduces no crosstalk between levels. Thus, in
fact, the “adiabatic” strokes can be executed here at finite
speed [60].

To understand Eq. (22), it is convenient to interpret each
term in Eqs. (19) and (20) as a separate energy flux, e.g., to
view −J�p−J ≡ qh

−J as the heat absorbed by the engine from
the hot bath via the −J energy level. In terms of this quantity,
we can write

η

η0
= 1 − qh

−J

Qh
. (23)

Considering that an engine requires Qh > 0, we can now
see that an increase in efficiency is only possible if qh

−J < 0
(or, equivalently, if �p−J > 0). Note also that, since level
−J is idle, any heat it absorbs from one bath cannot be
converted into work, but must be deposited in the other, hence
qc

−J = −qh
−J . In other words, although the overall heat flow

in an engine cycle is from the hot bath to the cold, attaining
efficiency greater than η0 requires part of the heat to flow in
the opposite direction, via the idle level −J . It turns out that
such a reversed heat flow is indeed possible in many situations
[60].

Note that the above conclusion holds both for the
measurement-based engine and in the two-bath scenario. As
already stressed, the only difference between the two situa-
tions is the origin of the populations after the third stroke. In
the two-bath model, for a given pair of field values Bi, B f ,
these populations depend only on the hot bath temperature. In
the measurement-based model, however, they depend on the
choice of measurement, which has many more free parame-
ters. One then expects that an appropriate choice may lead to
an increase in �p−J beyond what is possible with a thermal
bath—and thus to a higher efficiency. In the following, we
show that this is indeed the case.

A. Two-bath model

We begin by writing explicit expressions for the heat and
work exchanges in the case of the two-bath model:

Qh = (2e−βhB f + eβhJ )B f − JeβhJ

2 cosh (βhB f ) + eβhJ
− (2e−βcBi + eβcJ )B f − JeβcJ

2 cosh (βcBi ) + eβcJ
, (24)

Qc = − (2e−βhB f + eβhJ )Bi − JeβhJ

2 cosh (βhB f ) + eβhJ
+ (2e−βcBi + eβcJ )Bi − JeβcJ

2 cosh (βcBi ) + eβcJ
, (25)

W = (B f − Bi )
( 2e−βhB f + eβhJ

2 cosh (βhB f ) + eβhJ
− 2e−βcBi + eβcJ

2 cosh (βcBi ) + eβcJ

)
. (26)
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The resulting efficiency can be written as

η = (B f − Bi )

B f + 	J
= η0

1 + (	/B f )J
, (27)

with

	 = eβc (Bi+J ) + eβc (Bi+J )+2βhB f − eβh (B f +J )+2βcBi − eβh (B f +J )

2(e2βcBi − e2βhB f ) + eβc (Bi+J ) − eβh (B f +J ) − eβc (Bi+J )+2βhB f + eβh (B f +J )+2βcBi
. (28)

As expected, when J = 0, we recover η = η0 = 1 −
Bi/B f , the same result that is valid for a two-level system.
Note that while η0 does not depend explicitly on the bath
temperatures, in order to operate as an engine, W < 0, we
need Th � (B f /Bi )Tc.

Our main interest is to compare the effects of having J �= 0
on the efficiency of the two-bath and measurement engines.
Unfortunately, for the qutrit there is no simple general ex-
pression for the condition where the cycle operates as an
engine; this condition occurs only in the limit of high and low
temperatures, as shown in [60] for the analogous two-qubit
system. Thus, in order to keep the problem tractable, in the
remainder of this article we set the parameters Bi = 3, B f = 4,
βh = 0.5, and βc = 1, and we focus on analyzing the effects
of changes in J and in the measurement protocol.

For these parameters, we first plot in Fig. 1 the efficiency
as a function of J for the qutrit “two-bath” model. We can see
that η at first increases with J , reaches a maximum, and then
decreases, becoming smaller than η0 and finally becoming
negative; the system stops to operate as an engine since W >

0. In the inset of Fig. 1, we plot both heats and work. Note
that while η increases with J , the amount of work delivered
per cycle decreases, since more energy is flowing through the
−J level and cannot be converted into work. This behavior is
similar to that obtained when using two spins coupled via the

FIG. 1. Efficiency of a two-bath quantum heat engine with a
qutrit “working substance.” η0 is the efficiency for a two-level case
(J = 0; dashed black). ηT is the efficiency for the qutrit (solid black).
Inset: Heat absorbed by the system (top dashed red), heat released
into the bath (bottom dotted blue), and total work done on the system
(middle solid green). Note that, in our sign convention, negative W
means work is being extracted, i.e., the system is functioning as a
heat engine.

Heisenberg interaction [16,60], since the effect of the coupling
is to introduce an idle level.

B. Measurement-based model

Let us now consider a measurement-based version of the
Otto engine for the qutrit. We restrict ourselves to projective
(von Neumann) measurements and choose one possible set of
projection operators given by

M1 = |ψ1〉〈ψ1|, M2 = |ψ2〉〈ψ2|, M3 = |ψ3〉〈ψ3|, (29)

where

|ψ1〉 = cos θ sin φeiχ |0〉 + sin θ sin φeiψ |1〉 + cos φ|2〉,
|ψ2〉 = cos θ cos φeiχ |0〉 + sin θ cos φeiψ |1〉 − sin φ|2〉,
|ψ3〉 = sin θeiχ |0〉 − cos θeiψ |1〉.

This set of projectors belongs to the SU(3) group and can be
used to make a generic von Neumann measurement in any
direction. In this case, we do not have only one parameter,
βh, but instead four: θ , φ, χ , and ψ . The expressions for the
heat, work, and efficiency can be calculated but become very
cumbersome, so we do not present them here.

The analytical expressions for the efficiency are also very
cumbersome and do not give much insight. Thus we have
numerically analyzed the efficiency for many different values
of θ , φ, χ , and ψ , and we will now show the more interesting
and representative results. In Fig. 2 we show the efficiency for
three different measurements, for the two-baths model and for
the qubit (which is the same for the measurement or two-bath
model). It can be seen that the measurement-based model can
have higher or lower efficiency than the two-bath model and
even lower efficiency than the qubit system.

It is important to emphasize that in both engine models,
two-bath and measurement-based, the increase in the effi-
ciency in relation to the qubit is due to the flow of energy
in the −J idle level being from the cold to the hot bath. This
can be seen in the inset of Fig. 2 for one of the measurement
protocols. The fact that the efficiency of the measurement
model can be larger than that of the two-bath model is due
to the measurement being able to give more energy to the
−J level than the thermal hot bath. We also checked that for
the same set of parameters from Fig. 2, the efficiency of the
two-bath engine always decreases for negative values of J ,
while it can increase for the measurement-based engine. Note
also that in both models, the increase in the efficiency is not
related to entanglement or any other subsystem correlations,
which are not present in a single system with three levels.

We also numerically found that the efficiency of the
measurement-based engine can approach 1. This can be seen
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FIG. 2. Efficiency of the measurement-based quantum heat en-
gine for a qutrit. η1 (first curve, dotted blue): θ = φ = 0.7π and ψ =
χ = 0.5π ; η2 (third curve, dashed black): θ = φ = χ = 0.7π and
ψ = 0.5π ; η3 (fifth curve, dashed green): θ = φ = χ = ψ = 0.3π .
We also show the efficiency for the two-bath model with the qutrit
ηT (second curve, dot-dashed purple) and with the qubit η0 (fourth
curve, solid red). Inset: Energy exchanged through each energy level
for η2: qB (top dashed red), q−B (middle dot-dashed blue), and q−J

(bottom solid green).

in Fig. 3(a), where we have a contour plot of the efficiency
as a function of θ = φ and J for ψ = χ = π/2 and βc = 1.
One can see that for some fixed value of θ = φ around 2.4, the
efficiency increases with J and seems to approach 1 as J → 3.
In Figs. 3(b) and 3(c) we analyze the effects of changing the
cold bath temperature. It can be seen that lower (higher) βc
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FIG. 3. Contour plot of the efficiency of the measurement-based
quantum heat engine for a qutrit. In (a), (b), and (c) θ = φ and ψ =
χ = π/2 and β = 1, 0.25, 4 for (a), (b), and (c). In (d) θ = φ = χ ,
ψ = π/2, and βc = 1.

(a) (b)

(c) (d)

FIG. 4. Energy and population structure for the qutrit system:
(a) Initial (cold) thermal population for β = 1. (b) Population after
the measurement process, third stroke of the cycle. (c) Energy flow-
ing through each energy level during the third stroke. (d) Efficiency
(solid black), total work (dot-dashed purple), absorbed heat (dashed
red), and released heat (dashed blue) during the cycle. All this graph-
ics were done for the angles θ = φ = 0.75π and χ = ψ = 0.5π .

decreases (increases) the size of the region of higher efficiency
around the maximum, which can reach 1. Finally, we show
in Fig. 3(d) the case in which θ = φ = χ and ψ = π/2 and
βc = 1. It can be seen that the efficiency does not reach 1
anymore, and the maximum values occur around J = 2.

We now analyze more carefully the extreme scenario where
the efficiency can approach 1 in Fig. 3(a). We fixed θ = φ =
0.75π and looked at the behavior of the efficiency, popula-
tions, and exchanged heat via the idle level J . In Fig. 4(a)
we show the populations of the system state in the energy
basis before the measurement. First note that the population
of the highest level, +B, is negligible. We also see that as we
increase J , the populations of the two lowest levels approach
each other, as expected since the gap between the two levels
is decreasing. In Fig. 4(b) we show the populations after
the measurement. One can see that for all values of J , the
measurement does not change the population of the highest
level, +B, and it projects the state in an equal mixture of the
two lowest energy levels. Comparing the population before
and after the measurement, we see that as J increases, the
change in the population of the two lowest levels decreases
and goes to 0 when the efficiency approaches 1; so less energy
is transferred to the system by the measurement. This can be
seen in Fig. 4(c), where we plot the energy exchanged by
each level during the measurement; they all go to 0 in the
limit where the efficiency approaches 1. Finally, in Fig. 4(d)
we show the heats and the total work: they all go to 0 in the
limit of efficiency 1. Thus while we have found measurement
protocols that can reach high values of efficiency and even
approach 1, the work produced by the engine decreases and
ultimately reaches 0: we have a very efficient engine, but
it produces negligible work. As mentioned, in this limit the
effects of the measurement also become negligible.

It is worth noting that the Carnot limit does not apply to
our engine, since one of the baths is not a thermal bath. There
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TABLE I. The four eigenvalues of the Hamiltonian H with their
associated eigenvectors.

Eigenvalues Eigenstates

2B |00〉
2(Jxy − Jz ) (|01〉 + |10〉)/

√
2

−2(Jxy + Jz ) −(|01〉 − |01〉)/
√

2
−2B |11〉

are also other examples of engines with nonthermal baths, for
example one consisting of squeezed bath instead of thermal
bath, that may surpass the Carnot limit; there are other upper
bounds for such engines, but it is not clear if they apply here
[72].

In summary, we have shown that the mechanism for an
increase in the efficiency when we add an energy level that
does not change during the adiabatic process (an “idle” level)
is the same for the two-bath and the measurement model. The
increase is due to a flux of energy from the cold to the hot bath
through the “idle” level. We have also shown that for a qutrit
the measurement-based engine can have higher efficiency than
the analogous two-bath model, due to the greater range of pos-
sible changes in the populations that may be induced through a
measurement. Finally, it is even possible to reach efficiencies
close to 1, but the output work becomes negligible.

V. REVISITING THE HEISENBERG MODEL AS A QHE

Another possibility to study quantum engines beyond the
qubit case is to couple two qubits. In fact, coupled spin-1/2
models have been extensively studied as thermal engines. In
these models, one may expect that the quantum correlation
between the spins may enhance engine efficiency. However,
there is no clear connection between any measure of quantum
correlation and efficiency increase. Here we will show that the
same mechanism of efficiency increase for a qutrit can explain
the results obtained for two spins coupled via a Heisenberg
Hamiltonian (XXZ model), which were already analyzed for
the two-bath model [16] and the measurement model [57].
Thus in this model correlations are not needed to explain the
efficiency increase.

The anisotropic Heisenberg Hamiltonian for two spins 1/2
(XXZ model) is given by

H = Jxy
(
σ 1

x σ 2
x + σ 1

y σ 2
y

) + Jzσ
1
z σ 2

z + B
(
σ 1

z + σ 2
z

)
, (30)

with Jxy the interaction constant of the spins in the xy-plane,
Jz the interaction constant in the z-direction, B the external
magnetic field in the z direction, and σ

1 (2)
i the Pauli matrices

associated with the particle 1 (2). The eigenvalues and eigen-
vectors are given in Table I.

As in the qutrit case, there are “idle” energy levels that do
not depend on the external parameter, B, and therefore do not
contribute to the total work. In this case, there are two “idle”
levels, but the same manipulations that lead to Eq. (23) can be
made and the efficiency can be written as

η

η0
= 1 − q1 + q2

Qh
, (31)

where η0 = 1 − Bi/B f is the efficiency for Jxy = Jz = 0, and
q1 and q2 are the energy exchanged through the two “idle”
energy levels: 2(Jxy − Jz ) and −2(Jxy + Jz ). So the condition
for the coupling to increase efficiency is q1 + q2 < 0. As
before, this means that the total energy flowing through the
two “idle” energy levels has to be from the cold to the hot
bath. As shown in [60], this mechanism is trivially extended
to any system with a group of “idle” energy levels [73].

Thus, contrary to what has been suggested for the XXX
model [57], the efficiency increase is not related to any quan-
tum correlation between the spins, but only to the particular
structure of the energy levels, which of course depends on
the coupling. Note that this is valid for the two-bath and the
measurement engine with the XXZ model as the working
substance.

We will now illustrate this for some particular cases of the
XXZ model.

A. Two-bath engine

For the two-bath engine, the general expression for effi-
ciency is already too cumbersome to provide any intuition,
and it is not shown.

We first consider the isotropic case with Jz = 0, which is
the XX model. In Fig. 5(a), we plot the efficiency for the
coupled and uncoupled cases, and the heat flowing through the
“idle” levels. It can be seen that the increase in the efficiency
is due to q1 + q2 < 0. This is also illustrated for the case
Jxy = 0, the transverse Ising model, in Fig. 5(b). We see the
same mechanism for efficiency increase, which is not related
to any quantum correlations.

B. Measurement-based engine

Now we will consider the measurement engine in the same
particular cases of the two-bath engine with two interacting
1/2 spins.

We use local spin projective measurements on each parti-
cle. In this case, the projectors are given by

M1 = |+n〉〈+n| ⊗ |+m〉〈+m|,
M2 = |+n〉〈+n| ⊗ |−m〉〈−m|,
M3 = |−n〉〈−n| ⊗ |+m〉〈+m|,
M4 = |−n〉〈−n| ⊗ |−m〉〈−m|,

(32)

where |±n〉〈±n| are the projectors for the observable 
σ · n̂ for
one spin and |±m〉〈±m| are the projectors for the observable

σ · m̂ for the other one. With these operators, we can measure
each qubit in any direction.

As mentioned, the XXX model was already studied for the
measurement engine [57] with precisely these spin measure-
ments. It was suggested that the quantum correlation between
the spins might be responsible for the increase in the efficiency
in relation to the engine with an uncoupled spin. We now illus-
trate, with the same particular examples used in the two-bath
models, our results showing that correlations are not the origin
of the increase in the efficiency.

As there are many possible measurement directions, no
simple general expression for the efficiency is available. We
will consider two possible choices: {
n = 
x, 
m = 
z} and {
n =
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(a)

(b)

FIG. 5. Efficiency of two-bath quantum heat engine for uncou-
pled spins (η0, dashed black) and two interacting spins (ηT , solid
black). Inset: We also plot the heat flowing through the levels that
do not depend on B, q1 + q2 (dashed red). In (a) we have Jz = 0
(XX model) and in (b) Jxy = 0 (transverse field Ising model). In both
cases, we see that the increase in the efficiency is due to q1 + q2 < 0.


x, 
m = 
x}. In Fig. 6 we show the data for the XX model,
and in Fig. 7 we show the data for the transverse field Ising
model. We can see for the XX model that the efficiency always
decreases for the two chosen measurements, while in the XXX
model it increases [57]. We can also see, in the insets, how the
increase in the efficiency only occurs when heat flows from
the cold to the hot bath through the “idle” levels; q1 + q2 < 0.

In summary, we were able to explain the efficiency gain in
both the two-bath and the measurement-based models without
invoking entanglement or any other quantum correlation. The
efficiency gain only depends on the energy structure of the
system, i.e., the presence of “idle” levels.

VI. CONCLUSION

In this work, we aimed to analyze the mechanism for
a performance increase in measurement-based engines with
coupled qubits in relation to uncoupled qubits and also to
two-bath engines with coupled qubits. To this end, we studied

FIG. 6. Efficiency of measurement engine for two spins 1/2 in
the XX model (Jz = 0). The measures are spin measurement in the
directions {
n = 
x, 
m = 
z} (second dashed red) and {
n = 
x, 
m = 
x}
(first dotted blue). We also show as a horizontal line the efficiency
for a single spin. In the inset we show q1 + q2 for the xz-direction
(dashed red) and the xx-direction (dotted blue).

the Otto cycle with a three-level system. We showed that in
both models, measurement-based and two-bath, the change in
the efficiency is due to the structure of the energy levels, more
precisely due to one of the levels, −J , not changing in the
adiabatic process (being an “idle” level). If one considers the
contribution of each energy level to the heats, the increase in
the efficiency occurs only when the flow of energy though the
−J level is from the cold to the hot bath, something proposed
by some of us in [60]. We also showed that this mechanism is
the one responsible for the increase in the efficiency when the
engine system is two spins 1/2 coupled by a Heisenberg inter-
action. Thus for the two types of engines, the efficiency gain
is not due to any quantum correlation, as has been suggested
[57].

FIG. 7. Efficiency of measurement engine for two spins 1/2 in
the Ising model (Jxy = 0). The measures are spin measurement in
the directions {
n = 
x, 
m = 
z} (first curve, dashed red) and {
n =

x, 
m = 
x} (second curve, dotted blue). Again the horizontal line is
the efficiency for uncoupled spins. In the inset we show q1 + q2 for
measurements in the xz-direction (dashed red) and the xx-direction
(dotted blue) (the value is equal in both cases).
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For the measurement engine, we saw that there is no simple
expression for the efficiency. We thus numerically studied the
efficiency for a general SU(3) projective measurement and
found protocols where it can be higher than that for the two-
bath models. We showed that the efficiency can even approach
1, but with the work output going to 0. The second law is not
violated, since the Carnot bound does not apply to engines
using a nonthermal energy source, as is the case here.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. If E is a unital trace-preserving quantum
channel and ρ is a passive quantum state with respect to
Hamiltonian H, then

〈�E〉 ≡ Tr{[E (ρ) − ρ]H} � 0. (A1)

Proof. Let {|n〉} be the eigenvectors of H, with correspond-
ing energies En, numbered in nondecreasing order. Also, let
{Mα}, satisfying

∑
α MαM†

α = ∑
α M†

αMα = 1, be a set of
Kraus operators for E .

Define a square matrix T with elements

Tmn =
∑

α

|〈m|Mα|n〉|2. (A2)

Note that, for any trace-preserving quantum channel,∑
m

Tmn =
∑

α

〈n|M†
α

∑
m

|m〉〈m|Mα|n〉 = 1, (A3)

so T is a stochastic (or “Markov”) matrix. T can be inter-
preted as the transfer matrix mapping the original probability
distribution for energy, pn = 〈n|ρ|n〉, to the new one after the
measurement:

p′
m ≡ 〈m|E (ρ)|m〉 =

∑
α

〈m|Mα

∑
n

pn|n〉〈n|M†
α|m〉

=
∑

n

Tmn pn. (A4)

In other words, Tmn is the conditional probability p(m|n) of
having energy Em after the measurement is performed, given
that we had energy En before.

It is convenient at this point to define probability and
energy vectors 
p = (p1, p2, . . . , ) and 
E = (E1, E2, . . . , ),
where 
E is in ascending order. The change in average energy,

〈�E〉, can then be written

〈�E〉 = 
E · (T − 1) 
p. (A5)

In Ref. [56], E was restricted to the class of measurements
where Mα can all be chosen to be Hermitian. It was shown
that in that case T is a symmetric matrix, a fact that was then
exploited to prove Eq. (A1). Here we have imposed the weaker
condition that E is unital. Nevertheless, Eq. (A1) still holds.
To see this, note that∑

n

Tmn =
∑

α

〈m|Mα

∑
n

|n〉〈n|M†
α|m〉

= 〈m|
(∑

α

MαM†
α

)
|m〉 = 1. (A6)

In other words, for unital E , T is in fact a bistochastic matrix.
These matrices have many special properties linked to the con-
cept of majorization [74,75]. In particular: Birkhoff’s Theorem
states that a square matrix T is bistochastic if and only if it can
be written as a convex combination of permutation matrices:
T = ∑

j q jσ j , where σ j are permutations,
∑

j q j = 1 and 0 <

q j � 1. To prove that Eq. (A5) is � 0, it suffices, therefore, to
show that, for any permutation matrix σ , 
E · (σ 
p) � 
E · 
p.

This follows from the fact that ρ is “passive,” which means
that 
p is ordered in nonincreasing order. Energies and proba-
bilities are therefore perfectly anticorrelated, with the greatest
probabilities matching the smallest energies. It is then intu-
itively clear that any rearrangement of the probability vector

p will increase the average energy. This statement can be
made precise using the mathematical result known as the “re-
arrangement inequality” (see, e.g., [76], Sec. 10.2, Theorem
368).

APPENDIX B: QUTRIT EFFICIENCY

Here we give expressions for the efficiency of the
measurement-based engine in the Heisenberg model, for the
three chosen sets of angles studied in Sec. V B,

η1 =
(B f − Bi ) + (9.1eJ+Bi )10−16

(0.19−1.17e2Bi +0.97eJ+Bi ) J

B f + (0.025+e2Bi −1.02eJ+Bi )
(0.19−1.17e2Bi +0.97eJ+Bi ) J

, (B1)

η2 =
(B f − Bi ) + (eJ+Bi −0.12e2Bi −0.01)10−15

(0.92−1.79e2Bi +0.87eJ+Bi ) J

B f + (0.13+e2Bi −1.13eJ+Bi )
(0.92−1.79e2Bi +0.87eJ+Bi ) J

, (B2)

η3 =
(B f − Bi ) − (4.54+0.14e2Bi −9.07eJ+Bi )10−15

(46.54−7.68e2Bi −38.86eJ+Bi ) J

B f + (39.86+e2Bi −40.86eJ+Bi )
(46.54−7.68e2Bi −38.86eJ+Bi ) J

, (B3)

where η1 is the efficiency with the angles given by θ = φ =
0.7π and ψ = χ = 0.5π , η2 with θ = φ = χ = 0.7π and
ψ = 0.5π , and η3 with θ = φ = χ = ψ = 0.3π .
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