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We study integrable spin chains and quantum and classical cellular automata with interaction range � � 3.
This is a family of integrable models for which there was no general theory so far. We develop an algebraic
framework for such models, generalizing known methods from nearest-neighbor interacting chains. This leads
to a new integrability condition for medium-range Hamiltonians, which can be used to classify such models. A
partial classification is performed in specific cases, including U (1)-symmetric three-site interacting models, and
Hamiltonians that are relevant for interaction-round-a-face models. We find a number of models which appear
to be new. As an application we consider quantum brickwork circuits of various types, including those that
can accommodate the classical elementary cellular automata on light cone lattices. In this family we find that
the so-called Rule150 and Rule105 models are Yang-Baxter integrable with three-site interactions. We present
integrable quantum deformations of these models, and derive a set of local conserved charges for them. For the
famous Rule54 model we find that it does not belong to the family of integrable three-site models, but we cannot
exclude Yang-Baxter integrability with longer interaction ranges.
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I. INTRODUCTION

One-dimensional quantum integrable models are special
many-body systems, which allow for exact solutions of their
dynamics. Their study goes back to the solutions of the
Heisenberg spin chain by Bethe in 1931 [1] and the exact
treatment of the two-dimensional (2D) classical Ising model
by Onsager in 1944 [2]. It was understood in the 1960s and
’70s that a key element appearing in various types of quantum
integrable models is the Yang-Baxter equation, independently
discovered by Yang [3] and Baxter [4]. A common algebraic
framework was afterwards developed by the Faddeev and
Leningrad group (see, for example, the historical review in
Ref. [5]). These elements of integrability connect seemingly
different types of models, such as the 2D integrable statistical
physical models (for example, the six-vertex and eight-vertex
models), the famous integrable spin chains such as the Heisen-
berg model or the Hubbard model, nonrelativistic quantum
gas models [6], and integrable quantum field theories (iQFT)
[7].

A recurring question over the decades has been the clas-
sification of (quantum) integrable models, together with an
attempt to give a precise definition of what integrability
actually is. It appears that there is no single definition en-
compassing all possible integrable models, but there are
two very common elements appearing in integrable mod-
els: the existence of a large set of extra conservation laws
and a completely elastic and factorized scattering of the
physical excitations [8]. Then the attempts for the classifi-
cation can proceed along the lines of either of the charges

[8] or by finding all possible factorized S-matrices as in
iQFT [7].

Focusing on quantum spin chains two big families of mod-
els have been studied extensively: those with nearest-neighbor
(n.n.) interactions, and some long-range models. In the lat-
ter case spins at an arbitrary distance can interact, although
with strongly decreasing coupling constants. The n.n. chains
can be treated with the algebraic methods developed by the
Leningrad group [9], which are routinely used today. How-
ever, the treatment of the long-range chains is typically more
involved. Examples are the Haldane-Shastry chain [10,11] or
the Inozemtsev chain [12] or long-range version of the Hub-
bard model [13]. In such cases the construction of the exact
eigenstates and also the charges is typically more complicated
than in the n.n. chains; see, for example, Refs. [14–16].

Returning to the nearest-neighbor chains, partial classifica-
tions have been achieved in certain specific cases. Integrable
nearest-neighbor Hamiltonians are intimately connected with
so-called regular solutions of the Yang-Baxter (YB) equation.
Thus, a classification can proceed by finding all solutions of
the YB equation; this is possible within restricted parameter
spaces. For example, it was understood very early that solu-
tions can be found by assuming underlying group or quantum
group symmetries [17–21]. However, the (quantum) group
symmetric cases do not exhaust all possibilities, and it is also
desirable to find the remaining models. It is not possible to list
here all known integrable n.n. chains, therefore we just men-
tion a few works that performed classifications with certain
restrictions [22–27]. More recently a systematic method was
worked out in Refs. [28–32], based on well-established ideas
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[33] but leading to more detailed classifications than in prior
works.

Despite all of this progress there is a class of models which
has so far received relatively little attention: Translationally
invariant spin chains where the Hamiltonian has a finite inter-
action range � � 3. We call these models “medium-range spin
chains” to distinguish them both from the nearest-neighbor
and the long-range cases. It is important that we are interested
in models where the finite range Hamiltonian is the smallest
dynamics generating charge, so we dismiss those cases when
the Hamiltonian is chosen as a linear combination of some
of the short range charges of a n.n. interacting chain. These
cases can be interesting on their own right (see, for example,
Ref. [34]), but we are looking for models with genuinely
new interactions. We also exclude those models, where the
Hilbert space is a constrained subspace of the usual tensor
product space of the spin chains; an important example is the
constrained XXZ model and its generalizations treated, for
example, in Refs. [35–41] or the supersymmetric spin chains
studied in Refs. [42,43]. Such constraints are nonlocal, and
we are looking for strictly local models with the usual tensor
product Hilbert space.

There are various reasons why the medium-range models
can be interesting. First of all there is the obvious academic
interest: If one was to uncover all possible integrable spin
chains, then clearly one should consider these models as well.
We can expect that as we increase the interaction range, more
and more possibilities open up, and a full classification be-
comes less and less feasible in practice. Nevertheless, it is
desirable to develop a general theory for such models, and
at least some key ideas for the classification, which can be
applied in restricted parameter spaces. As a second motiva-
tion we can mention various recent research directions where
medium-range models were encountered.

A. Medium-range spin chains in the literature

An early example of an interacting medium-range spin
chain is the Bariev-model, which has a three-site Hamilto-
nian [44]. Generally, the three-site models can be pictured as
zigzag spin ladders, and this was also used in the presentation
of the Bariev model. In this work we stick to the translation-
ally invariant representations. The algebraic explanation of the
integrability of the Bariev model was given in Refs. [45,46].

Recently there was interest in medium-range chains which
can be solved by free fermions of parafermions. A specific
three-site model was found in Ref. [47] with generalizations
studied later in Refs. [48–50]. In these models the fermions
are “in disguise,” which means they are not obtained by the
usual Jordan-Wigner transformation. A more general theory
for such models was initiated in Ref. [51].

A specific medium-range model called the “folded XXZ
model” was investigated in the recent works [52–55]. There
are two formulations of the model, and the dynamical Hamil-
tonian is a four-site or three-site operator, depending on the
formulation used. In the three-site formulation the model is
seen as a special point of the Bariev model. It was shown in
Ref. [54] that the model exhibits Hilbert space fragmentation,
and it can be considered as a hard rod deformation of the
XX model. Furthermore, its real-time dynamics can be solved

exactly in certain special quench problems, thus the model can
be considered as one of the simplest interacting spin chains. It
is remarkable that a spin chain with four-site interactions has
a simpler solution than the famous XXZ chains. This shows
that it is worthwhile to explore the medium-range chains.

In the recent work [56] a family of unitary transformations
was studied which can generate a medium-range chain start-
ing from a nearest-neighbor model. The techniques applied
here originate in quantum information theory, and the trans-
formations are members of the discrete Clifford group.

B. Integrable quantum circuits

We should also mention the recent interest in integrable
quantum circuits and classical cellular automata. This is
a topic closely connected to integrable Hamiltonians, and
some of the models in the literature have medium-range
interactions.

The interest in quantum gate models is motivated in part
by experimental advances, but also by surprising theoreti-
cal results. For example, simple (nonintegrable) models with
random unitary gates lead to a number of new results, see,
for example, Refs. [57–63], and models with so-called “dual
unitary” gates are exactly solvable [64–66]. In the integrable
setting there is interest for quantum circuits with unitary gates
that span two, three of four sites (in the following we will
often use the short term “unitary” instead of “unitary gate”).

First of all, a quantum circuit model with two-site unitaries
was developed in Ref. [67]: the model serves as an integrable
Trotterization (discrete time analog) of the XXZ spin chain.
This idea goes back to the light cone regularization of inte-
grable QFTs [68–70]. More recently the same idea was also
applied to dissipative systems [71]. The key observation in
these works is that the so-called R-matrix itself can be used
as a two-site quantum gate, and in certain cases this leads to
discrete unitary time evolution with well defined integrability
properties. The original integrable spin chains can be recov-
ered in the continuous time limit of the quantum gate models.

An important family of quantum circuits falls outside the
realm of nearest-neighbor models. These are the elemen-
tary cellular automata on light cone lattices classified in
Ref. [72], which can be considered quantum circuits with
special three-site unitaries. The most important example is the
Rule54 model, which is often called the simplest interacting
integrable model [73]. It is a very special model with soliton-
like behavior, which allows for exact solutions [74–76] and
integrable quantum deformations [77] (see also Ref. [78]).
However, the connection with the standard Yang-Baxter in-
tegrability remained unknown.

Very recently a new algebraic framework was proposed
for these cellular automata [79], by making connection to the
so-called interaction round-a-face (IRF) models of statistical
physics (see, for example, Refs. [80–83]). In Ref. [79] new
transfer matrices were developed for the classical cellular au-
tomata and certain quantum deformations of them, and it was
conjectured that the new construction gives new quasilocal
conserved charges in these models, thus proving their integra-
bility. These IRF models are such that the three-site quantum
gates have two control bits on the two sides and one action
bit in the middle. If these IRF models are indeed integrable,
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then they could serve as integrable Trotterization of some
spin chains with three-site Hamiltonians, likely having a very
similar structure. However, such connections have not yet
been found.

In the recent work of Ref. [84] a cellular automaton was
found with a four-site update rule, such that it can be consid-
ered as an integrable Trotterization of the folded XXZ model
mentioned above. However, the construction in Ref. [84] had
some drawbacks: it did not have space reflection symmetry,
and the integrability was only proven for a certain diagonal-
to-diagonal transfer matrix, which is not adequate to treat
the Cauchy problem. Nevertheless, the results of Ref. [84]
indicate that the cellular automata and medium-range spin
chains are indeed closely related, and can be treated with the
usual algebraic methods of integrability.

We should also note that there exists a family of classical
cellular automata, where the integrability properties are well
understood: these are the so-called box-ball systems [85,86].
Here the update rules cannot be formulated using a simul-
taneous action of local update rules; instead, they belong to
the class of the so-called filter automata [87–90]. The box-
ball models are noteworthy, because they display solitonic
behavior, and they are connected to a number of question
in representation theory of quantum groups, combinatorics,
and classical integrability [86]. Recently the hydrodynamic
behavior of these models was also studied in Ref. [91]. In our
paper we do not treat these models, because we are interested
in strictly local systems.

C. The goals of this paper

Motivated by the findings discussed above, in this paper
we strive toward a general theory for medium-range integrable
models. It is our goal to develop the common algebraic struc-
tures, which will be generalizations of the known methods
applied for nearest-neighbor models. We stress that up to now
there has been no general framework for the medium-range
models, and even in those cases where the algebraic back-
ground was developed (see, for example, the Bariev model
[45,46]), it was based on ad hoc ideas lacking a general
understanding. In contrast, in this work we establish the key
relations for the medium-range models, focusing in particular
on the three-site and four-site interacting cases. A special
emphasis will be put on the IRF models treated in Ref. [79]:
we show that they can be embedded into our framework, and
we disprove some of the conjectures made in Ref. [79]. In
particular, we argue that the Rule54 model is not in the family
of the three-site interacting Yang-Baxter integrable models,
but we do not exclude integrability with longer interaction
ranges.

In Sec. II we set the stage for our computations: we in-
troduce the main concepts and also explain and summarize
some of our key results. The algebraic structures of integra-
bility are then introduced in Sec. III, which also includes our
main results about the medium-range spin chains. Integrable
quantum circuits of various types are constructed in Sec. IV.
The special class of models related to the elementary cellular
automata are considered in Sec. V. Here we also treat the re-
sults of Ref. [79]. In Sec. VI we study the four-site interacting

models. Open questions are discussed in Sec. VII, and we
present some of the technical computations in the Appendices.

II. PRELIMINARIES

In this section we introduce the key concepts regarding
integrable spin chains, and we summarize our new results
for the medium-range cases. We also introduce the quantum
circuits, which can be considered as the discrete time versions
of the spin chain models. In this section we avoid the algebraic
treatment of the integrability properties, instead we focus on
the overall physical properties of these models, most impor-
tantly on the set of conserved charges.

First we introduce some notations that we use throughout
the work, and afterwards we discuss the spin chains and the
quantum circuit models. The algebraic structures behind the
integrability are presented later in Secs. III and IV.

A. Notations

We consider homogeneous spin chains with translationally
invariant Hamiltonians. The local Hilbert spaces are Vj = Cd

with some fixed d � 2. The full Hilbert space of the model in
finite volume L is H = ⊗L

j=1Vj . The majority of our abstract
results will not depend on the actual value of the local dimen-
sion d , but in the concrete examples we consider d = 2.

We say that an operator O( j) is local if its support is
restricted to a limited number of sites starting from j, such
that the support does not grow with L as we consider longer
and longer chains. We use notation |O( j)| for the range of
the local operator (which we also call length). This means
that the support of O( j) with |O( j)| = � is the segment
[ j, . . . , j + � − 1].

If a local operator has a fixed small range �, then we will
also use an alternative notation where we spell out the sites
on which it acts. For example, for two-site operators we also
write O j, j+1, for three-site operators O j, j+1, j+2, and so on. We
will switch between the two notations depending on which is
more convenient for the actual computation.

In our concrete examples we will treat spin-1/2 chains. In
these cases we use the standard basis of the up and down spins,
but we will use the notations |◦〉 = |0〉 (empty site) and |•〉 =
|1〉 (occupied site) for these basis states, respectively. We use
the standard Pauli matrices σ x,y,z and also the standard ladder
operators σ±, together with the following projectors onto the
basis states:

P◦ = P0 = 1 + σ z

2
, P• = P1 = 1 − σ z

2
. (2.1)

An important operator that we will use often is the cyclic shift
operator U that translates the finite chain of length L to the
right by one site.

B. Integrable spin chains with nearest-neighbor interactions

In the literature there is no single definition for quantum
integrability. However, it is generally accepted that one of the
key properties of integrable models is the existence of a large
set of additional conserved charges, which commute with each
other. Then the integrable models can be classified according
to the patterns of how these charges appear in the model [8].
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In this paper we focus on local spin chains, where the
Hamiltonian is given by a strictly local Hamiltonian density:

H =
∑

j

h( j). (2.2)

Here h( j) is a local operator with some range �. Periodic
boundary conditions are understood throughout this work.

The additional conserved charges are a set of operators Qα ,
where α is a label which we discuss below. We require that
each charge should be extensive with a local density:

Qα =
∑

j

qα ( j). (2.3)

In this work we restrict ourselves to these strictly local
charges, even though it is known that in certain cases so-
called quasilocal charges also play an important role [92,93].
Furthermore, there are integrable models where the charges
typically grow super-extensively with the volume; see, for ex-
ample, the discussion of the Haldane-Shastry chain in Ref. [8].
Nevertheless, in this work we focus only on the extensive
cases.

It is generally required that the conserved charges com-
mute,

[Qα, Qβ ] = 0, (2.4)

and the Hamiltonian should be a member of the set. The
commutativity has to hold in every volume L large enough
so that both charges fit into the system.

If these requirements are met, then generally the label α

can be chosen simply as the length of the charge density,
therefore we will use the convention throughout this work,

|qα ( j)| = α. (2.5)

Within this class of models the most studied ones are
nearest-neighbor interacting ones, thus we can identify H =
Q2. In such cases the allowed values for α are the integers
starting from 2. If there is also a global U (1)-symmetry, then
α = 1 is also allowed.

Within this class the most important cases are the
spin-1/2 chains, for which a full classification (including non-
Hermitian cases) was performed in Refs. [28,29]. We do not
treat the classification here, instead we just mention the most
important examples.

Let us start with a generic (nonintegrable) spin-1/2 chain
and let us require space reflection invariance. Then it can be
shown that the most general nearest-neighbor Hamiltonian
(apart from global SU (2) rotations) is the XY Z model with
magnetic fields:

H =
∑

j

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

+ hxσ
x
j + hyσ

y
j + hzσ

z
j

)
. (2.6)

This model is not integrable except for special cases [94].
One integrable family is when hx = hy = hz = 0, and the

couplings Jx,y,z are arbitrary, this is known as the XY Z model.
A special point with U (1) symmetry is the XXZ chain with
Jx = Jy, which allows for a nonzero hz. A further special
point is the SU (2) invariant Heisenberg spin chain with equal
couplings, which allows for arbitrary magnetic fields.

An other special integrable family within Eq. (2.6) are
the so-called XY h models, where Jz = 0 and hx = hy = 0. A
special model of this family is the quantum Ising chain where
also Jy = 0. The XY h family can be solved by free fermion
techniques [95,96].

C. The Reshetikhin condition

A common property of the nearest-neighbor models is that
they satisfy the so-called Reshetikhin condition of integrabil-
ity. There are multiple formulations of this condition, and now
we review the most general one. The algebraic background is
treated later in Sec. III.

First of all we quote a conjecture that was presented in
Ref. [33]. We put this in a slightly modified form:

Conjecture 1. A nearest-neighbor spin chain with a dy-
namical Hamiltonian H is integrable iff there exists an
extensive three-site charge Q3 which is functionally indepen-
dent from H and the possible one-site charges of the model,
and which commutes with H for every volume L � 3.

As far as we know no counterexamples have been found
so far, but the Conjecture has not yet been proven either. It
is important that we added the condition that the Hamiltonian
should be dynamical: If this condition is not satisfied, then
simple counterexamples can be found, see the discussion in
Appendix A.

Now we also present the Reshetikhin condition in a rather
general form:

Conjecture 2. If there exists a conserved charge Q3

commuting with the dynamical two-site Hamiltonian H =∑
j h( j), then it can be written as Q3 = ∑

j q3( j), with

q3( j) = [h( j), h( j + 1)] + h̃( j), (2.7)

where h̃( j) is also a two-site operator.
It might appear that the Conjecture allows for a lot of

freedom due to the presence of h̃( j), but the fact that this
operator has to be a two-site operator is rather restrictive.

The conjecture can be proven backwards: If the spin chain
is Yang-Baxter integrable, then the precise form of the density
q3( j) follows from the underlying algebraic objects, and it has
precisely the form of Eq. (2.7). However, it is not known how
to prove the Conjecture without assuming Yang-Baxter inte-
grability. We put forward that h̃( j) = 0 in models where the
so-called R-matrix is of difference form; this corresponds to
the original Reshetikhin condition treated in Ref. [33]. How-
ever, h̃( j) �= 0 in other models such as the Hubbard model
[97].

Conjecture 2 was used in the recent works [28–32] for the
classification of integrable nearest-neighbor chains in various
circumstances. We will not review this classification here,
instead we will focus on the generalization of the Reshetikhin
condition to medium-range spin chains.

D. Medium-range spin chains

In this work we treat integrable spin chains and closely
related quantum gate models where the interaction range is
� � 3. We call these models “medium-range chains.” We pro-
pose the following definition:
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FIG. 1. Graphical illustration of a zigzag spin ladder. It is natural
to expect three-site interactions for each plaquet.

Definition 1. A medium-range integrable spin chain is a
model which has an infinite set of commuting local charges
{Qα} where α ∈ S with S ⊂ Z+, such that the lowest dynam-
ical charge (which is regarded as the Hamiltonian) has a range
� � 3.

Once again it is important to add the requirement of having
a dynamics generating charge as the Hamiltonian. A good
example for the usefulness of this requirement is the so-called
“folded XXZ model” treated in Refs. [52–54], where the first
four charges are

Q1 =
L∑

j=1

σ z
j , Q2 =

L∑
j=1

σ z
j σ

z
j+1,

Q3 =
∑

j

i
(
σ z

j + σ z
j+3

)
(σ+

j+1σ
−
j+2 − σ−

j+1σ
+
j+2),

Q4 =
L∑

j=1

(
1 + σ z

j σ
z
j+3

)
(σ+

j+1σ
−
j+2 + σ−

j+1σ
+
j+2). (2.8)

Based on the existence of the charge Q2 one could regard
this model as nearest-neighbor interacting, but Q2 does not
generate nontrivial dynamics: it is also a sum of mutually
commuting local operators. Instead, in this model Q4 is re-
garded as the Hamiltonian, because Q4 is the first parity
symmetric charge of the model, which generates nontrivial
dynamics.

E. Three-site models—General remarks

Let us focus on the case with � = 3. In this case we identify
H = Q3 and we also write

H =
∑

j

h j, j+1, j+2, (2.9)

where hj, j+1, j+2 is the three-site Hamiltonian density.
Such models can be interpreted very naturally as a zigzag

spin ladder. See Fig. 1. However, we will focus on the transla-
tionally invariant representation Eq. (2.9).

Our main results are finding the general algebraic struc-
tures behind the three-site models, which lead to a generaliza-
tion of the Reshetikhin condition. We formulate the following
conjecture:

Conjecture 3. A three-site Hamiltonian is integrable, iff
the charge Q5 = ∑

j q5( j) defined by

q5( j) = [h j, j+1, j+2, h j+1, j+2, j+3 + h j+2, j+3, j+4]

+ h̃ j, j+1, j+2 (2.10)

commutes with the Hamiltonian in every volume L � 5. Here
h̃ j, j+1, j+2 is an other three-site operator.

Clearly, this is a generalization of Conjecture 2. The con-
struction of Q5 through Eq. (2.10) is one of our key results. Its
derivation from an underlying algebraic theory is presented in
Sec. III C. We stress again that this result is very restrictive:
it uses two three-site operators h j, j+1, j+2 and h̃ j, j+1, j+2 to
generate a five site charge.

Based on this result it is possible to perform a classification
of integrable spin chains with three-site interactions. This is
rather analogous to the ideas used in Refs. [20,21] and later in
Refs. [28–32]. The idea is to make an Ansatz for h j, j+1, j+2 and
h̃ j, j+1, j+2, possibly including a number of free parameters, to
construct Q5 using Eq. (2.10) and to check the commutation
relation [H, Q5] = 0 on spin chains with medium length. We
implemented this strategy using the program Mathematica
and performed partial classifications on spin 1/2 chains. The
generic density h j, j+1, j+2 has a total number of 82 = 64 pa-
rameters, which is a too large parameter space for practical
computations. Therefore, we performed partial classifications
along restricted subspaces which can bear physical relevance.
The results are presented in Secs. III D and V C.

F. Quantum gates and cellular automata

We also consider brickwork type quantum circuits, where
the fundamental local unitaries have a support of � sites. The
interest in such models is manifold: On the one hand, they
can be understood as integrable models in discrete time, or
alternatively as integrable Trotterizations of the continuous
time spin chain models. On the other hand, they are inter-
esting because they can lead to classical cellular automata,
thus presenting one more link between the worlds of quantum
and classical integrability. Finally, they are also relevant to
quantum computing and real world experiments.

Let us sketch the general schemes behind our quantum
circuit models. First we present the abstract formulation of
the update rules, and we give more concrete examples later. It
is necessary to start with the most general form, because later
in this work we consider multiple types of constructions.

We build systems with Floquet-type discrete time evolu-
tion, such that the equal time update rules are given by local
unitaries. Let us fix an interaction range �, and consider a local
unitary U (�)( j) which acts on the segment [ j, . . . , j + � − 1]
of the spin chain. Typically these unitaries will also depend
on a continuous parameter u (the spectral parameter) and on
a small number of extra parameters characterizing a family of
models. Then we construct a brickwork type update rule for
the whole spin chain using the single unitaries. We build a
Floquet-type cycle with time period τ :

V = Vτ . . .V1, (2.11)

such that each update step V j with j = 1 . . . τ is a product
of commuting local unitaries acting at the same time. We
formalize it as

Vl =
∏

k

U (�)(xk + �l ). (2.12)

Here xk are coordinates that specify the placement of the local
unitaries within a single time update, and �l is a displacement
which depends on the discrete time index l , signaling the
position within the Floquet-type cycle.
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The local unitaries within a given time step should com-
mute with each other, such that the order of the product
Eq. (2.12) does not matter. This requirement can be impor-
tant for practical purposes (implementation of the quantum
circuits in experiments), but also for theoretical reasons. In
the most general case the commutativity holds if the supports
are nonoverlapping, i.e., xk+1 � xk + �. Nevertheless, the sup-
ports can have a nonzero overlap, if the commutativity is
guaranteed by other means, for example, if the local unitaries
act diagonally on the overlapping sites.

The simplest example for the brickwork construction dis-
cussed above is the alternating circuit discussed, for example,
in Ref. [67]. In this case τ = 2, we can choose xk = 2k, and
�l = l with l = 1, 2. For a graphical representation see Fig. 8
later in Sec. IV. We can build similar structures with interac-
tion range � = 3, the most obvious choice is τ = 3, xk = 3k,
and �l = l with l = 1, 2, 3 (see Fig. 12). Such a brickwork
circuit was introduced in Ref. [84]. Later we will also present
other types of constructions.

As mentioned earlier, the local unitaries typically have a
spectral parameter u which can be tuned freely. This means
that we can build families of quantum circuits. These families
can have special points with very specific physical behavior.

For example, in the most typical case the unitaries become
equal to the identity at the special point u = 0. Furthermore,
the first order expansion in u gives a local Hamiltonian h with
interaction range �. Assuming u ∈ R this is formalized as

U (�)(u| j) = 1 + iuh j,..., j+�−1 + O(u2). (2.13)

In such a case the Floquet circle V can act as a Trotterization
of the global Hamiltonian H :

V = 1 + iucH + O(u2), (2.14)

where c is a real number that depends on the details of the
construction, such as the Floquet period τ , the coordinate
differences xk+1 − xk and the displacements �l in Eq. (2.12).

We intend to construct quantum circuits with precisely
such a behavior, so that H is one of our medium-range
integrable Hamiltonians. Furthermore, we require that the
quantum circuit itself should have certain integrability prop-
erties. These depend on the particular construction, and will
be discussed in detail in IV; the local unitaries will be derived
from the so-called Lax operators of the medium-range model.

In some models the local unitaries become deterministic
for a special value u of the rapidity parameter. This means that
U (�)( j) simply just permutes the states in the computational
basis (possibly with some phases added), without creating any
linear combinations. The states of the computational basis can
be considered classical, because every spin has a fixed value;
if the local unitaries are deterministic then classical states are
mapped to classical states during time evolution. This means
that the quantum circuit can be considered a classical cellular
automaton at this special point u. An integrable example for
such model was presented recently in Ref. [84]. An other
important class for such models are the interaction-round-a-
face models treated in Ref. [79], which lead to the elementary
cellular automata on light-cone lattices. In the next subsection
we discuss these models in detail.

FIG. 2. The light cone lattice for the elementary cellular au-
tomata. We assign coordinates (t, x) to the sites, where t is
interpreted as a time variable. The x coordinates are increased by
steps of 2, and they take even (odd) values if the t coordinate is odd
(even), respectively. The update of the cellular automata proceeds in
the time direction upwards, and each spin is given a new value using
the state of 3 of its neighbors (to the directions Southwest, South, and
Southeast). For example, the spin at position (3,2) is given a value
using the spins at (2,1), (1,2), and (2,3).

G. Elementary cellular automata on light cone lattices

These are classical two-state models where the variables
are defined on a light cone lattice; see Fig. 2. The vertical
dimension is interpreted as the direction of time. Each cell
is updated depending on the state of its three neighbors (to
the Southwest, South, and Southeast), and the update rules
are homogeneous both in space and time. Accordingly, there
are 223 = 256 such models, and they have been studied and
classified in the seminal works [72,98]. The nomenclature for
these models follows the original proposal of Wolfram [99]
(see also Ref. [72]). Recently these cellular automata attracted
considerable attention due to the integrability properties of
some of its members: the Rule54, Rule150, and Rule201
models (see the review in Ref. [73] and also Refs. [100,101]).

As the update rules depend on three bits, it is tempting to
look for a connection with our three-site interacting Hamilto-
nians and quantum gate models. Therefore, we provide here
a formulation of the models which fits into the framework
given above. Afterward, we provide a simple classification of
the physically interesting models. Finally, we summarize our
main results, with the technical computation presented later in
Sec. IV.

First we transform the light cone lattice into a regular
rectangular lattice. The idea is to add new sites to the light
cone lattice to the centers of the faces; see Fig. 3. Then on
this rectangular lattice we formulate a Floquet-type update
rule with period τ = 2, such that at each step the odd or even
sites are updated, respectively. In this formulation the local
update is performed by a three-site U (3) which is actually
deterministic in the computational basis. Furthermore, it has
a structure which was discussed already for the IRF-type
Hamiltonians above: The quantum gate acts diagonally on the
first and last bits, whereas it has an action bit in the middle. In
this particular case we have

U (3)( j) =
∑

a,b=0,1

Pa
j f ab

j+1Pb
j+2, (2.15)

where Pa
j is a projector to basis state a acting on site j, and

f ab
j+1 is a collection of four matrices acting on site j + 1. Then
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FIG. 3. Two different representations for the cellular automata
on the light cone lattices. On the top we complement the original
arrangement into a rectangular lattice, by adding new sites to the
centers of the faces of the original lattice. The spins at the newly
added sites are taken to be identical with those immediately below
them, for example, the state of the new site at (2,2) is copied from
the spin at (1,2). In this way we can formulate an update rule using
three-site unitaries on a rectangular lattice. For example, the spin at
(3,2) is given a value using the three spins (2,1), (2,2), and (2,3)
from the previous row. The gray triangles show the direction of
the update steps. – On the bottom we show a representation using
quantum gates. Now the spin variables live on the vertices and three-
site unitaries update them. The unitary gates are placed so that the
neighboring pairs overlap at a control bit, which are shown by the
darker shaded circles.

the full update rule is specified by

V = V2V1, (2.16)

with

Vl =
L/2∏
k=1

U (3)(2k + l ), l = 1, 2. (2.17)

The neighboring three-site unitaries overlap at one site,
but they commute because they act diagonally on the
boundary sites. Thus, Eq. (2.17) is well defined with-
out specifying the order of the action the quantum
gates.

Let us now discuss the classification of these models. We
wish to have deterministic time evolution (without phases),
and we also require time reversibility, which follows from
the requirement of unitary. Therefore, the only possibilities
are

f ab = 1 or f ab = σ x. (2.18)

The choices Eq. (2.18) leave us with 24 = 16 models. If
we also require space reflection invariance, then we end up
with 23 = 8 models. Those two models where all f ab matrices
are identical are completely trivial, which leaves us with 6
models. Of these six models we can choose the following four,

which are not related to each other by overall spin reflection
[79]:

Rule54: f 00 = 1, f 01 = f 10 = f 11 = σ x, (2.19)

Rule105: f 00 = f 11 = σ x, f 01 = f 10 = 1, (2.20)

Rule150: f 00 = f 11 = 1, f 01 = f 10 = σ x, (2.21)

Rule201: f 00 = σ x, f 01 = f 10 = f 11 = 1. (2.22)

An additional two new models can be obtained by a com-
plete spin reflection of the Rule54 and Rule201 models.

The Rule105 and Rule150 models are not completely in-
dependent either, because their f -matrices are obtained from
each other by a multiplication with σ x. This means that

V (150)
k = XkV (105)

k = V (105)
k Xk, k = 1, 2, (2.23)

where we defined

Xk =
L/2∏
j=1

σ x
2 j+k, k = 1, 2. (2.24)

We can also observe the commutation relations[
V (105)

1 , X2
] = [

V (105)
2 , X1

] = 0, (2.25)

and similarly for the operators of the Rule150 model. Alto-
gether this implies that the combined Floquet steps are related
as

V (150) = XV (105), (2.26)

where X is the global spin reflection operator given by

X = X2X1 =
L∏

j=1

σ x
j . (2.27)

From these relations we can also derive

(V (150))2 = (V (105))2. (2.28)

Thus, the physical behavior of the two models could be con-
sidered the same, up to a staggered global spin reflection.

An important property of these models is that the two
different possibilities for the Floquet time step are actually
inverses of each other:

V1V2 = (V2V1)−1, (2.29)

which follows simply from

(V1)2 = (V2)2 = 1. (2.30)

As a result the two Floquet operators actually commute with
each other:

[V1V2,V2V1] = [V1V2,U−1V1V2U ] = 0. (2.31)

The four models listed above have been studied in a num-
ber of works recently (see the review in Ref. [73] for the
Rule54 model and also Refs. [100,101] for the Rule150 and
Rule201 models); nevertheless, the algebraic background for
their observed integrability properties was not understood for
a long time. Recently a new framework was introduced in
Ref. [79] which claimed to solve this problem. We also treat
these cellular automata; our main results are as follows.
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We find that the Rule105 and Rule150 models can be em-
bedded into our framework of three-site interacting models.
We find a rapidity dependent family of commuting transfer
matrices which includes the time evolution operator of the
model as a particular case. This family of transfer matrices
is regular, and we derive a set of local conserved charges
that commute with the discrete time evolution operator of the
cellular automata. Even though we use a different formalism,
we show explicitly that our construction is identical to that
one of Ref. [79] for these special class of models.

However, for the Rule54 and Rule201 we find that they are
not in the family of three-site interacting integrable models. In
the case of the Rule54 model we also show that the transfer
matrices of Ref. [79] are algebraically dependent on three
known conserved charges of the model, therefore those trans-
fer matrices do not yield new information; this is presented in
Sec. V E.

III. INTEGRABILITY STRUCTURES

In this section we present the integrability structures behind
the spin chains under consideration. We start with a brief
treatment of the nearest-neighbor chains, and afterwards we
turn to our new results.

A. Nearest-neighbor interacting spin chains

We construct a transfer matrix which serves as a gener-
ating function for the conserved charges of the model under
consideration. For an introduction into the methods we refer
the reader to Refs. [9,102].

First we construct the monodromy matrix as follows. We
take an auxiliary space Cd ′

. The Lax operator La, j (u) acts
on the tensor product of the auxiliary space (denoted by the
index a) and a physical space with site index j. The variable u
is called spectral parameter. In those cases when the transfer
matrix generates the Hamiltonian and the other charges we
have d ′ = d .

The monodromy matrix for a finite volume L is defined as

Ma(u) = La,L(u) . . .La,2(u)La,1(u), (3.1)

and the transfer matrix is

t (u) = Tra Ma(u). (3.2)

The transfer matrices form a commuting set of operators if the
Lax operators satisfy the following exchange relations, where
a and b denote two auxiliary spaces:

Rb,a(ν, μ)Lb, j (ν)La, j (μ) = La, j (μ)Lb, j (ν)Rb,a(ν, μ). (3.3)

Here R(u, v) is the so-called R-matrix which satisfies the
Yang-Baxter relations

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3)

= R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2). (3.4)

Figure 4 shows the graphical presentation of the R-matrix. In
the models of physical relevance the R-matrix also satisfies
the so-called regularity property

Rab(u, u) ∼ Pab, (3.5)

FIG. 4. Graphical illustration of the operators Ř1,2 and R1,2; we
suppressed the dependence on the rapidity parameters. On the left
we show the usual notation which comes from the vertex models. On
the right we depict the same operators as quantum gates. The two
matrices differ in a permutation, and in this notation Ř1,2 acts such
that the two vector spaces are kept in place.

where Pab is the permutation operator acting on the tensor
product space.

If the regularity condition holds, then the following inver-
sion can be established:

R12(λ,μ)R21(μ, λ) ∼ 1, (3.6)

where

R21(μ, λ) = PR12(μ, λ)P . (3.7)

For the sake of completeness we present the derivation of
Eq. (3.6) using the Yang-Baxter equations and Eq. (3.5) in
Appendix C.

One can use the R-matrix itself as a Lax operator:

La, j (μ) = Ra, j (μ, ξ0), (3.8)

where ξ0 is a fixed parameter of the model. In such a case the
YB relation is equivalent to the RLL relation and the transfer
matrix reads as

t (u) = TraRa,L(u, ξ0) . . . Ra,2(u, ξ0)Ra,1(u, ξ0). (3.9)

There is an alternative way to define a transfer matrix, where
the ordering of the sites is the opposite, and the role of the
auxiliary and physical spaces is exchanged:

t̄ (u) = TraR1,a(ξ0, u)R2,a(ξ0, u) . . . RL,a(ξ0, u). (3.10)

It can be proven using the Yang-Baxter relation that

[t (u), t̄ (v)] = 0. (3.11)

In some of our constructions below it will be more convenient
to use Eq. (3.10) instead of Eq. (3.9). In Figs. 5 and 6 we can
see the graphical presentations of these two transfer matrices.

The regularity condition ensures that at the special point ξ0

we have the initial conditions

t (ξ0) = U , t̄ (ξ0) = U−1, (3.12)

where U is the cyclic shift operator on the chain.
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FIG. 5. Graphical illustration of transfer matrix Eq. (3.9). Here a
denotes the auxiliary space. The first representation is the usual from
the literature, which shows the transfer matrix as a concatenation
of Lax operators. The second picture shows the same object using
a succession of quantum gates. The two representations are not
very different, but generalizations of the second one will be more
convenient in the more complicated cases that will follow.

A commuting set of local charges is then constructed as

Qα ∼ (∂u)α−1 log(t (u))
∣∣
u=ξ0

. (3.13)

In many models the R-matrix is of difference form, which
means

R(u, v) = R(u − v). (3.14)

In such a case the parameter ξ0 is irrelevant, and it is conven-
tional to set it to ξ0 = 0. However, we will consider the generic
case where the R-matrix is not necessarily of difference form.

Let us investigate the first few charges in detail. Performing
the first derivative of Eq. (3.13) we get the nearest-neighbor
Hamiltonian

H = Q2 =
∑

h j, j+1, (3.15)

with

h j, j+1 = ∂uĽ j, j+1(u)
∣∣
u=ξ0

, (3.16)

where

Ľ j, j+1(u) = P j, j+1Rj, j+1(u, ξ0). (3.17)

FIG. 6. Graphical illustration of transfer matrix Eq. (3.10).

For this operation it is crucial that the regularity condition is
satisfied.

For the third charge we get the general expression

Q3 =
∑

j

[h j, j+1, h j+1, j+2] + Ľ′′
j, j+1(ξ0) − h2

j, j+1. (3.18)

We can see that in addition to the commutator we have two-
site operators, and altogether this expression takes the form of
Eq. (2.7) announced earlier.

Assuming that the R-matrix has difference form and setting
ξ0 = 0 then the following inversion relation holds:

Ľ(u)Ľ(−u) = 1. (3.19)

This implies that the last two terms in Eq. (3.18) cancel, which
can be seen after taking the second derivatives of Eq. (3.19)
with respect to u and substituting u = 0. In this case we end
up with

Q3 =
∑

j

[h j, j+1, h j+1, j+2]. (3.20)

We can see that Eq. (3.20) follows from Eq. (3.6) if the R-
matrix is of difference form. However, in other cases it does
not hold generally. Perhaps the most famous example where
it does not hold is the Hubbard model and its inhomogeneous
versions [103].

The form of Eq. (3.18) yields the original version of the
Reshetikhin condition used, for example, in Ref. [33].

B. Three-site interactions

Let us now consider a three-site interacting model, defined
by the Hamiltonian

H =
∑

j

h j, j+1, j+2. (3.21)

Below we conjecture a generic form of the Lax operator for
such models. We motivate our conjecture by some simple
ideas. We do not assume the existence of a proper translation-
ally invariant Lax operator from the start, instead we develop
arguments that motivate its existence and its properties.

The key idea is to build a nearest-neighbor chain out of
our model by grouping together (or gluing) every two spins
into blocks. Therefore, we consider our spin chain in an even
volume L = 2k. We pair the spins, and label the pairs using
the original coordinates, for example, ( j, j + 1). Then we
obtain a new model with k sites and local dimension d2. The
Hamiltonian for the new model can be written as

H̃ =
L/2∑
j=1

h̃ j, j+1, (3.22)

where we can choose, for example,

h̃ j, j+1 = h2 j,2 j+1,2 j+2 + h2 j+1,2 j+2,2 j+3. (3.23)

Similarly we can construct commuting higher charges for the
glued model by using the charges of the original one, and
thus we obtain a nearest-neighbor integrable chain with local
dimension d2. In our arguments below we will switch back
and forth between viewing the spin chains and the charges in
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the original and the glued representations. This will gives us
crucial clues about the integrability structures.

First we look at the glued chain. It has a set of commuting
local charges, thus we can assume that it is Yang-Baxter inte-
grable in the usual way. Thus, there should exist an auxiliary
space A and an R-matrix which generates the charges for
this glued chain. The auxiliary space should have the same
dimension as the physical spaces, which are now the tensor
product spaces ( j, j + 1). Therefore, we construct the auxil-
iary space VA as Va ⊗ Vb where the two spaces labeled a and b
are isomorphic to the physical spaces of the original chain. In
this way we obtain a commuting set of transfer matrices

t (u) = TrARA,(L−1,L)(u, 0) . . . RA,(3,4)(u, 0)RA,(1,2)(u, 0),
(3.24)

which generate the Hamiltonian and the charges of the glued
chain. Here we used the same letter for the R-matrix as before;
the distinction between the different R-matrices is made by
denoting explicitly the indices of the spaces on which they
act.

Above we set the inhomogeneity parameter of the R-matrix
to ξ0 = 0, which is just a choice for the zero point of the rapid-
ity parameters. Generally, we can consider families of models
by varying ξ0, see, for example, Ref. [103], for deformations
of the Hubbard model. However, picking a particular model
we are always free to set ξ0 = 0 by a reparametrization.

Since the glued chain is a nearest-neighbor interacting
model we can assume that the R-matrix is regular, i.e.,

R(a,b),( j, j+1)(0, 0) = P(a,b),( j, j+1) = Pa, jPb, j+1. (3.25)

From this it follows that the charges derived from Eq. (3.24)
are all local on the glued chain, and thus also on the original
chain.

Let us then return to the original spin chain. The transfer
matrix constructed above can be understood as a nonlocal
operator acting on the original Hilbert space. The Taylor ex-
pansion of t (u) on the glued chain gives the glued charges,
and if we view t (u) as an operator acting on the original chain,
then we see that it generates the charges of the original model.
This is a crucial observation.

In the original spin chain all charges are translationally
invariant, but the gluing procedure explicitly breaks this
invariance. The transfer matrix Eq. (3.24) enjoys two-site
invariance by construction:

t (u) = U−2t (u)U2, (3.26)

where U is the translation operator of the original chain, thus
U2 describes a single-site translation in the glued chain. How-
ever, the charges of the original chain are one-site invariant,
and they are the Taylor coefficients of t (u) if viewed as an
operator acting on the original chain. This leads to the con-
clusion that the transfer matrix should also be translationally
invariant:

t (u) = U−1t (u)U . (3.27)

This is a very strong condition. It implies that the two differ-
ent gluing procedures (where we group sites (2 j, 2 j + 1) or
(2 j + 1, 2 j + 2), respectively) should lead to the same global

transfer matrix:

Tra,bR(a,b),(L−1,L)(u, 0) . . . R(a,b),(1,2)(u, 0)

= Tra,bR(a,b),(L,1)(u, 0) . . . R(a,b),(2,3)(u, 0). (3.28)

This relation motivates the existence of a proper Lax operator
for the original chain, so that we could bypass the gluing
procedure. We expect that the only way that Eq. (3.28) can
be satisfied is if the corresponding R-matrix factorizes into a
product of Lax operators. We formulate the following:

Conjecture 4. If the condition Eq. (3.28) holds in every
even volume L, then the R-matrix of the glued chain factorizes
as

R(a,b),( j, j+1)(u, 0) = La,b, j+1(u)La,b, j (u), (3.29)

where La,b, j (u) is a proper Lax operator for the original chain
which satisfies the following RLL relation:

RAB(u, v)LA, j (u)LB, j (v) = LB, j (v)LA, j (u)RAB(u, v),
(3.30)

where A and B stand for pairs of auxiliary spaces, and j labels
a physical space.

We did not find a proof for this Conjecture, but it is
easy to see that the assumption Eq. (3.29) naturally satisfies
Eq. (3.28).

It is a simple consequence of Conjecture 4. that if the glued
R-matrix is regular then the Lax operator satisfies the three-
site regularity condition

Lab, j (0) = Pa, jPb, j . (3.31)

This follows simply from the observation

R(1,2),(3,4)(0, 0) = P2,4P1,3 = P2,4P1,2P1,2P1,3

= (P1,4P2,4)(P1,3P2,3) = L1,2,4(0)L1,2,3(0).
(3.32)

Strictly speaking, Eq. (3.32) does not imply Eq. (3.31), but
we conjecture that all other choices for Lab, j (0) can be trans-
formed to Pa, jPb, j after an appropriate gauge transformation
in the auxiliary spaces.

In general, the RLL equations do not have unique solutions
(up to normalization) if the R-matrix has gauge invariance

[RA,B(u, v), GA(u)GB(v)] = 0, (3.33)

where GA(u) is a spectral parameter dependent d × d matrix.
Indeed, assuming the gauge invariance the transformed Lax
operator

GA(u)LA, j (u) (3.34)

is also a solution of the RLL Eq. (3.30). For the practical
examples such symmetry of R-matrix is excluded and only
global symmetry (spectral parameter independent symmetry)
is allowed. In the following we concentrate on R-matrices with
no gauge invariance.

Although we cannot prove Conjecture 4, we can prove the
reverse statement:

Theorem 1. Taking a regular R-matrix RA,B(u) with no
gauge invariance and a Lax operator LA, j (u) which satisfy the
RLL relation Eq. (3.30) and the regularity condition Eq. (3.31)
then the R-matrix is factorized as Eq. (3.29).
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The proof is presented in Appendix D.
Let us now consider the transfer matrix of the original

three-site interacting case. We can now write it as

t (u) = Tra,bLa,b,L(u) . . .La,b,1(u). (3.35)

This representation of the transfer matrix is manifestly trans-
lationally invariant; the formula already appeared in Ref. [84].

The relation Sec. (3.31) leads to the initial condition

t (0) = U2. (3.36)

Let us now define the operator Ľa,b, j (u) through

La,b, j (u) = Pa, jPb, jĽa,b, j (u). (3.37)

The condition Eq. (3.31) leads to

Ľa,b, j (0) = 1. (3.38)

Computing the first logarithmic derivative of the transfer ma-
trix as

H = t−1(0)∂ut (u)|u=0, (3.39)

we obtain Eq. (3.21) with

h j, j+1, j+2 = ∂uĽ j, j+1, j+2(u)
∣∣
u=0. (3.40)

Here we used

t−1(0) = U−2. (3.41)

Summarizing these findings we formulate the following:
Conjecture 5. Every integrable three-site Hamiltonian

Eq. (3.21) has a three-site Lax operator in the form

L1,2,3(u) = P13P23[1 + uh123 + O(u2)], (3.42)

and there exists an R-matrix for which the RLL-relation is
satisfied

RAB(u, v)LA, j (u)LB, j (v) = LB, j (v)LA, j (u)RAB(u, v),
(3.43)

such that the R-matrix factorizes as Eq. (3.29). In the RLL
relation above A and B stand for pairs of auxiliary spaces.

The assumptions leading to this Conjecture were the inte-
grability of the glued chain, the translational invariance of all
charges and the corresponding transfer matrix when viewed as
operators acting on the original chain, and finally the assump-
tion that the regularity condition Eq. (3.32) implies Eq. (3.31)
up to an irrelevant gauge transformation.

Let us now also discuss two trivial solutions to the above
relations, which bring us back to the nearest-neighbor chains.

We can choose

La,b, j (u) = La, j (u)Lb, j (u), (3.44)

where La, j (u) is a Lax operator of a n.n. model. This choice
satisfies all the requirements listed above. If we denote by
t (3)(u) the transfer matrix constructed out of Eq. (3.44) using
Eq. (3.35) and by t (2)(u) the simple transfer matrix con-
structed from La, j (u) according to Eq. (3.2), then we obtain
the relation

t (3)(u) = [t (2)(u)]2. (3.45)

This implies that from t (3)(u) we would obtain the same
nearest-neighbor Hamiltonian as from t (2)(u), but multiplied
with factor of 2.

An alternative trivial choice is

La,b,c(u) = Pa,bLa,c(u). (3.46)

It can be seen that this leads to two decoupled spin chains that
are placed on the odd and even sublattices of the original spin
chain, such that we have nearest-neighbor interactions within
each sublattice.

These trivial examples bring us to an important conclusion:
the real source of the three-site interaction is a coupling of the
auxiliary spaces which cannot be factorized as in Eq. (3.44)
or as in Eq. (3.46).

C. Conserved charges in the three-site interacting case

Let us now consider the higher conserved charges in the
three-site interacting models, which are computed from the
higher logarithmic derivatives of the transfer matrix. The next
charge is computed from

(∂u)2 log[t (u)] = t−1(u)t ′′(u) − [t−1(u)t ′(u)]2 (3.47)

after taking the derivatives and eventually substituting u = 0.
Taking into account the definition Eq. (3.35), the initial con-
ditions Eq. (3.31), and also the inverse Eq. (3.41) we obtain a
five-site operator, which can be written as

Q5 =
∑

j

[h j, j+1, j+2, h j+1, j+2, j+3 + h j+2, j+3, j+4]

− (h j, j+1, j+2)2 + Ľ′′
j, j+1, j+2(0). (3.48)

This is a generalization of Eq. (3.18) to the three-site inter-
acting case. We see that the density of Q5 depends on a term
which is completely determined by the Hamiltonian density,
but it also includes an additional three-site operator, which
was included in Eq. (2.10) that we announced earlier.

The simplest cases are those when the following inversion
relation holds:

Ľa,b, j (u)Ľa,b, j (−u) = 1. (3.49)

Taking second derivative in u and substituting u = 0 we obtain
that the last two terms in Eq. (3.48) cancel.

At present it is not clear whether all three-site interacting
models satisfy Eq. (3.49). In our classification we found that
we can always choose conventions such that Eq. (3.49) holds.
In the case of the U (1)-invariant models we actually allowed
for an additional three-site operator in the density of Q5,
performed the classification using the condition [H, Q5] = 0
and did not find additional models. However, this might be a
peculiarity of the U (1)-invariant models.

We also note a gauge freedom which does actually change
the representation of the charge Q5. Considering a Hamilto-
nian density h1,2,3 we can construct a new one by

h′
1,2,3 = h1,2,3 + g1,2 − g2,3, (3.50)

where g1,2 is an arbitrary two-site operator. Clearly, the den-
sity h′

1,2,3 leads to the same global Hamiltonian, because
the additional terms add up telescopically to zero. However,
the commutator in Eq. (3.48) will be a different operator.
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The dependence on g1,2 does not drop out, whereas the global
Q5 charge cannot change. This paradox is resolved by noting
that the three-site operator in the second line of Eq. (3.48)
also changes, because the Lax operator needs to be modified
so that its first derivative can reproduce Eq. (3.50). Altogether
this modification cancels the additional terms that appear from
the commutator in Eq. (3.48), so that Q5 does not change as
expected. In our concrete examples we always found a gauge
where Eq. (3.49) holds.

Let us now also consider the higher charges. Taking further
derivatives we see that the range of the charges increases
by two sites after every new derivative. This means that the
allowed indices α for the charges Qα are 3, 5, 7, . . . with
H = Q3. This is clearly different from the n.n. chains where
typically all integers are allowed.

In specific cases it can happen that there is a one-site or
a two-site charge commuting with the transfer matrix above;
examples will be shown below. In all such cases we found
that the smaller charges are not dynamics generating. If they
are nontrivial, then the model has to be nearest-neighbor in-
teracting.

D. Partial classification for three-site interacting spin-1/2 chains

Our method is to make an Ansatz for h j, j+1, j+2 and
h̃ j, j+1, j+2, to compute Q5 through Eq. (2.10), and finally to
enforce the commutativity [H, Q5] = 0. We find that this rela-
tion indeed gives us a number of interesting new models. We
repeat this procedure for different cases with different Ansatz,
see below. Afterward, we also look for the corresponding Lax
operators and R-matrices. The idea for finding the Lax opera-
tor is rather simple: We are looking for a one-parameter family
of three-site operators, within the same Ansatz as specified
for the Hamiltonian density, and we enforce that the transfer
matrix Eq. (3.35) commutes with the Hamiltonian. Afterward,
we also check the initial condition Eq. (3.31) and the first
derivative according to Eq. (3.40). Finally, the R-matrices can
be found simply from Eq. (3.3) which becomes a linear equa-
tion for them. The Yang-Baxter relation for the R-matrices can
be checked afterwards.

It is important for the classification to exclude “trivial”
solutions which would not lead to new physical behaviour.
Such trivial cases include simply taking a nearest-neighbor
Hamiltonian density h(nn)

j, j+1 and choosing either h j, j+1, j+2 =
h(nn)

j, j+1 or h j, j+1, j+2 = h(nn)
j, j+2. The first choice simply just gives

back the original two-site model, whereas the second choice
gives two decoupled nearest-neighbor chains living on the odd
and even sublattices of the new model. We encountered both
cases among the results of the classification, but we will not
include them in the lists to be presented below.

Curiously we found that in some restricted parameter
spaces h̃ j, j+1, j+2 = 0, for example, this holds for all U (1)-
invariant models. However, at present we cannot exclude
models in other classes with a nonzero h̃ j, j+1, j+2.

We performed the classification in three specific cases.

1. SU (2) invariant models

It is relatively easy to impose SU (2) invariance on
the three-site Hamiltonian density h j, j+1, j+2: we require

that it has to be built as a sum of permutation operators
that act on the three sites j, j + 1, j + 2. We do not im-
pose space reflection invariance. With these conditions we
found no nontrivial three-site models. Trivial solutions in-
clude h j, j+1, j+2 = P j, j+1 which describes the Heisenberg spin
chain, h j, j+1, j+2 = P j, j+2 which describes two independent
Heisenberg chains on two sublattices, and hj, j+1, j+2 = q3( j)
with q3( j) being the density of the third charge in the Heisen-
berg chain.

2. U (1) invariant models with space reflection invariance

We investigated models where the Hamiltonian commutes
with the charge Q1 = Sz, which generates a global U (1)
group. We also required space reflection invariance, but al-
lowing for a gauge freedom of the type Eq. (3.50).

We found two families of models.
The Bariev model. It is given by the Hamiltonian

H =
∑

j

[σ−
j σ+

j+2 + σ+
j σ−

j+2]
1 − Uσ z

j+1

2
, (3.51)

where U is a coupling constant. The model was first pro-
posed in Ref. [44] as a zigzag spin ladder. Special points
of the model are U = ±1 where it becomes identical to the
folded XXZ model in the bond picture [52–54]. We inves-
tigated the fundamental Lax and R-matrices of the model
given in Ref. [45] and found that they satisfy the equations
derived above, including the initial condition Eq. (3.31) and
the factorization Eq. (3.29) (for the Lax operators see also
Refs. [46,104]). To obtain the desired formulas we just applied
certain permutations on the basis vectors so that Eqs. (3.31)
and (3.29) would hold in the form given above.

The hard rod deformed XXZ model. It is given by

H =
∑

j

[σ−
j P•

j+1σ
+
j+2 + σ+

j P•
j+1σ

−
j+2

− �(P◦
j P•

j+1P•
j+2 + P•

j P•
j+1P◦

j+2)]. (3.52)

Here � is a coupling constant. Up to our best knowledge this
is a new model, but it is closely related to the so-called con-
strained XXZ model treated earlier in Refs. [35,38–41]. The
complete solution of the new model and the discussion of its
special physical properties will be discussed in an upcoming
publication. We note that at the special point � = 0 this model
also becomes equal to the folded XXZ model in the bond
picture. Thus, these two families of models intersect at the
points � = 0 and U = 1.

3. Hamiltonians of the IRF type

A further special class of models are those when the three-
site operator h j, j+1, j+2 acts diagonally on the first and the last
sites. This means that the spins at site j and j + 2 can be
considered as control bits that influence the action on the site
j + 1. The most general form for such an operator is

hj, j+1, j+2 =
∑

a,b=0,1

Pa
j hab

j+1Pb
j+2, (3.53)

where now hab stands for a collection of four Hermitian ma-
trices corresponding to the indices a, b = 0, 1.
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FIG. 7. Graphical illustration of transfer matrices t (u), t (μ), and
t (ν ). The corresponding spectral parameters of black, red and blue
lines are u, μ and ν, respectively. The line avoidings are a result of
the regularity condition Eq. (3.5).

The search for such Hamiltonians is motivated by recent
studies on quantum gates and cellular automata, which we
discussed in Sec. II G. In particular, such Hamiltonians can
be considered as continuous time version of the IRF models
treated in Ref. [79].

We treat these models separately in Sec. V C.

IV. INTEGRABLE QUANTUM CIRCUITS

In this section we present our results for the brickwork type
quantum circuits. We introduce a number of closely related
constructions, with different types of integrability properties.

Let us recall the general formulas for the brickwork circuits
as explained in Sec. II F. We are building Floquet-type cycles
with time period τ :

V = Vτ . . .V1, (4.1)

with the update steps being

Vl =
∏

k

U (�)(xk + �l ). (4.2)

Here xk are coordinates for the unitaries and �l are the dis-
placements that distinguish the different single step updates
within the Floquet cycle.

A. Integrable Trotterization for nearest-neighbor
interacting chains

Here we review the construction of Ref. [67], which can be
applied for integrable nearest-neighbor chains. The key ideas
go back to the light cone regularization of the quantum field
theories; see, for example, Refs. [68–70].

We build a brickwork quantum circuit using two-site uni-
taries (� = 2) with Floquet period τ = 2. Correspondingly,
the coordinates for the unitaries are xk = 2k and the shift is
�l = l , see Fig. 8.

FIG. 8. Graphical illustration of the period-2 Floquet cycle
[t (ν )]−1t (μ).

The starting point is the R-matrix R(u, v) which is sup-
posed to be a regular solution of the YB Eqs. (3.4). We do
not assume that the R-matrix is of difference form.

On a chain of length L = 2k we build an inhomogeneous
transfer matrix with alternating inhomogeneities μ, ν as

t (u) = Tra[Ra,L(u, ν)Ra,L−1(u, μ) . . . Ra,2(u, ν)Ra,1(u, μ)].
(4.3)

Using the regularity condition Eq. (3.5) we obtain two special
points for the transfer matrix, where it becomes a product
of distinct quantum gates multiplied by an overall translation
(see Fig. 7):

t (μ) = U ŘL−1,L(μ, ν) . . . Ř1,2(μ, ν), (4.4)

t (ν) = U ŘL,1(ν, μ) . . . Ř2,3(ν, μ). (4.5)

Let us assume that the inversion relation Eq. (3.6) holds with-
out scalar factors

Ř1,2(u, v)Ř1,2(v, u) = 1. (4.6)

Then we obtain

[t (ν)]−1 = ŘL,1(μ, ν) . . . Ř2,3(μ, ν)U−1. (4.7)

Finally, we see that the operator product

[t (ν)]−1t (μ) (4.8)

can be interpreted as a period-2 Floquet cycle of the form
Eq. (2.11) with a two-site gate

U (2)( j) = Ř j, j+1(μ, ν); (4.9)

see Fig. 8.
The requirement of unitarity puts constraints on the R-

matrix and the spectral parameters μ, ν. However, in the
typical cases there are simple choices which fulfill unitarity,
which depend on the real analyticity of the R-matrix. It fol-
lows from Eq. (4.6) that the R-matrix is unitary for a pair μ, ν

if

(Ř1,2(μ, ν))† = Ř1,2(ν, μ). (4.10)
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In the simple case of the XXZ spin chain with � = cosh(η)
we can choose the following representation of the R-matrix:

Ř(μ, ν) =

⎛
⎜⎝

1
c(μ − ν) b(μ − ν)
b(μ − ν) c(μ − ν)

1

⎞
⎟⎠, (4.11)

with

c(u) = sinh(η)

sinh(u + η)
, b(u) = sinh(u)

sinh(u + η)
. (4.12)

It can be seen that Ř(μ, ν) is unitary if either η is real (� > 1)
and μ − ν is purely imaginary, or if η is purely imaginary
(� < 1) and μ − ν is real.

B. Integrable quantum circuits for three-site
models—Construction 1

Now we construct quantum circuits for the three-site in-
teracting models. Such circuits can be built for every model
which fits into our framework laid out in Sec. III. The specific
case of the IRF type models is treated later in Sec. V A, where
we present a different type of quantum circuit adapted to the
special form of those Lax operators.

We present two different Floquet circles for the three-
site models. In the first case we generalize the results from
the previous subsection to the present case: this is a rather
straightforward construction from a technical point of view,
but it leads to brickwork circuits with “untouched” sites. An
alternative construction is presented in the next subsection.
That one leads to a tightly packed brickwork circuit, but its
integrability structure is more involved.

In the first case we use the glued chain, where we group
together pairs of sites of the original chain, see the derivations
in Sec. III B. Then the idea is to generalize the definition
Eq. (4.3) to the present case with the grouped sites. In this way
we obtain a quantum circuit with four-site unitaries, because
the R-matrix of the glued chain acts on pairs of sites. How-
ever, at special points we can make use of the factorization
Eq. (3.29) in order to obtain the three-site unitaries.

We take a chain of length L = 4k and construct an inhomo-
geneous transfer matrix for the grouped sites with alternating
inhomogeneities μ, ν:

t (u) = Trab[R(a,b)(4k−1,4k)(u, ν) . . .

× R(a,b)(3,4)(u, ν)R(a,b)(1,2)(u, μ)]. (4.13)

Here a, b stand for the two auxiliary spaces of the model. This
family of transfer matrices is commuting. Special points are
u = μ, ν with

t (μ) = U2Ř(4k−3,4k−2)(4k−1,4k)(μ, ν) . . . Ř(1,2)(3,4)(μ, ν),

t (ν) = U2Ř(4k−1,4k)(1,2)(ν, μ) . . . Ř(3,4)(5,6)(ν, μ). (4.14)

Note the appearance of U2, the translation operator by two
sites.

Similar to the nearest-neighbor case, we take now the in-
verse of t (μ), which becomes

t−1(ν) = Ř(4k−1,4k)(1,2)(μ, ν) . . . Ř(3,4)(5,6)(μ, ν)U−2. (4.15)

FIG. 9. Graphical illustration of operators Ľ123 and L123.

Finally, we define the Floquet cycle as

V = t−1(ν)t (μ)

= Ř(4k−1,4k)(1,2)(μ, ν) . . . Ř(3,4)(5,6)(μ, ν)

× Ř(4k−3,4k−2)(4k,4k−1)(μ, ν) . . . Ř(1,2)(3,4)(μ, ν). (4.16)

This can be understood as a cycle with period τ = 2 and with
the four-site gates

U (4)( j) = Ř( j, j+1)( j+2, j+3)(μ, ν). (4.17)

The coordinates of the gates are xk = 4k and the displace-
ments are �l = 2l with l = 1, 2. Similar to the nearest-
neighbor cases we need to impose restrictions on μ, ν to
obtain a gate which is unitary. This restriction depends on the
model.

A quantum circuit with three-site gates is obtained by sub-
stituting ν = 0. Then we use the factorization

Ř( j, j+1),( j+2, j+3)(μ, 0) = Ľ j+1, j+2, j+3(μ)Ľ j, j+1, j+2(μ),
(4.18)

which follows from Eq. (3.29). For a graphical interpretation
of this relation see Figs. 9 and 10. Substituting this factor-
ization into Eq. (4.16) we obtain a Floquet cycle with period
τ = 4, three-site gates

U (3)( j) = Ľ j, j+1, j+2(μ), (4.19)

coordinates xk = 4k, and displacements �l = l with l =
1, 2, 3, 4. For a graphical interpretation of this quantum circuit
see Fig. 11.

Disadvantages of this construction are that the quantum
circuit does not have left-right symmetry, and that the three-
site unitaries are not tightly packed: every fourth spin is left
untouched at every time step.

C. Integrable quantum circuits for three-site
models—Construction 2

Now we also present a quantum circuit which is tightly
packed. We take three-site gates defined by Eq. (4.19) and
construct a circuit with period τ = 3, coordinates xk = 3k,
and displacements �l = l with l = 1, 2, 3. For a graphical
interpretation see Fig. 12.

FIG. 10. Graphical illustration of Eq. (4.18).
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FIG. 11. In the top of the figure we can see the period 2 Floquet
cycle for the glued chain. We changed the R-matrices from Fig. 8
to Ř(12),(34)(μ, ν ). In the bottom we substitute ν = 0 and use the
factorization property Eq. (4.18). Thus, we get a period 4 Floquet
cycle with three-site gates so that every fourth spin is untouched at
every step.

Such a circuit was already introduced in Ref. [84],
however, the integrability was only shown for the diagonal-
to-diagonal transfer matrices, which are identical to the
ones defined by Eq. (3.35) (for a pictorial interpretation see
Fig. 13). Now we also develop the commuting row-to-row
transfer matrices for this quantum circuit.

We start with the three-site Lax operator Ľ(u) and the
associated R-matrix Řab,( j, j+1)(u, v). We construct an operator
acting on five spaces:

Ř1,2,3,4,5(θ, u) = Ľ−1
1,2,3(u)Ř2,3,4,5(θ, u)Ľ1,2,3(θ )

= Ľ3,4,5(θ )Ř1,2,3,4(θ, u)Ľ−1
3,4,5(u). (4.20)

For the transfer matrices we will also need an operator which
acts on one more space with a permutation, therefore we
define

R(1,2,3),(4,5,6)(θ, u) = P1,4P2,5P3,6Ř1,2,3,4,5(θ, u). (4.21)

This matrix satisfies the YB equation

R(1,2,3),A(θ, u)R(1,2,3),B(θ, v)RA,B(u, v)w

= RA,B(u, v)R(1,2,3),B(θ, v)R(1,2,3),A(θ, u), (4.22)

where A = (4, 5, 6) and B = (7, 8, 9) stand for additional two
triplets of auxiliary spaces. Relation Eq. (4.22) can be checked
by direct substitution of the definitions above, and making
use of the RLL relations Eq. (3.3) and YB relations Eq. (3.4)
applied to the R-matrix in question.

Then we a construct a transfer matrix for our chain af-
ter grouping together triplets of physical spaces. The precise

FIG. 12. A tightly packed quantum circuit with three-site gates.
This network has periodicity 3 in both the space and time directions.
Accordingly, we can prove the existence of commuting transfer ma-
trices built from three rows.

FIG. 13. Graphical interpretation of diagonal to diagonal transfer
matrices, which are identical to those defined in Eq. (3.35), but drawn
simply in a different arrangement, compare also with Fig. 5. This
transfer matrix can also be used to build the circuit shown in 12, this
was first worked out in Ref. [84].

formula with auxiliary space A = (a, b, c) reads

t (u) = trA[R(1,2,3),A(θ, u)R(4,5,6),A(θ, u) . . .

× R(L−5,L−4,L−3),A(θ, u)R(L−2,L−1,L),A(θ, u)]. (4.23)

Note that the relative ordering of the physical triplets is such
that we proceed backwards on the chain, as in Eq. (3.10). This
is due to certain technical details, so that in the end we can
obtain the desired quantum circuit.

These transfer matrices commute, if we regard θ as a fixed
parameter. The special point u = θ gives the translation oper-
ator by three sites:

t (θ ) = U−3. (4.24)

The other special point is obtained by setting u = 0. In this
case we get

t (θ )−1t (0) = V3V2V1, (4.25)

where the equal time update steps V j are defined by

V j =
∏

k

U (3)(3k + j), U (3)( j) = Ľ j, j+1, j+2(θ ). (4.26)

For the proof of the initial condition Eq. (4.25) we need to use
the factorization condition Eq. (3.29) which eventually leads
to

Ř1,2,3,4,5(θ, 0) = Ľ3,4,5(θ )Ľ2,3,4(θ )Ľ1,2,3(θ ), (4.27)

where we also used the initial condition Ľ1,2,3(0) = 1. A
graphical interpretation of this equation (applied for the six-
site object R1,2,3,4,5,6) is given in Fig 14. Multiplying the
operators thus obtained, together with the permutations in-
troduced in Eq. (4.21) will eventually lead to Eq. (4.25). A
graphical proof is shown on Fig. 15.

V. INTERACTION-ROUND-A-FACE TYPE MODELS

In this section we study the IRF type models. Our mo-
tivations come from recent results in the literature about
elementary cellular automata, see the discussion in Sec. II G.
It is our goal to embed these models into the algebraic frame-
work of medium-range models. We will see that the special
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FIG. 14. Graphical representation for the factorization of
R1,2,3,4,5,6(θ, 0) into the three-site gates given by L(θ ). Note that
the last vector space is also involved in the permutations, which is
necessary in order to build the desired transfer matrix.

structure of these models leads to unique constructions for the
quantum circuits, and also to the discovery of new algebraic
structures that are connected to the “face weight formulation”
of the Yang-Baxter relation.

We are looking for three-site integrable models where the
Lax operator has the special form

Ľ j, j+1, j+2(u) =
∑

a,b=0,1

Pa
j f ab

j+1(u)Pb
j+2, (5.1)

where f ab(u) is a collection of four u-dependent matrices.
Such Lax operators will be used to build quantum circuits:
they will play the role of the three-site unitaries U (3)( j). The
assumption Eq. (5.1) leads to unique algebraic constructions
and quantum circuits, which would be meaningless without
the special structure of the Lax operator.

FIG. 15. Graphical proof of Eq. (4.25). The labels (a, b, c) stand
for the triplet of auxiliary spaces which are present in the definition
Eq. (4.23). The big lightly shaded rectangles stand for the action of
the R operators. Within each big rectangle we denoted the factor-
ization into the product of L operators, as shown in Fig. 14. Then
the quantum circuit of Fig. 12 is obtained by “straightening out” the
angles of the three-site gates, noticing that they perfectly fit together
to build the tightly packed circuit. Notice that this circuit also inl-
cudes a translation by three sites, which is canceled by t−1(θ ) = U3

in Eq. (4.25).

Later in Sec. V C we perform a classification of such mod-
els, and in Sec. V D we also discuss the concrete cases that
eventually lead to the elementary cellular automata.

A. Integrability structures

In general we have R- and Lax-matrices which satisfy the
RLL relation which we now write in the form

Ř23,45(u, v)Ľ123(u)Ľ345(v)

= Ľ123(v)Ľ345(u)Ř12,34(u, v). (5.2)

It follows from Eq. (5.1) that now the Lax-operators satisfy an
extra condition

[Ľ123(u), Ľ345(v)] = 0. (5.3)

Using this requirement the RLL relation reads as

Ľ345(u)−1Ř23,45(u, v)Ľ345(v)

= Ľ123(v)Ř12,34(u, v)Ľ123(u)−1. (5.4)

We can see that the (left-hand side) l.h.s. and the (right-hand
side) r.h.s. act trivially on the spaces 1 and 5, respectively,
therefore they have to be equal to a three-site operator which
we denote as Ǧ234. Thus, we find

Ǧ234(u, v) = Ľ345(u)−1Ř23,45(u, v)Ľ345(v), (5.5)

Ǧ234(u, v) = Ľ123(v)Ř12,34(u, v)Ľ123(u)−1. (5.6)

We can express the R-matrices with G and L in two ways:

Ř12,34(u, v) = Ľ123(v)−1Ǧ234(u, v)Ľ123(u), (5.7)

Ř23,45(u, v) = Ľ345(u)Ǧ234(u, v)Ľ345(v)−1, (5.8)

or equivalently

Ř12,34(u, v) = Ľ234(u)Ǧ123(u, v)Ľ234(v)−1. (5.9)

The consistency of the two expressions for the R-matrix leads
to the equation

Ǧ234(u, v)Ľ123(u)Ľ234(v)

= Ľ123(v)Ľ234(u)Ǧ123(u, v). (5.10)

This relation is similar to Eq. (5.2), but there are important
differences: Here the supports for the Lax operators overlap at
two spaces at both the l.h.s. and the r.h.s., whereas in Eq. (5.2)
they overlap only at a single space. We call this equation the
GLL relation. Below we show that it is equivalent to the “face
weight” formulation of the RLL relation.

We can easily calculate this G-operator at special values of
spectral parameters. Using the regularity of the R-matrix and
Eq. (5.5) we get

Ǧ123(v, v) = 1. (5.11)

Using the factorization of the R-matrix and Eqs. (5.9) and
(5.7) we obtain that

Ǧ123(u, 0) = Ľ123(u), (5.12)

Ǧ123(0, v) = Ľ123(v)−1. (5.13)
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From Eq. (5.5) we can also derive the inversion property of
the G-operator

Ǧ123(u, v)Ǧ123(v, u) = 1. (5.14)

Equations (5.9), (5.7), (5.5), and (5.6) imply that the R- and
G-operators act diagonally on the first and last sites.

We also know that the R-matrix satisfies the YB equation

Ř34,56(u1, u2)Ř12,34(u1, u3)Ř34,56(u2, u3)

= Ř12,34(u2, u3)Ř34,56(u1, u3)Ř12,34(u1, u2). (5.15)

Substituting Eqs. (5.9) and (5.7) we can easily show that the
G-operator also satisfies a YB type equation

Ǧ234(u1, u2)Ǧ123(u1, u3)Ǧ234(u2, u3)

= Ǧ123(u2, u3)Ǧ234(u1, u3)Ǧ123(u1, u2). (5.16)

Below we show that this is equivalent to the “face weight”
formulation of the Yang-Baxter relation.

To see this we introduce a new notation for the Lax opera-
tor, by making use of its special form:

Ľ(u) =
∑

i, j,k,l

Mil
k j (u)Pi ⊗ El

k ⊗ Pj . (5.17)

Assuming that the G-operator has a similar form we write it
as

Ǧ(u, v) =
∑

a,b,c,d

(gbc)a
d (u, v)Pa ⊗ Ec

b ⊗ Pd . (5.18)

Then the GLL relation is expressed as∑
s

(gbs)i
r (u, v)Mil

s j (u)Ms j
rq (v)

=
∑

s

Mil
bs(v)Mbs

rq (u)(gs j )
l
q(u, v), (5.19)

which is a relation used in Ref. [79]. This connection will be
discussed further in Sec. V E.

B. Quantum circuits

Let us now focus on the quantum circuits. We intend to
build brickwork circuits which can accommodate the ele-
mentary cellular automata. It is clear that the constructions
discussed in Sec. IV are not appropriate for this purpose,
because there the local unitaries are too far away from each
other. Instead, we need to build “tightly packed” quantum
circuits where every pair of neighboring quantum gates is
overlapping at the common control bit. This will enable us
to treat some of the elementary cellular automata discussed in
Sec. II G.

Motivated by the discussion in Sec. II G we build a
Floquet-type time evolution operator as

V = V2V1, (5.20)

where the operators V1,2 are built from three-site unitaries that
we choose as

U (3)( j) = Ľ j, j+1, j+2(θ ). (5.21)

The number θ will be a fixed parameter of the quantum circuit.

FIG. 16. Lax representation of the time evaluation operator V2.

The update steps are then given by

V1 = Ľ1,2,3(θ )Ľ3,4,5(θ ) . . . ĽL−3,L−2,L−1(θ )ĽL−1,L,1(θ ),

V2 = Ľ2,3,4(θ )Ľ4,5,6(θ ) . . . ĽL−2,L−1,L(θ )ĽL,1,2(θ ). (5.22)

Notice that every pair of neighboring Lax operators over-
laps at a common site. For a graphical interpretation see see
Fig. 16.

The complete Floquet time step can be expressed alterna-
tively as

V =U2trab[L1,2,bL1,2,aL3,4,bL3,4,a . . .

× LL−3,L−2,bLL−3,L−2,aLL−1,L,bLL−1,L,a]. (5.23)

For simplicity we suppressed the dependence on θ . For a
graphical proof of the rewriting see Fig. 17.

We can now use the factorization of the R-matrix, which
we write in the form

R(12),(34)(θ, 0) = L1,2,4(θ )L1,2,3(θ ). (5.24)

Using this relation we can express the Floquet update step as

V =U2trA[R(1,2),A(θ, 0)R(3,4),A(θ, 0) . . .

× R(L−3,L−2),A(θ, 0)R(L−1,L),A(θ, 0)], (5.25)

where A = (a, b) stands for a pair of auxiliary spaces. Defin-
ing the transfer matrix

t (u) = trA[R(1,2),A(θ, u)R(3,4),A(θ, u) . . .

× R(L−3,L−2),A(θ, u)R(L−1,L),A(θ, u)] (5.26)

we obtain that

V = t (θ )−1t (0), (5.27)

where we used that

t (θ ) = U−2. (5.28)

The transfer matrices Eq. (5.26) form a commuting family:

[t (u), t (v)] = 0. (5.29)

The variable θ plays the role of an inhomogeneity parameter
for this commuting family. Note that Eq. (5.26) is a general-
ization of Eq. (3.10) and not of Eq. (3.9).

FIG. 17. Lax representation of the time evaluation operator V2V1.
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FIG. 18. Graphical illustration of the transfer matrix Eq. (5.26).
The blue, red and green boxes are the operators Ľ(θ ), Ǧ(θ, u) and
Ľ(u)−1, respectively. We use the commutativity Eq. (5.3) to separate
the action of the upper (blue) layer of gates. However, the lower layer
cannot be simplified further, because there the consecutive operators
overlap at two sites each.

We can also define the rapidity-dependent update rule

V (u) = t (θ )−1t (u). (5.30)

Clearly, these operators commute with each other, and thus
they commute also with the “physical” update step which is
obtained at u = 0.

The operators V (u) are nonlocal for generic u. However,
similar to the case of a standard transfer matrix they lead to
extensive and local charges. The initial condition V (θ ) = 1
and the definition of the transfer matrix t (u) lead to the exten-
sive four-site operator

Q′
4 = ∂uV (u)|u=θ . (5.31)

The transfer matrix is only two-site invariant, which is in-
herited by Q′

4, similar to the update rule V which is not
translationally invariant either.

Higher charges could be obtained from the derivative of
the logarithm of the transfer matrix, or with the boost operator
method [97] applied to transfer matrix Eq. (5.26).

Simplified formulas for the transfer matrix can be obtained
using the Ǧ operators introduced above. We substitute the
expression

Ř12,34(θ, u) = Ľ234(θ )Ǧ123(θ, u)Ľ234(u)−1 (5.32)

into the definition Eq. (5.26). This substitution is depicted
pictorially in the top of Fig. 18. We can see here that the
transfer matrix can be written as

t (u) = V2t̃ (u), (5.33)

where

t̃ (u) = tra,b[G1,a,b(θ, u)L2,a,b(u)−1G3,a,b(θ, u)L4,a,b(u)−1 . . .

× GL−1,a,b(θ, u)LL,a,b(u)−1]. (5.34)

For this rewriting we used again the fact that the Ľ operators
commute if they share a control bit.

The operator t̃ (u) is completely identical to the transfer
matrices defined in Ref. [79], which can be seen after proper
identifications are made. To this aim we need to use the repre-
sentations Eqs. (5.17) and (5.18) for the Ľ and Ǧ matrices.
After substitution we obtain a formula identical to the one
presented in Ref. [79]; see Eq. (5.66).

Our derivation in this subsection assumed the regularity
condition for the R-matrix, which leads to the factorization
Eq. (5.24). However, an alternative derivation is also possible,
without this assumption. We could start with the definition
Eq. (5.26) for a proper R-matrix, and we then could still derive
the alternative form Eq. (5.33). In concrete cases it could be
shown that this transfer matrix is related to cellular automata.
Such a derivation would completely bypass the requirement
of the regularity. However, in this work we are interested in
cases which yield local conserved charges. Furthermore, we
found that if the regularity condition does not hold then the
concrete models do not have more conserved charges at all,
see the example of the Rule54 model in Sec. V E. Therefore,
we do not discuss solutions without the regularity condition.

C. Partial classification

Here we perform a partial classification of three-site
models, where the Lax operators have the special structure
Eq. (5.1). The methods for the classification are essentially the
same as in Sec. III. We are looking for Lax operators satisfy-
ing the RLL relations, and we perform a classification based
on the Hamiltonian densities that are derived from the Lax
operators: we apply the generalized Reshetikhin condition to
find the integrable cases.

It is important the Hamiltonians that we find this way don’t
commute with the transfer matrices defined in the previous
subsection, because the transfer matrices involve the inho-
mogeneities as well. The Hamiltonians only commute with
homogeneous transfer matrices as defined in Eq. (3.24). How-
ever, we can also regard the Hamiltonians we find below as
new integrable models on their own right.

It follows from the Ansatz Eq. (5.1) and the derivation rule
Eq. (3.40) that the Hamiltonians in question have the structure
given by Eq. (3.53) with the action matrices being

hab = ∂u f ab(u)
∣∣
u=0. (5.35)

Therefore, we need to classify three-site Hamiltonians with
the particular structure given by Eq. (3.53), where the outer
two spins act as control bits, and the middle spin is an ac-
tion bit. For this special class of models we assume that the
inversion relation Eq. (3.19) holds, therefore we exclude the
possibility of having a nonzero h̃ j, j+1, j+2 in the construction
of Q5, see Eq. (2.10).

The Ansatz Eq. (3.53) has a total number of 16 real param-
eters, because there are four g-matrices which are Hermitian.
Subtracting the identity component and performing a U (1)
rotation the number of parameters could be narrowed down
to 14. However, we found this parameter space to be too big
for a first classification attempt. Instead, we selected an even
more restricted Ansatz given explicitly by

h123 = Aσ x
2 + Bσ z

2 + Cσ z
1σ x

2 + Dσ x
2 σ z

3

+ Eσ z
1σ z

2σ z
3 + Fσ z

1σ x
2 σ z

3 + Gσ z
1σ z

3 . (5.36)
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Apart from an overall multiplicative normalization this Ansatz
has six free parameters, which makes the classification of inte-
grable cases relatively easy. A Hermitian operator is obtained
if all parameters are real, and in this case all matrix elements
are real in the computational basis.

Within this parameter space we found three nontrivial in-
tegrable models. Now we list these models together with a
brief discussion of their main properties. Their application
as quantum gate models and classical cellular automata is
discussed later in Sec. V D; here we focus on their properties
as integrable Hamiltonians.

We argue that two of the models can be related to
nearest-neighbor chains by a bond-site transformation. This
transformation was used recently in Refs. [54,84] and it is
explained in detail in Appendix B.

1. The bond-site transformed XYZ model

In this case the Hamiltonian density is written in the com-
pact form

h123 = Jxσ
x
2 − Jyσ

z
1σ x

2 σ z
3 + Jzσ

z
1σ z

3 . (5.37)

This model can be seen as the bond-site transformed version
of the XY Z model (we suggest to call it the bXY Z model).
The Hamiltonian satisfies the requirements of the bond-site
transformation discussed in Appendix B: it is spin reflection
invariant and the first and last bits are control bits. Using
Eqs. (B2) for the transformation of the operators we see im-
mediately that in the bond picture the model becomes identical
to the XY Z model with the couplings as given above. Thus, it
describes interacting dynamics of domain walls (DW), where
the creation and annihilation of pairs of DW’s is also allowed.

A special point of the model is when Jx = Jy, which be-
comes the bond-site transformation of the XXZ model. In this
case the Hamiltonian commutes with the U (1)-charge

Q2 =
∑

j

σ z
j σ

z
j+1, (5.38)

which is interpreted as the domain wall number, which is con-
served. This model was already presented in Refs. [56,105].

An other special case is when Jy = 0. In this case the
model describes two decoupled quantum Ising chains on the
even and odd sublattices, such that the parameter Jx can be
interpreted as a magnetic field. Switching on Jy �= 0 we obtain
a Bariev-type coupling between the two sublattices, therefore
we could also call this system the Bariev-Ising model.

The Lax operator is found using the known solution for the
XY Z model and the bond-site transformation:

Ľ1,2,3(u) = 1

2

sn(η) + sn(u)σ x
2

sn(η) + sn(u)

(
1 − σ z

1σ z
3

)
+ 1

2

sn(u + η) + ksn(η)sn(u)sn(u + η)σ x
2

sn(η) + sn(u)

× (
1 + σ z

1σ z
3

)
, (5.39)

where sn(u) = sn(u; k) and

Jy

Jx
= 1 − ksn2(η)

1 + ksn2(η)

Jz

Jx
= cn(η)dn(η)

1 + ksn2(η)
. (5.40)

This Lax operator satisfies the inversion relation Eq. (3.49),

Ľ1,2,3(u)Ľ1,2,3(−u) = 1. (5.41)

In this model the G-operator can be obtained from the Lax
operator in a very natural way,

Ǧ123(u, v) = Ľ123(u − v). (5.42)

Taking k → 0 we obtain the XXZ limit of the model

Ľ1,2,3(u) = (P◦
1 P◦

3 + P•
1 P•

3 )
sin(u + η)

sin(u) + sin(η)

+ (P◦
1 P•

3 + P•
1 P◦

3 )
sin(u)σ x

2 + sin(η)

sin(u) + sin(η)
. (5.43)

We can also take the XXX limit as η → 0 and u = ηv. We
obtain the following Lax matrix

Ľ1,2,3(v) = (P◦
1 P◦

3 + P•
1 P•

3 )

+ (P◦
1 P•

3 + P•
1 P◦

3 )
vσ x

2 + 1

v + 1
. (5.44)

2. Twisted XX model with n.n.n. coupling

In this model the Hamiltonian density is

h123 = σ z
1σ x

2 + κσ x
2 σ z

3 + Gσ z
1σ z

3 . (5.45)

These are actually two different models depending on the sign
κ = ±1; the real parameter G is a coupling constant. The form
of the Hamiltonian density respects the Ansatz Eq. (5.36), but
perhaps a more familiar way of writing the global Hamiltonian
is

H =
∑

j

σ x
j σ

y
j+1 ± σ

y
j σ

x
j+1 + Gσ x

j σ
x
j+2. (5.46)

Here we performed a rotation such that the Pauli matrices
are cyclically exchanged as σ x → σ y → σ z. In the case of
a minus sign we can further express this as

H =
∑

j

2i(σ+
j σ−

j+1 − σ−
j σ+

j+1) + Gσ x
j σ

x
j+2, (5.47)

which can be interpreted as a twisted XX model with a next-
to-nearest-neighbor interaction term.

In the case of a plus sign in Eq. (5.45) we do not get such
an interpretation.

An alternative interpretation of the model is found by
performing a bond-site transformation. First we perform a
transformation σ x ↔ σ y so that the Hamiltonian density be-
comes

h123 = σ z
1σ

y
2 + κσ

y
2 σ z

3 + Gσ z
1σ z

3 . (5.48)

This operator is spin-flip invariant, therefore we can apply the
bond-site transformation discussed in Sec. B. Then we obtain
a two site interacting model with Hamiltonian density

h12 = σ
y
1 σ x

2 + κσ x
1 σ

y
2 + Gσ z

1σ z
2 . (5.49)

If κ = −1, then the original Hamiltonian commutes with
the U (1)-charge given by Eq. (5.38), and the model de-
fined by Eq. (5.49) commutes with the global Sz operator.
In fact, this case can be interpreted as the XXZ model
with a homogeneous twist, where the kinetic term is the
Dzyaloshinskii-Moriya interaction term. Thus, the model de-
scribes the interacting dynamics of the domain walls, with a
twisted kinetic term.

For the model with κ = 1 we did not find a translationally
invariant U (1)-charge, and the kinetic term describes the cre-
ation and annihilation of pairs of domain walls.
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We found the Lax operator for both models. It is given by

Ľ123(u) = G
e2u − 1

(eu − 1)2 − 4G2

×
(

2Gκ

eu − 1
+ (

σ z
1σ x

2 + κσ x
2 σ z

3

)

+ eu − 1 + 2G2

G(eu + 1)
σ z

1σ z
3

)
. (5.50)

Relation Eq. (3.49) holds with this parametrization. This op-
erator is unitary if u is purely imaginary.

The G-operator (which immediately gives the R-matrix as
well) reads as

Ǧ123(u, v) = κ
(4G2 − 1)ev − eu + euev + 1

2G(eu − ev )

+ (
σ z

1σ x
2 + κσ x

2 σ z
3

)
+ G

(4G2 − 3)ev + eu + euev + 1

(2G2 − 1)(eu + ev ) + euev + 1
σ z

1σ z
3 .

(5.51)

Substituting the special point G = 1 we get

Ľ123(u) = eu − 1

eu − 3

×
(

2κ

eu − 1
+ (

σ z
1σ x

2 + κσ x
2 σ z

3

) + σ z
1σ z

3

)
. (5.52)

A special point is u = iπ , at which the unitary operator
becomes deterministic; this will lead to an elementary cellular
automata, see Sec. V D below.

3. Integrable deformation of the PXP model

This model has no free parameters, just a sign κ = ±1:

h123 = σ x
2 + κ

(
σ z

1σ x
2 + σ x

2 σ z
3

) +
√

2σ z
1σ z

2σ z
3 − σ z

1σ x
2 σ z

3 .

(5.53)

In the case of κ = 1 the Hamiltonian density can be expressed
as

h123 = −4P•
1 σ x

2 P•
3 + 2σ x

2 +
√

2σ z
1σ z

2σ z
3 , (5.54)

while for κ = −1 we would obtain a similar model with P•
replaced by P◦. These models can be seen as an integrable
deformation of the PXP model [106]. However, if we remain
in the parameter space of our Ansatz, then there is no free
parameter, so we cannot tune the “operator distance” from the
PXP Hamiltonian.

It is likely that the models Eq. (5.53) are just particu-
lar cases of a continuous family of models which stretches
outside our Ansatz. We leave the exploration of the bigger
parameter space to future works.

For this model we find the Lax operator

Ľ123(u) = 1 + uh123

1 + √
6u

. (5.55)

Simple computation shows that

(h123)2 = 6. (5.56)

This implies that Eq. (3.49) is satisfied. In this case a unitary
gate is obtained for u being purely imaginary.

For this specific model we did not find a bond-site trans-
formation, which would make it locally equivalent to a n.n.
chain.

D. Elementary cellular automata

The construction of Sec. V A can be applied for every
IRF type three-site model treated in Sec. V C: in this way
we obtain families of quantum cellular automata with varying
numbers of free parameters. All of these models are Yang-
Baxter integrable. Now we are looking for specific cases that
can accommodate the elementary cellular automata discussed
in Sec. II G.

First we consider the bXY Z model Eq. (5.37) at the special
point Jx = Jy = Jz, in which case the Lax operator is given by
Eq. (5.44). Taking the v → ∞ limit we obtain the three-site
unitary

U (3)(1) = (P•
1 P◦

3 + P◦
1 P•

3 )σ x
2 + P•

1 P•
3 + P◦

1 P◦
3 . (5.57)

We recognize that this is the update rule for the classical
Rule150 model given by Eq. (2.21). Thus, we obtained a
Yang-Baxter integrable three parameter family of quantum
cellular automata (with the parameters being Jy/Jx, Jz/Jx and
v, or alternatively k, η, and v), which includes the Rule150
model at special points. At this special point the first nontrivial
local conserved charge is

Q′
4 =

∑
j

σ x
2 jσ

x
2 j+1 + σ z

2 j−1σ
y
2 jσ

y
2 j+1σ

z
2 j+2

+ σ z
2 j−1σ

z
2 jσ

z
2 j+1σ

z
2 j+2. (5.58)

Let us now perform the bond-site transformation of Ap-
pendix B directly on the quantum cellular automata. In the
bond picture we obtain two-site gates that are given directly
by the R-matrices of the XXX , XXZ and XY Z models. In
the XXZ case the two-site gate is given by Eq. (4.11), unitary
time evolution is obtained if η ∈ R and v ∈ iR or vice versa.
The classical Rule150 model is obtained after taking the spe-
cial limits η → 0 and v → ∞, in which case the R-matrix
Eq. (4.11) becomes a permutation operator (swap gate). This
implies that the Rule150 model describes free movement of
domain walls. The XXZ version can be seen as an interacting
deformation where the total number of DW’s is conserved.
Finally, the XY Z case is the most general model in this family,
where domain walls can be created or annihilated in pairs.

Let us also consider the Model of Sec. V C 2 with the sign
κ = 1 and the coupling constant G = 1, for which the Lax
operator and thus the three-site unitary is given by Eq. (5.52).
Further substituting u = iπ we obtain

U (3)(1) = 1
2

( − 1 + σ z
1σ x

2 + σ x
2 σ z

3 + σ z
1σ z

3

)
, (5.59)

This is also a deterministic quantum gate, which gives the f
matrices

f 00 = − f 11 = σ x, f 01 = f 10 = −1. (5.60)

We can see that apart from simple signs these f -matrices are
equal to those of the Rule105 model given by Eq. (2.20). As
already argued in Ref. [84], if the quantum gates are deter-
ministic, then the phases are irrelevant for the simulation of a
classical cellular automata. Thus, the two-parameter family of
quantum gates Eq. (5.52) can be considered as a deformation
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of the actual Rule105 model, which is included at the special
point G = 1 and u = iπ .

For this model and the specific values G = 1 and u = iπ
the definition Eq. (5.31) gives the local conserved charge

Q′
4 =

∑
j

σ
y
2 jσ

y
2 j+1 + σ z

2 j−1σ
x
2 jσ

x
2 j+1σ

z
2 j+2

+ σ z
2 j−1σ

z
2 jσ

z
2 j+1σ

z
2 j+2. (5.61)

Performing the transformation σ x ↔ σ y mentioned above we
obtain the same charge as in Eq. (5.58).

The charges Eqs. (5.58) and (5.61) commute with the time
evolution of the update rules given by Eqs. (2.21) and (5.60),
respectively. The update rules are deterministic, therefore if
we choose a “classical” initial state (an element of the compu-
tational basis) then it will stay classical. This also means that
for the classical time evolution we can disregard the the σ x

and σ y operators, because their mean values in the classical
states are zero. This leads to the following classical charge for
the Rule105 and Rule150 models:

Q(cl )
4 =

∑
j

σ z
2 j−1σ

z
2 jσ

z
2 j+1σ

z
2 j+2. (5.62)

This charge is conserved by both classical cellular automata.
Taking further derivatives of the logarithm of the transfer
matrix we could obtain further quantum and classical charges
for these models. If we consider the quantum models, then
the relative signs in Eq. (5.60) have to be taken into account.
So far we have not yet found a quantum model which would
describe the Rule105 model without these signs, but this could
be just a limitation of our Ansatz Eq. (5.36).

Regarding the Rule54 and Rule201 models we did not find
any three-site Hamiltonian, which would lead to Lax operators
and transfer matrices that would actually accommodate these
classical cellular automata. This is in accordance with the
findings of Ref. [79]. Regarding the Rule54 model it was
claimed in Ref. [79] that there are no translationally invariant
local charges up to interaction range � = 5. This clearly shows
that for the Rule54 model we cannot have a Lax operator
acting on three sites, because it would give a translationally
invariant charge Q′

4 with range � = 4. The alerted reader
might object that our Q′

4 derived in Eq. (5.31) is invariant
with respect to a two site shift only. However, in the case of
these cellular automata we also have the inversion relations
Eq. (2.29) which implies that the two-site invariant charge
Q′

4 commuting with V2V1 has to commute with V1V2 as well,
leading eventually to a translationally invariant version of Q′

4
commuting with both V2V1 and V1V2. Altogether we reach
the Conclusion that the Rule54 model is not Yang-Baxter
integrable with three-site interactions.

In Sec. V E below we also analyze the recent construction
of Ref. [79] for these models, and we reach the same con-
clusion: the transfer matrices built in Ref. [79] only have a
diagonal dressing using a known charge and thus do not lead
to extra conserved charges.

However, it is known that there is a local conserved charge
for the Rule54 model with interaction range � = 6: it is the
Hamiltonian derived in Ref. [77]. This suggests that perhaps
the true algebraic background for the model lies within the
family of 6-site interacting models. We return to this question
in the Discussions (Sec. VII).

E. Discussion of the results of Ref. [79] for the IRF models

Recently an algebraic framework for the integrability of the
Rule54 and related models was proposed in Ref. [79]. Here we
review this construction, we point out connections with our
results, and we also disprove some of the conjectures made in
Ref. [79].

Let us start with a brief discussion of integrable 2D sta-
tistical physical models. There are three different sorts of
commonly used models: spin models, vertex models, and
interaction round a face (IRF) models. Accordingly, there are
three different types of Yang-Baxter equations, one for each
family. The different formulations can always be transformed
into each other, although this might not be convenient and it
can lead to an increase in the local dimensions. For a summary
of the different formulations see the introductory sections of
Refs. [107,108].

Nowadays the most commonly used formulation is the
one based on vertex models; this is also what was used
throughout the present work. It was a new idea of Ref. [79]
to construct transfer matrices for the classical cellular au-
tomata (and for certain deformations thereof) using the IRF
language.

Now we review the construction of Ref. [79], by focusing
on the Rule54 model without deformation. We will show that
the transfer matrices of Ref. [79] have an identical structure as
in our quantum circuits discussed above.

The time evolution operator of Ref. [79] is built ex-
actly in the same way as in Eqs. (2.16) and (2.17) with
the three-site gates having the structure given by Eq. (2.15).
Afterward, a commuting family of transfer matrices is built
using two matrices L j1, j2

i1,i2
(λ) and M j1, j2

i1,i2
(λ) which describe

face weights in the IRF language. Both matrices have four
indices ranging from 1 to 2, and they can be represented most
easily as 4 × 4 matrices using the conventions for the tensor
product:

L =

⎛
⎜⎜⎜⎝

L0,0
0,0 L0,1

0,0 L1,0
0,0 L1,1

0,0

L0,0
0,1 L0,1

0,1 L1,0
0,1 L1,1

0,1

L0,0
1,0 L0,1

1,0 L1,0
1,0 L1,1

1,0

L0,0
1,1 L0,1

1,1 L1,0
1,1 L1,1

1,1

⎞
⎟⎟⎟⎠. (5.63)

The number λ is interpreted again as a spectral parameter. The
explicit form of the L and M matrices is given by

L(λ) =

⎛
⎜⎜⎝

1 1
1 1

λ2 λ

λ 1

⎞
⎟⎟⎠, (5.64)

M(λ) =

⎛
⎜⎝

1 1
1/λ 1/λ

1 1/λ

1 1/λ

⎞
⎟⎠. (5.65)

The transfer matrices I (λ) are defined component-wise as

I j1, j2,...,L
i1,i2,...,iL

(λ) =
L/2∏
x=1

M j2x−1, j2x
i2x−1,i2x

(λ)L j2x, j2x+1
i2x,i2x+1

(λ). (5.66)

There is no summation over repeated indices.
It is then proven in Ref. [79] that the transfer matrices

commute with each other and also with the time evolution
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operator:

[I (λ),V] = 0. (5.67)

This is shown using the “face weight” formulation of the
Yang-Baxter relation discussed above.

This construction of Ref. [79] is completely identical with
our quantum circuits of Sec. V A after proper identifications
are made. It was already shown in Sec. V A that our GLL and
GGG relations are identical to the “face weight” formulation
of the Yang-Baxter relation given by Eq. (5.19). Furthermore,
we recognize the structural similarity between the transfer
matrices Eqs. (5.34) and (5.66). This leads to the following
correspondences:

Ľ123(θ ) ≡ f , (5.68)

Ľ123(u) ≡ M, (5.69)

Ǧ234(θ, u) ≡ L, (5.70)

Ǧ123(u1, u2) ≡ g, (5.71)

where on the l.h.s. we listed our operators, and the r.h.s.
contains the objects defined in Ref. [79]. For the identification
of the indices see Eqs. (5.17) and (5.18).

Let us now show that in the particular case of the Rule54
model the transfer matrix Eq. (5.66) does not yield new con-
served charges.

First of all we consider two known conserved operators in
this model: the translation operator U and the particle current
defined as

J =
L/2∑
x=1

(
σ z

2x−1σ
z
2x − σ z

2xσ
z
2x+1

)
. (5.72)

This operator anticommutes with both the shift and the single
step update operators:

{J ,U} = {J ,V1} = {J ,V2} = 0. (5.73)

It follows that it commutes with the Floquet-cycle operator
V = V2V1:

[J ,V] = 0. (5.74)

The translation operator intertwines the two update steps:

V1U = UV2. (5.75)

Strictly speaking U is not conserved by the Floquet cycle V ,
because it interchanges the odd and even sites. However, U2

is conserved.
It was conjectured in Ref. [79] that new quasilocal charges

can be obtained from the transfer matrix Eq. (5.66). On the
contrary, we show here that I (λ) is functionally dependent on
the time evolution operator and the two conserved operators
U and J .

First we note that the matrix L j1, j2
i1,i2

(λ) is diagonal in the
indices j2 ↔ i1, and it can be factorized as

L j1, j2
i1,i2

(λ) = δi1, j2λ
A

j1
i1

+B
j2
i2 , (5.76)

where

Aj1
i1

= δ j1,0δi1,1, B j2
i2

= δ j2,1δi2,0. (5.77)

The factorization above means that the λ-dependence can
be separated into index pairs to the left and to the right. It
follows that the transfer matrix Eq. (5.66) can be written as

I j1, j2,..., jL
i1,i2,...,iL

(λ) =
L/2∏
x=1

M̃ j2x−1, j2x
i2x−1,i2x

(λ)δi2x, j2x+1 , (5.78)

where

M̃ j1, j2
i1,i2

(λ) = λ
B

j1
i1 M j1, j2

i1,i2
(λ)λA

j2
i2 . (5.79)

Once again there is no summation over repeated indices.
Furthermore, the same operator can be written as I (λ) =

UĨ(λ), where now the components of Ĩ(λ) are

Ĩ j1, j2,...,L
i1,i2,...,iL

(λ) =
L/2∏
x=1

M̃ j2x−2, j2x−1
i2x−1,i2x

(λ)δi2x, j2x . (5.80)

We can see that this operator acts as the identity on the even
sites, which become control bits for the action on the odd
sites. To be more precise, the same operator can be written
as a product of commuting three-site unitaries

Ĩ(λ) =
L/2∏
x=1

U (3)(2x|λ), (5.81)

where U (3)(2x|λ) has the form of Eq. (2.15) with the λ-
dependent f -matrices given through the matrix elements

[ f ab(λ)] j
i = M̃a j

ib (λ). (5.82)

Considering the concrete components of M̃ we can write the
individual f -matrices as

f 11 = σ x, f 00 = 1 (5.83)

and

f 10 =
(

λ

1/λ

)
σ x, f 01 =

(
1/λ

λ

)
σ x. (5.84)

Comparing to Eq. (2.19) we see that these are λ-deformed
versions of the original f -matrices of the model. Thus, we
can write

Ĩ(1) = V2, (5.85)

where V1,2 are the two operators that define the update rules,
see Eqs. (2.16) and (2.17).

Collecting the factors of λ as we multiply the equal time
quantum gates we obtain

Ĩ (λ) = λJ /2 V2, (5.86)

where J is the particle current operator defined in Eq. (5.72).
Going back to the actual transfer matrix we get

I (λ) = U λJ /2 V2. (5.87)

This formula means that the transfer matrix I (λ) is function-
ally dependent on three known operators: the cyclic shift, the
conserved particle current, and the single step update rule.
From this formula it follows that I (λ) is unitary if |λ| = 1;
this was an unexplained observation of Ref. [79]. Finally, for
the product of two transfer matrices we obtain

I (λ2)I (λ1) = U2(λ1λ2)−JV . (5.88)

Here we used the anticommutation relations Eq. (5.73) and
the definition of the Floquet cycle V . This proves the com-
mutativity of the transfer matrices. Furthermore, choosing
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λ1 = λ2 we find that the squared transfer matrix is simply
just a combination of the two-site translation, the conserved
particle current, and the Floquet update rule.

We interpret this result as follows: Even though the Rule54
model seems integrable, the construction of Ref. [79] cannot
be considered as a proof of it, because Ref. [79] fails to
introduce new charges on top of the existing ones. The same
conclusion can be reached for the deformed Rule54 model,
where the M-matrices are modified but the L-matrices are kept
the same [79], so that the key steps of our computation here
can be applied in the same way.

VI. FOUR-SITE INTERACTIONS

It is relatively straightforward to generalize the results of
the previous sections to models with four-site interactions. In
Sec. III B the key ideas were obtained after we constructed
a nearest-neighbor chain by gluing pair of sites together. In
the case of four-site interactions we need to group together
triplets of spins, thus obtaining a nearest-neighbor chain for
the glued sites. This n.n. chain is integrable, therefore we
expect that it has a regular R-matrix. We have glued together
three sites, therefore the auxiliary space for this R-matrix has
to be a tensor product of three auxiliary spaces a, b, c. We
can then construct transfer matrices in an analogous way as in
Eq. (3.24) but now with R(a,b,c),( j, j+1, j+2)(u, 0) which acts on
the triplets of physical sites and auxiliary spaces.

Going further, we need to satisfy the condition that the
charges of the original chain are translationally invariant, and
as an effect we expect that the transfer matrix will also be
translationally invariant. This condition leads to the factoriza-
tion of the R-matrix as

R(a,b,c),( j, j+1, j+2)(u, 0)

= La,b,c, j+2(u)La,b,c, j+1(u)La,b,c, j (u). (6.1)

Here La,b,c, j (u) is the Lax operator acting on three auxiliary
spaces and a single physical space.

The transfer matrix is then constructed as

t (u) = Tra,b,cLa,b,c,L (u) . . .La,b,c,1(u). (6.2)

The regularity condition for the R-matrix implies the initial
condition

La,b,c, j (0) = Pa, jPb, jPc, j, (6.3)

which leads to

t (0) = U3. (6.4)

Writing the Lax operator as

La,b,c, j (u) = Pa, jPb, jPc, jĽa,b,c, j (u), (6.5)

we compute the four-site Hamiltonian density as

h1,2,3,4 = ∂uĽ1,2,3,4(u)
∣∣
u=0. (6.6)

For the Lax operator we expect the inversion relation

Ľa,b,c, j (u)Ľa,b,c, j (−u) = 1. (6.7)

From this we can compute the next conserved charge from the
transfer matrix. It will be a seven-site operator

Q7 =
∑

j

q7( j), (6.8)

with

q7(1) =
[

h1,2,3,4,

3∑
k=1

h1+k,2+k,3+k,4+k

]
. (6.9)

The commutativity of H and Q7 can be used as an integrability
criterion, which can serve as a starting point for classifying
four-site interacting models.

As an initial step in this direction we classified all SU (2)
invariant models with space reflection symmetry. Sorting out
the trivial cases we found only one new model, with the
Hamiltonian density being

h1,2,3,4 = 2(P1,4 − 1)(P2,3 − 1) − P1,3 − P2,4. (6.10)

Given the huge literature of integrable models we cannot be
entirely certain that the model has not yet appeared in the
literature, possibly in some other form. In any case it appears
to be new.

Going further in the classification, an obvious next step is
to consider the U (1)-invariant models. This opens up a bigger
parameter space, and we leave its exploration to future works.
We note that the folded XXZ model treated in Refs. [52–54]
belongs to this class, and its Hamiltonian is the four-site
charge Q4 of Eq. (2.8). In the next subsection we derive an
integrable quantum circuit for this particular model.

Finally, we stress that (in parallel with the three-site in-
teracting case) we were not able to prove the factorization
Eq. (6.1), therefore we regard it as a conjecture. Furthermore,
it is not clear whether all integrable solutions can be put in a
form which satisfies the inversion relation Eq. (6.7). We leave
these problems to future research.

A. Integrable quantum circuit for the folded XXZ model

A brickwork type quantum circuit for the folded XXZ
model was introduced in Ref. [84]. The idea is to build a Flo-
quet cycle of length τ = 3, with four-site unitaries U (4) placed
at coordinates xk = 3k and with the displacements �l = l (see
Sec. II F for the explanation notations). The four-site unitaries
are given by the Lax operator, which reads [84]

U (4)( j|u) = Ľ1,2,3,4(u) = P•
j P◦

j+3 + P◦
j P•

j+3

+ (P•
j P•

j+3 + P◦
j P◦

j+3)U (2)
j+1, j+2(u), (6.11)

where U (2)
j+1, j+2(u) is a two-site unitary given by the explicit

matrix representation

U (2)(u) =

⎛
⎜⎝

1 0 0 0
0 sech(u) i tanh(u) 0
0 i tanh(u) sech(u) 0
0 0 0 1

⎞
⎟⎠. (6.12)

This matrix is obtained simply from the known R-matrix of
the XX model. Note that Eq. (6.11) has the same structure as
the corresponding charge Q4: it has two control bits and two
action bits. As an effect, the unitaries commute even if they
overlap at the control bits. This enables us to build a Floquet
cycle which has periodicity 3 both in the temporal and the
spatial directions. With this we have completely specified the
quantum circuit. For a graphical interpretation see the upper
graph in Fig. 19.

In Ref. [84] the integrability of this circuit was established
in the bond picture (after performing the bond-site transforma-
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FIG. 19. Time step operator and its transfer matrix representa-
tion. This construction applies to models with four-site interactions
where the outer two spins are control bits. These control bits are
depicted as shaded circles in the figure above. An example is the
folded XXZ model.

tion discussed in Appendix B), where the building blocks are
three-site unitaries. In Ref. [84] diagonal-to-diagonal transfer
matrices were constructed, in the same way as in Sec. IV B.

Now we show that there exists a commuting family of row-
to-row transfer matrices in the original picture of this model.
This complements the results of Ref. [84].

First we start with the discussion of the integrability prop-
erties of the special class of four-site models, where the Lax
operators satisfies an additional condition

[Ľ1234(u), Ľ4567(v)] = 0, (6.13)

i.e., the first and the last sites are control bits. The consequence
of this property is that there exists an five-site operator Ǧ for
which the R-matrix factorizes as

Ř123456(u, v) =Ľ1234(v)−1Ǧ23456(u, v)Ľ1234(u)

=Ľ3456(u)Ǧ12345(u, v)Ľ3456(v)−1. (6.14)

The consistency of these factorizations requires the GLL rela-
tion

Ǧ23456(u, v)Ľ1234(u)Ľ3456(v)

= Ľ1234(v)Ľ3456(u)Ǧ12345(u, v). (6.15)

Let us now construct the single step update rule as

V1 = Ľ1,2,3,4(θ )Ľ4,5,6,7(θ ) . . . ĽL−2,L−1,L,1(θ ), (6.16)

where θ will be a fixed parameter of the quantum circuit. For
the Floquet cycle we obtain

V =V3V2V1 = U3

× ×trabc[L1,2,3,c(θ )L1,2,3,b(θ )L1,2,3,a(θ )

× L4,5,6,c(θ )L4,5,6,b(θ )L4,5,6,a(θ ) . . .

× LL−2,L−1,L,c(θ )LL−2,L−1,L,b(θ )LL−2,L−1,L,a(θ )].
(6.17)

Applying the factorization formula

Ř123456(θ, 0) = Ľ3456(θ )Ľ2345(θ )Ľ1234(θ ), (6.18)

we can define a transfer matrix [with auxiliary space A =

FIG. 20. Transfer matrix with the operator Ǧ.

(a, b, c)]

t (u) = trA[R(1,2,3),A(θ, u)R(4,5,6),A(θ, u) . . .

× R(L−5,L−4,L−3),A(θ, u)R(L−2,L−1,L),A(θ, u)], (6.19)

which generates the time step as

V = t−1(θ )t (0). (6.20)

These transfer matrices commute:

[t (u), t (v)] = 0. (6.21)

With this we have established a commuting family of transfer
matrices that includes the update rule of the quantum circuit
at the special point u = 0.

The transfer matrix can be rewritten using the factorization
Eq. (6.14). We find

t (u) = V3t̃ (u), (6.22)

where

t̃ (u)= tra,b,c[G1,2,a,b,c(θ, u)L3,a,b,c(−u)G4,5,a,b,c(θ, u)

× L6,a,b(−u) . . .

× GL−2,L−1,a,b,c(θ, u)LL,a,b,c(−u)], (6.23)

where

G1,2,3,4,5(θ, u) = P1,5P2,5P3,5P1,4P2,4P3,4Ǧ1,2,3,4,5(θ, u).
(6.24)

For a graphical interpretation of the transfer matrix and its
factorization see Fig. 20.

VII. DISCUSSION

In this paper we treated integrable spin chains with
medium-range interaction, focusing on cases with three-site
and four-site interactions. We presented a new algebraic
framework which can lead to a classification of such models,
and to the construction of new quantum and classical cellu-
lar automata. As it was explained in the Introduction, two
of the most general problems in the field of integrability is
the classification of all integrable models and clarifying the
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essential features of integrability. Our results can be seen as
a contribution to this multi decade endeavor. In the paper we
treated the three- and four-site interacting models in detail,
but the generalization to longer interaction ranges is rather
straightforward.

We presented partial classifications for the three- and four-
site spin-1/2 models, and we found a number of new models.
Given the enormous literature of integrable models it is always
difficult to know whether a model is indeed new; we did our
best in the search of the literature and our models appear to be
new. We recall that our models are translationally invariant,
and in the three-site interacting case they can be pictured as
zigzag spin ladders. To our best knowledge the only transla-
tionally invariant integrable three-site chain the literature is
the Bariev model [44]; other constructions naturally involve
a staggering of some of the parameters (see, for example,
Refs. [109–112]) and thus they are not in the category of
models that we are investigating.

In the family of SU (2)-invariant spin chains with reflection
symmetry we did not find a nontrivial three-site model, and we
found only one new four-site model given by Eq. (6.10). In the
family of U (1)-invariant three-site chains (again with space
reflection symmetry) we found two families: the Bariev model
and the hard rod deformed XXZ model given by Eq. (3.52).
The latter will be analyzed in detail in an upcoming publica-
tion.

A further interesting family of models is that of the IRF
type Hamiltonians and quantum gates. These theories are very
similar to known restricted solid on solid (RSOS) models
[80,81], their Hamiltonians have the same structure; see, for
example, Ref. [83]. However, in the case of the RSOS theories
the Hilbert space is restricted (it consists of certain paths),
while in our case it is simply the tensor product space of the
spin chains.

For these models we also used the same formulation of our
algebraic methods, as opposed to the “face weight” formula-
tion of the Yang-Baxter relations typically used in the RSOS
(or IRF) framework. However, in Sec. V A we showed that the
two formulations are indeed identical in these special cases.
This also implies that our models are solutions to the “face
weight” formulation of the Yang-Baxter relation. We believe
that the connection between the RSOS models and our new
Hamiltonians deserves further study.

The family of the IRF type Hamiltonians accommodates
some of the elementary cellular automata that have been stud-
ied recently [73,79]. We found that out of the classical cellular
automata treated in Ref. [79] the Rule150 and Rule105 models
are Yang-Baxter integrable, and they can be deformed into
quantum cellular automata. We also gave a recipe for com-
puting extensive local charges for these quantum and classical
cellular automata, and we derived the concrete formulas for
the first charge of the Rule150 and Rule105 models. Putting
everything together, our construction can be seen as a remark-
able link between classical and quantum integrable models.

In contrast, we did not find such three-site structures for the
famous Rule54 model. We pointed out that the construction
of Ref. [79] does not yield new conserved charges on top of
the known ones, and the transfer matrices derived there are
functionally dependent on the known charges. Thus, the prob-
lem of the integrability of the Rule54 model is still open. A

very important piece of the puzzle was presented in Ref. [77],
where a six site interacting Hamiltonian was constructed,
which commutes with the Floquet update rule of the Rule54
model. This suggest that the model could lie in the family of
six site interacting models. Preliminary computations show
that this is indeed the case: we found a new local extensive
charge with interaction range � = 10 using the proper gener-
alization of our methods. We will present this result in a future
work.

It would be interesting to continue the partial classification
of medium-range models, extending our results to more com-
plicated or four-site interacting cases or to higher-dimensional
local spaces. In both cases a much larger parameter space
opens up, and a clear physical motivation is needed to for-
mulate the restrictions for the Hamiltonians. Symmetries can
be chosen as guiding principles, together with special as-
sumptions on the structure of the Hamiltonian. A known
four-site interacting model is the folded XXZ model treated
in Refs. [52–54]. This Hamiltonian has a particular structure:
it has two control bits and two action bits, and its algebraic
treatment leads to a Yang-Baxter integrable classical cellular
automaton (see Ref. [84] and Sec. VI A). It would be inter-
esting to classify models with a similar structure, potentially
leading to new cellular automata with four-site update rules.

An other interesting question is whether our constructions
exhaust all possibilities for integrable quantum circuits. The
IRF type circuits show very clearly that if the Lax operators
have a special structure, then this allows the construction of
special brickwork circuits, which would be meaningless for
other types of Lax operators. Therefore, it cannot be excluded,
that some other sorts of special circuits can be built if we
impose some other special structure on the building blocks.

In this regard let us return to the so-called box-ball systems
mentioned in the Introduction [85,86]. These are classical
cellular automata with a less local update procedure, which is
performed by acting with a certain transfer matrix which does
not factorize into commuting local unitary operators. Theses
systems are special cases of so-called filter automata [87–90].
The crucial ingredient of such a construction is a Lax operator
which becomes deterministic at some special points, but the
regularity condition (that would lead to strictly local update
rules) is not required. Our solutions for the integrable Lax
operators could also be used to construct such filter automata.

In this paper we discussed the physical properties of our
models only in passing. We explained that the bond-site
transformed XY Z model of Sec. V C describes interacting dy-
namics of domain walls, with or without domain wall number
conservation. And we will publish a paper dealing specifically
with the hard rod deformed XXZ model found in Sec. III D.
We believe that the other new spin chain and quantum gate
models also deserve further attention.

Finally, let us mention that our methods could be relevant
for also the AdS/CFT conjecture. It is known that in the
planar limit the dilatation operator of the gauge theory is
essentially an integrable Hamiltonian with long-range inter-
action [113,114]. The spectrum of this Hamiltonian is now
understood using the so-called quantum spectral curve method
[115–117], but there is no clear understanding of the actual
Hamiltonian on the operator level. It is known that it is a long-
range deformation of an integrable nearest-neighbor chain, but
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it is not clear how to perform the long-range deformation in a
finite volume [118]. Our methods could give a recipe for this
problem: perhaps there is a truncation scheme where we could
gradually increase the interaction range of the chains while
still using our present methods at each step. This appears to
be a promising direction for future work.
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APPENDIX A: COUNTEREXAMPLE TO THE ORIGINAL
CONJECTURE OF REF. [33]

Here we discuss a counterexample to the original con-
jecture of Ref. [33] regarding the integrability of nearest-
neighbor spin chains. In Ref. [33] it was claimed that a
sufficient condition of integrability is the existence of a three-
site charge which commutes with the Hamiltonian. However,
it was not stressed in Ref. [33] that the Hamiltonian has to be
dynamical.

For example, consider the family of models defined by the
two charges

Q2 =
∑

j

σ z
j σ

z
j+1,

Q3 =
∑

j

(
1 − σ z

j σ
z
j+2

)(
σ x

j+1 + κσ z
j+1

)
. (A1)

Here κ ∈ R is a coupling constant. Direct computation shows
that [Q3, Q2] = 0 for every κ . The model is integrable for κ =
0, it is a special point of the bond-site transformed XY Z model
considered in Sec. V C. However, a nonzero κ introduces a
term which our classification found to be nonintegrable. To
confirm that the model is indeed nonintegrable, we investi-
gated the level spacing distribution for κ = 1 and confirmed
the Wigner-Dyson statistics characteristic for chaotic models.
This computation was performed by Dávid Szász-Schagrin
and we are thankful to him.

This example shows that if the nearest-neighbor charge Q2

is not dynamical, then the existence of a commuting charge
Q3 is not enough to ensure integrability of the model.

APPENDIX B: BOND-SITE TRANSFORMATION

A number of models that we encountered in this work
together with the folded XXZ model treated in Refs. [52–54]
allow for an alternative description after performing a bond-
site transformation. This is a nonlocal transformation, and in
the models of interest it leads to Hamiltonians with shorter in-
teraction range. The bond-site transformation is a special case
of the more general Clifford transformations treated recently
in Ref. [56]; here we just treat this simple case.

The first observation is that in some models the dynamics
generating Hamiltonian (be it a three-site or four-site opera-
tor) commutes with the nondynamical charge

Q2 =
∑

j

1 − σ z
j σ

z
j+1

2
. (B1)

Here we chose the conventions such that Q2 has zero eigen-
value on ferromagnetic states in the computational basis. Then
the nonzero contributions to Q2 originate from nearest neigh-
bors where the two spins are different. Such a situation can
be interpreted as a domain wall (DW), and then Q2 is seen as
the total DW number which is conserved. It is then natural to
expect that the Hamiltonian can be interpreted as an operator
that generates dynamics for the DW’s.

This is seen explicitly by performing a bond-site transfor-
mation, either in finite volume with open boundary conditions
or directly in infinite volume. The idea is to put spin-1/2
variables on the bonds between lattice sites, and to perform
a change of basis starting from the original computational
basis. For each bond we write down a ◦ (up spin) if the two
neighboring spins are identical, and a • (down spin) if they are
different. This is a highly nonlocal transformation, which can
be inverted (up to simple complications at the boundaries).
Then we also obtain a new Hamiltonian in the new basis.

Such a transformation can be performed for any spin chain
with interaction range �. The new Hamiltonian will be local
if the original one respects spin reflection invariance. Never-
theless, the new interaction will generally have range � + 1
in the bond picture. It is important that the bond-site trans-
formation can be performed even if Q2 is not conserved: in
this case domain walls can be created or annihilated. The
only requirement for the locality of the transformation is the
spin-flip invariance in a given basis.

The utility of the transformation shows itself if the new
model has a smaller interaction range. A range of � − 1 can
be obtained if a further special condition holds: The original
Hamiltonian density should be such that it does not change
the spins at the first and the last sites of its support. Then
only the bonds within the support of length � are modified,
which means that in the bond basis the interaction range
will be � − 1.

A concrete example for the site-bond transformation was
presented in Ref. [54] in the case of the folded XXZ model.
There the first few charges are given by Eq. (2.8). The charge
Q4 indeed preserves the first and last spins, and the domain
wall number given by Q2 is also conserved. After the bond-site
transformation the charge Q4 becomes identical to the three-
site Hamiltonian Eq. (3.52) with � = 0, which is interpreted
as the hard rod deformation of the XX model.

Further examples for the bond-site transformation are pre-
sented in Sec. (V C). In those cases the original Hamiltonian
is a three-site operator, which preserves the first and the
last spins, acting nontrivially on the middle spin. In certain
cases these models can be transformed into a nearest-neighbor
chain. In these three-site interacting cases the transforma-
tion rules for a subset of the allowed operators are found
to be

1 ⊗ σ x ⊗ 1 ↔ σ x ⊗ σ x, (B2)

−σ z ⊗ σ x ⊗ σ z ↔ σ y ⊗ σ y, (B3)

σ z ⊗ 1 ⊗ σ z ↔ σ z ⊗ σ z, (B4)

σ z ⊗ σ y ⊗ 1 ↔ σ y ⊗ σ x, (B5)

1 ⊗ σ y ⊗ σ z ↔ σ x ⊗ σ y. (B6)
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On the l.h.s. above we listed the three-site interacting opera-
tors allowed by the requirements, which are transformed into
the two site operators on the r.h.s.

APPENDIX C: INVERSION RELATION FOR
THE R-MATRICES

Here we show that the regularity property Eq. (3.5) of the
R-matrix and its inversion relation Eq. (3.6) are not indepen-
dent properties.

Substituting λ1 = λ3 to the Y B Eq. (3.4) we get

R12(λ1, λ2)R13(λ1, λ1)R23(λ2, λ1)

= R23(λ2, λ1)R13(λ1, λ1)R12(λ1, λ2). (C1)

Using the regularity property Eq. (3.5) we obtain that

R12(λ1, λ2)R21(λ2, λ1)

= R23(λ2, λ1)R32(λ1, λ2). (C2)

We can see that the left- and the right-hand sides act trivially
on 3 and 1 spaces, respectively. Therefore, they have to be
equal to an operator X2 acting only on the second space.
Writing out the rapidity dependence we get

R12(λ1, λ2)R21(λ2, λ1) = X2(λ1, λ2), (C3)

R23(λ2, λ1)R32(λ1, λ2) = X2(λ1, λ2). (C4)

The second equation can be rewritten as

R12(λ2, λ1)R21(λ1, λ2) = X1(λ1, λ2). (C5)

Substituting back to Eq. (C3) we obtain that

X1(λ2, λ1) = X2(λ1, λ2). (C6)

Since the l.h.s. and the r.h.s. act on different spaces the opera-
tor X should be proportional to the identity, i.e.,

R12(λ,μ)R21(μ, λ) ∼ 1. (C7)

APPENDIX D: FACTORIZATION PROPERTY OF THE
R-MATRIX

Here we prove Theorem 1.
Substitute v = 0 to the RLL relation we get

RA,(12)(u, 0)LA,3(u)L(12),3(0)

= L(12),3(0)LA,3(u)RA,(12)(u, 0). (D1)

Now let us use the regularity of the Lax operator to obtain

RA,(12)(u, 0)LA,3(u) = LA,2(u)R̃A,(31)(u, 0). (D2)

After a simple rearrangement we get

LA,2(u)−1RA,(12)(u, 0) = RA,(31)(u, 0)LA,3(u)−1. (D3)

We can see that the l.h.s. and the r.h.s. act trivially on the
spaces 3 and 2, respectively, therefore they have to be equal
to an operator that acts only on space 1:

LA,2(u)−1RA,(12)(u, 0) = XA,1(u), (D4)

RA,(31)(u, 0)LA,3(u)−1 = XA,1(u). (D5)

The second equation can be written as

RA,(12)(u, 0) = XA,2LA,1(u). (D6)

Substituting back to Eq. (D4) we obtain that

XA,2(u)LA,1(u) = LA,2(u)XA,1(u), (D7)

therefore

LA,2(u)−1XA,2(u) = XA,1(u)LA,1(u)−1. (D8)

Since the l.h.s. and the r.h.s. act trivially on spaces 1 and 2 they
have to be equal to an operator acting only on the auxiliary
space A:

LA,2(u)−1XA,2(u) = YA(u), (D9)

XA,1(u)LA,1(u)−1 = YA(u). (D10)

From the first equation we obtain

XA,1(u) = LA,1(u)YA(u). (D11)

Substituting back to Eq. (D10) we obtain that

[LA,1(u),YA(u)] = 0. (D12)

Substituting back to Eq. (D6) the R-matrix reads as

RA,(12)(u, 0) = LA,2(u)LA,1(u)YA(u). (D13)

We are almost ready. The only remaining thing is to prove that
the operator YA(u) has to proportional to the identity.

We also know that the R-matrix is regular, i.e.,

RA,(12)(0, 0) = PA,(12), (D14)

therefore

YA(0) ∼ 1. (D15)

Let us substitute λ1 = u, λ2 = v, and λ3 = 0 to the YB equa-
tion.

RA,B(u, v)RA,(12)(u, 0)RB,(12)(v, 0)

= RB,(12)(v, 0)RA,(12)(u, 0)RA,B(u, v). (D16)

Using Eq. (D13) we obtain that

RA,B(u, v)LA,2(u)LB,2(v)LA,1(u)LB,1(v)YA(u)YB(v)

= LB,2(v)LA,2(u)LB,1(v)LA,1(u)YA(u)YB(v)RA,B(u, v).
(D17)

Using the RLL relation on the l.h.s. we obtain that

RA,B(u, v)LA,2(u)LB,2(v)LA,1(u)LB,1(v)YA(u)YB(v)

= LB,2(v)LA,2(u)LB,1(v)LA,1(u)RA,B(u, v)YA(u)YB(v).
(D18)

Substituting back to Eq. (D17) we obtain that

[RA,B(u, v),YA(u)YB(v)] = 0. (D19)

The operator YA(u) can only be nontrivial if the R-matrix
has gauge symmetry (spectral parameter dependent symme-
try).We assumed that such symmetry is excluded, therefore

YA(u) = YA. (D20)

Using Eq. (D15) we can see that the operator YA has to pro-
portional to the identity.
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