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Thermal rectification in the one-dimensional nonlinearly graded rotor lattice robust in the
thermodynamical limit
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Recently, it has been shown that in graded systems, thermal rectification (TR) effect may remain in the
thermodynamical limit. Here, by taking the one-dimensional rotor lattice as an illustrating model, we investigate
how the graded structure may affect the TR efficiency. In particular, we consider the case where the interaction
is assigned with nonlinear polynomial functions. It is found that TR is robust in the thermodynamical limit and
meanwhile its efficiency may considerably depend on the details of the graded structure. This finding suggests
that it is possible to enhance the TR effect by taking into account the nonlinear graded structure even in large
systems.
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I. INTRODUCTION

Thermal rectification (TR) is an interesting heat transport
phenomenon [1,2]. In a system where TR takes place—such
a system is termed as a thermal rectifier or a thermal diode—
the heat current flows preferably along a particular direction
than along the others. As such, TR can be utilized to control
and manage thermal flows, hopefully leading to the promising
novel and exciting applications [3].

The study of TR is also of fundamental theoretical interest
in revealing the basic transport properties. In this respect,
since the pioneer work by Terraneo et al. [2] attempting to
relate TR with the underlying microscopic dynamics, signifi-
cant progress has been made. So far, two necessary conditions
for TR have been identified [4]: One is the asymmetry in the
system’s structure and another is the (sensitive) dependence of
the local heat transport on the local structure and temperature.
Based on this understanding, most of the ensuing research
has devoted to identifying the various mechanisms that can
magnify the structure asymmetry, e.g., by introducing the long
range interactions [5], or the dependence sensitivity of the
local heat transport on the local structure and temperature,
e.g., by taking advantage of the phase transition [6]. The study
along this line has turned out very successful and fruitful.

In spite of the progress achieved, however, there is an
unsolved theoretical mystery. That is, for a lattice system,
why, as the system size increases, does the TR effect usually
decay and vanish eventually in the thermodynamical limit [7]?
Intuitively, provided other conditions unchanged, when the
system size is increased, the change rate of any relevant quan-
tity along the system would decrease correspondingly, so that
the effect of the structural asymmetry as well as the sensitive
dependence of the local heat transport could be weakened.
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Given this, in order to retrieve TR in large systems, its two pre-
conditions must be robust against the increase of the system
size. From this consideration, two particular approaches have
been proposed for maintaining TR in large systems. One is
to employ the integrability, because for an integrable system,
the heat current flowing across it does not depend on the
system size [8]. An illustrating example is given in Ref. [9],
where it is shown that by introducing a harmonic (integrable)
chain as a spacer into a thermal diode, TR keeps its efficiency
in any long system as the length of the spacer can be set
at will. Another interesting example consists of hard-point
particles with graded masses, which is not exactly integrable
but tends asymptotically to the integrable limit as the system
size increases, where TR is found to hold its efficiency as well
[10]. The second approach is to take good advantage of the
sensitive temperature dependence of the heat conduction. The
one-dimensional rotor lattice [11,12] serves as an enlightening
example, where the sensitive temperature dependence could
even be progressively enhanced in the thermodynamical limit
[13–16]. As a result, it is possible to design a graded rotor
lattice whose TR efficiency could even keep increasing instead
as the system size [17].

Note that this intriguing TR effect exhibited in the graded
rotor lattice is due to the strong nonlinear effect of a transition
[13–16]. Even for a linearly graded lattice whose gradient
decreases with the increasing system size, the strong nonlinear
effect may manifest itself remarkably (e.g., as seen in the
temperature profile [17]). It is therefore interesting to inves-
tigate how robust and sensitive is the underlying mechanism
by which the nonlinear effect plays its role to result in TR. To
probe it, we may turn to the executable question that is con-
cerned with If the linearly graded structure is perturbed, how
the TR effect may respond. In previous studies, the linearly
graded structure has been taken into account intensively and
prevailingly, which might be out of the implicit assumption
that the effect caused by the perturbation is negligible or
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FIG. 1. The schematic plot of the interaction graded rotor lattice
coupled with two heat baths. For visualization purposes, a rotor is
represented by a mass point fixed on a rigid, massless disk rotating
around the horizontal axis, and the interaction between two neighbor-
ing rotors is assumed to be stronger (weaker) if the associated disks
are darker (lighter).

trivial. Our motivation here is to study this issue by consid-
ering the perturbed graded rotor lattice, and as shown in the
following, it is found that this assumption does not apply.

II. MODEL AND METHOD

Our model system consists of N rotors positioned on a
one-dimensional lattice (see Fig. 1 for a schematic plot). We
take the dimensionless units throughout, in which the lattice
constant is unit and thus N also measures the length (size) of
the system. The Hamiltonian for a symmetric, homogeneous
rotor lattice is [11,12]

H =
∑

i

[
1

2
θ̇2

i + V (θi+1 − θi )

]
, (1)

where θi is the angular variable of the ith rotor with respect
to a given reference axis and θ̇i the corresponding conjugate
variable. The potential conventionally assumed is

V (x) = A[1 − cos(ωx)], (2)

where, in order to keep the maximum force between any two
neighboring rotors a constant (set to unity) independent of the
two parameters A and ω, they are set to satisfy ω = 1/A, so
that A is adopted as the only independent parameter [17].

In this homogeneous rotor lattice, a striking property is
that there exists a transition temperature, T tr , governed by
the interaction strength, A, below and above which the heat
conduction is of ballistic and diffusive type, respectively,
characterized accordingly by a divergent and convergent heat
conductivity [13–16]. Specifically, it has been established that
T tr = A/5 approximately [17]. As such we should be able to
build a thermal diode by introducing the graded interaction
strength to ensure that, when the heat current flows in the
direction the interaction strength decreases, the local temper-
ature keeps below the local transition temperature throughout,
so that the current is strong. But when the current flows in
the opposite direction, the local temperature is above the local
transition temperature at the high temperature end, so that this
part of the lattice plays an impeding role to resist the current.
This idea has been verified to be valid [17]. Specifically, for
an interaction-strength graded rotor lattice, its Hamiltonian
is still given by Eq. (1), but with the potential term V being
replace by the local interaction potential

Vi(θi+1 − θi ) = Ai(1 − cos[ωi(θi+1 − θi )]), (3)

where ωi is fixed to be ωi = 1/Ai and Ai specifies the local in-
teraction strength. The local transition temperature thus reads
as T tr

i = Ai/5.
Without loss of generality, suppose that Ai changes from

A0 = AL to AN = AR with AL and AR being two parameters
satisfying AL > AR. Moreover, we refer to the direction from
left to right, i.e., from the first to the last rotor, the forward
direction. For our aim here, we restrict ourselves to investigate
the graded lattices whose local interaction strength is specified
by the following cubic polynomial function:

g(x) = a0 + a1x + a2x2 + a3x3, (4)

i.e., we set the rescaled position of the ith rotor as xi = i/N ,
and then the corresponding interaction strength is given as
Ai = g(xi ). The four coefficients a0, . . . , a3 are set by the
“boundary” conditions that, at the two ends, g(0) = AL and
g(1) = AR, and additionally, g′(0) = kL and g′(1) = kR, with
the tangent kL and kR at the two ends respectively being two
additional parameters for us to control the local interaction
strength in between. The special case of the linearly graded
lattice studied previously [17] corresponds to a2 = a3 = 0, or,
equivalently, kL = kR = AR − AL, and any other case can be
seen as a perturbation to this special one. With the freedom
to assign kL and kR, in the following we will scrutinize how
the TR efficiency would change as kL and kR for a given
pair of values of AL and AR with which the linearly graded
lattice functions as a thermal diode. Surely, by considering
polynomial functions of high order or other forms of functions
would allow us to study more complicated and comprehensive
perturbations; this will be discussed later.

Next, to measure the TR efficiency, we perform the molec-
ular dynamics simulations. To this end, the system is coupled
to two extra rotor lattice segments of NL and NR rotors (sizes),
respectively, at its left and right sides. Besides the neighboring
interactions the same as in the system but with homoge-
neous strength of AL and AR, the motion of the rotors in
these two segments are also subject to the applied Langevin
heat baths of temperature TL and TR, so that their motion
equations are θ̈k = − ∂

∂θk
[Vk (θk+1 − θk ) + Vk−1(θk − θk−1)] −

γ θ̇k + ξk with ξk being a white Gaussian noise satisfying that
〈ξk (t )ξk (t ′)〉 = 2γ kBTL,Rδ(t − t ′). Here γ governs the cou-
pling strength between the rotor and the heat bath and kB is
the Boltzmann constant (set to unity). For the system rotors
in between these two segments, their motion equations are
θ̈i = − ∂

∂θi
[Vi(θi+1 − θi ) + Vi−1(θi − θi−1)]. With all the mo-

tion equations, the whole system is integrated numerically
with a standard algorithm. When the system has relaxed into
the stationary state, the heat current j is measured as the time
average of the local current ji, i.e., j = 〈 ji〉, where ji can
be defined as ji = −θ̇i

∂
∂θi

Vi(θi+1 − θi ) [8]. To obtain the TR
efficiency at a given working temperature T with a given bias
�T > 0, let us denote the high and low boundary tempera-
tures by T+ = T + �T/2 and T− = T − �T/2, respectively;
the forward current j f is thus measured numerically by setting
TL = T+ and TR = T− and the reverse current jr by TR = T+
and TL = T−. Then the TR efficiency can be measured as [18]

E = j f − jr
j f + jr

. (5)
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FIG. 2. The contour plots for the rescaled TR efficiency Ẽ (a), forward current j̃ f (b), and reverse current j̃r (c) in the interaction-strength
graded rotor lattice of size N = 512. The white dashed lines in (a) are for j̃ f = 1 (above) and j̃r = 1 (below), respectively. For a given pair of
values of kL and kR, the local interaction strength is assigned with a certain cubic polynomial function (see text).

Here both j f and jr represent their absolute values. In our
simulations, we have adopted the velocity-Verlet algorithm
[19] and set NL = NR = 16 and γ = 1, but it has been checked
and verified that the results do not depend on these particular
adoptions.

III. RESULTS

Now we are ready to present the simulation results. For
our aim here, in the following we will focus on the typ-
ical case where AL = 1.5, AR = 0.5, T = 0.15, and �T =
0.2. The linearly graded lattice with this set of parameter
values has been found to be an ideal thermal diode whose
TR efficiency keeps growing as the system size [17]. With
the setup detailed above, our particular interest is to re-
veal how the TR efficiency E would change when kL and
kR deviate from kL = kR = AR − AL of the linearly graded
lattice.

Our main results are summarized in Fig. 2, where the TR
efficiency, the forward and reverse current, are presented as
functions of kL and kR, respectively. For the sake of compari-
son, shown in Fig. 2 are the values rescaled by those of the
linearly graded lattice, E lin, jlin

f , and jlin
r , respectively; i.e.,

Ẽ = E/E lin, j̃ f = j f / jlin
f , and j̃r = jr/ jlin

r . Note that in all
three panels of Fig. 2, the center point (kL = kR = −1) cor-
responds to the linearly graded lattice. Above all, as Fig. 2(a)
shows, the TR efficiency has a by no means trivial dependence
on kL and kR. Over the investigated range [−2, 0] × [−2, 0]
of kL and kR, E may undergo a considerable variation up to
about 60% of E lin. In particular, an increase as high as over
30% of E lin can be reached (see for kL = −2 and kR = 0),
suggesting convincingly that the perturbation effect is worth
considering to enhance TR. On the other hand, the perturba-
tion may lower the TR efficiency as well. However, taking
into account the information of the forward and the reverse
current [see Figs. 2(b) and 2(c)], it may provide us with more
flexibility for designing the thermal diode of certain functions.
For example, if we take the values of kL and kR at the bottom-
right corner, then the resultant thermal diode would have such
a property that the forward current remains close to its max-

imum, whereas the TR efficiency is dominantly determined
by the reverse current that depends on kL and kR much more
sensitively. Of particular advantage is the area bounded by the
two white dashed lines [see Fig. 2(a)], where not only the TR
efficiency is higher than the linearly graded lattice but also the
forward current is stronger meanwhile the reverse current is
weaker, respectively, than their counterparts in the latter.

In order to understand the perturbation effect emerges in
Fig. 2, we study the temperature profiles of four representative
cases (see Fig. 3). First, even for the linearly graded rotor
lattice [see Fig. 3(a)], the temperature profile is obviously
far from a straight line when the current flows reversely, in
spite of the small, constant gradient of the local interaction
strength, which is about 0.0005 in this case. The key role for
forming such a curved temperature profile is played by the
right end segment (the shaded part) where the local tempera-
ture is higher than the local transition temperature. As such,
the heat conduction is suppressed in this segment, making
it an effective thermal insulator. As a result, the temperature
drops rapidly over this segment. On the other hand, for the left
segment, the local temperature is below the local transition
temperature, and hence it serves instead as a thermal con-
ductor, over which the temperature drop must be lower. This
explains why the temperature profile for the reverse current is
characterized, respectively, by two segments of a mild and a
rapid change. From this analysis we can see that, as mentioned
above, this strong nonlinear effect is indeed rooted in the
transition. As to the forward current, the local temperature is
below the local transition temperature throughout; therefore
the whole lattice works as a thermal conductor, leading to a
strong forward current as well as a roughly linear temperature
profile.

Importantly, as indicated by other panels of Fig. 3, the
mechanism of transition works generally even when the
linearly graded structure is perturbed, showing that this mech-
anism is quite robust. Comparing the temperature profiles
of all four cases, it can be seen that the difference between
them is slight, implying that the system has a strong adaptive
ability to stabilize the temperature profiles against the pertur-
bation. In fact, the perturbations in the three perturbed cases
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FIG. 3. The temperature profiles of the graded rotor lattice for
(a) kL = kR = −1 (the linearly graded lattice), (b) kL = kR = 0,
(c) kL = 0 and kR = −2, and (d) kL = −2 and kR = 0. In each panel,
the red (blue) line is for that when the thermal current flows for-
wardly (reversely), the black dashed line is for the local transition
temperature T tr

i = Ai/5, and the shaded area indicates the segment of
the lattice where the temperature is above the transition temperature
when the current flows reversely. The system size is N = 2048.

are not very weak, which can be told directly from the T tr
i

curve that represents the local interaction strength Ai as well
due to T tr

i = Ai/5. Indeed, for the three perturbed cases, the
deviation of Ai from the linearly graded rotor lattice is obvi-
ous. In addition, the robustness of the transition mechanism
also reflects in the fact that the TR behavior in the perturbed
cases can be explained based on the T tr

i and temperature
curves. For example, comparing Figs. 3(c) and 3(d), the tem-
perature profile for the forward current (the red curve) lies
much lower below T tr

i in the former, suggesting that the for-
ward current should be stronger in the former than in the latter,
which is in agreement with the results in Fig. 2(b). Similarly,
for the reverse current (the blue curve), as the resisting layer
(shaded) is thicker in the latter, a weaker reverse current is
therefore expected in the latter, agreeing with the result in
Fig. 2(c). Due to these robustness features of the transition
mechanism, it is interesting to note that the TR behavior of
a perturbed graded rotor lattice can be qualitatively predicted
without performing the simulations, because we can take the
temperature profiles of the linearly graded rotor lattice as
approximations and compare them with the transition temper-
ature curve T tr

i = Ai/5 for the given interaction strength Ai.
As a crucial issue for our motivation here, we need to

investigate if the robustness features addressed above would
survive the thermodynamical limit. Our simulation results
suggest a positive answer to this question. To this end, several

FIG. 4. The system size dependence of the TR efficiency of the
graded rotor lattice for several representative cases: kL = kR = −1
(black dots), the linearly graded case; kL = kR = 0 (red triangles);
kL = kR = −2 (blue squares); and kL = 0, kR = −0.486 (green open
diamonds).

representative cases are simulated with various system sizes,
and the results for the TR efficiency are presented in Fig. 4.
It can be seen that, accompanying with the curve for the
linearly graded rotor lattice, all other curves for the illustra-
tive perturbed cases keep to grow together. This property is
welcomed; it shows that the perturbation effect is robust in the
thermodynamical limit and hence may be utilized to improve
the TR efficiency for any size of the system.

So far we have focused on the polynomial perturbation
up to the cubic term for two reasons. One is that we have
supposed such a form may have captured the most significant
part of a perturbation. Another is that as such we have two free
parameters (kL and kR), and the two-dimensional parameter
space spanned by them has been big enough to explore in view
of our computing resources, which have been fully engaged
in carrying out a detailed investigation as in Fig. 2. But what
effect a complicated perturbation may have is not clear yet,
and it seems to be hard to predict in view of the strong non-
linear effect we have witnessed. Just as a preliminary attempt,
we show in Fig. 5 how the TR efficiency may respond if the
fourth-order term, a4x4, is added to the function g(x) given in
Eq. (4), where, for a given value of a4, other four parameters
a0, . . . , a3 are determined in the same way. Undoubtedly, as
shown in Fig. 5, the effect it induces could be significant,
justifying that more complicated perturbations deserve further
study.

Finally, as a comparison, in the following we conduct a
parallel study of the mass graded Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice [20,21]. Its Hamiltonian is

H =
∑

i

[
p2

i

2mi
+ V (xi+1 − xi − 1)

]
, (6)

where xi and pi are the conjugate variable pair of the ith par-
ticle, mi its mass, and V (x) = x2/2 + x4/4. The mass graded
FPUT model was first come up with in Ref. [22], where the
TR was illustrated for the first time in the graded structure.
Specifically, it is reported in Ref. [22] that when the masses of
the N particles of the system are assigned to change linearly
from m1 = mL = 10 to mN = mR = 1, a relatively stronger
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FIG. 5. The TR efficiency for the graded rotor lattice whose local
interaction strength is assigned with the fourth-order polynomial
function where a4 is the coefficient of the highest term. The symbols
on the dashed line indicates the TR efficiency for a4 = 0, corre-
sponding to results when the cubic polynomial function is adopted.
The system size is N = 512; kL = kR = −1 (black dots), the lin-
early graded case; kL = kR = 0 (red triangles); kL = kR = −2 (blue
squares); and kL = 0, kR = −0.486 (green open diamonds).

TR effect would be observed at the working temperature
T = 0.1 with the system size N = 200.

As our simulation results suggest (see in the following),
with the increasing size, the TR effect would decay till dis-
appear. This is in clear contrast with the interaction-strength
graded rotor lattice. Our motivation here is to see what the
perturbation to the linearly graded structure may lead to in
this category of TR systems. Similarly, in this case we set the
graded masses of particles according to the cubic polynomial
function of Eq. (4) as well; i.e., mi = g(x̄i ), where x̄i = i/N
is the rescaled average position of the ith particle. The four
prefactors in g(x) are set following the conditions that g(0) =
mL = 10, g(1) = mR = 1, g′(0) = kL, and g′(1) = kR. As such
the case of linearly graded masses corresponds to kL = kR =
−9, and we take it as the reference again. The working tem-
perature and temperature bias are set to be T = �T = 0.1.

The simulation method and the related parameter values are
the same as adopted in the simulations of the rotor lattice.

First, a counterpart of Fig. 2 but here for the mass graded
FPUT lattice is presented as Fig. 6 for N = 200 that ensures
roughly the strongest TR efficiency. In Fig. 6(a), it can be rec-
ognized that, though more moderate than in the graded rotor
lattice, the perturbation can still result in a significant change
in the TR efficiency, from about 20% below to 10% above E lin

(corresponding to the center point), over the square range of
kL and kR investigated. Therefore, even for this category of
TR systems, there is still space for improving the TR effect
by adapting the nonlinearly graded structure. On the other
hand, such a study as in Fig. 6 may also help for revealing
more features of the studied object. Taking the current case
as an example, it shows [see Fig. 6(a)] that generally the
TR efficiency has a more sensitive dependence on kL rather
than kR, suggesting that the detailed mass distribution over the
heavy end of the system could matter more.

Next, let us probe how the TR efficiency may vary versus
the system size. The results for three representative cases
are illustrated in Fig. 7. It is interesting to note that, as in
the linearly mass graded case, in the perturbed cases the TR
efficiency hits its maximum more or less around the size
of N = 200 as well. Moreover, the variant range or E due
to the perturbation is also the widest at the same size. De-
creasing or increasing the system size, neither the TR nor
the perturbation effect on TR would be sustained, indicat-
ing that neither is robust against the change of the system
size.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have investigated how the graded structure
may influence TR with two paradigmatic lattice models as
representatives of two distinct categories. We have mainly
focused on the possible effect a perturbation to the linearly
graded structure may induce. In terms of the TR efficiency,
it has been found that the perturbation effect depends on
the TR efficiency of the linearly graded structure itself: The
larger the TR efficiency in the latter, the larger the variation

FIG. 6. The contour plots for the rescaled TR efficiency Ẽ (a), forward current j̃ f (b), and reverse current j̃r (c) for the mass graded FPUT
lattice. The system size, the working temperature, and the temperature bias are, respectively, N = 200, T = 0.1, and �T = 0.1. See text for
the masses of particles assigned for each pair of kL and kR values.
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FIG. 7. The system size dependence of the TR efficiency of the
mass graded FPUT lattices. The black squares are for the linearly
graded case with kL = kR = −9; the red triangles and blue squares
are for, respectively, the graded masses determined by kL = −18,
kR = −9, and kL = kR = 0.

to it the perturbation may bring in. Therefore, for a good
thermal diode, adaption of the graded structure may serve as
an effective tactic to optimize its TR efficiency. Besides, the
study from the perturbation perspective has also been found to
be effective to reveal other interesting properties, such as the

strong adaptive ability to maintain the temperature profiles in
the graded rotor lattice.

In the present study, only the graded structures described
by cubic polynomial functions are concerned. Though other
graded structures are worth studying, the challenge of simu-
lation has to be faced. In this respect, the machine learning
technique may provide a powerful tool. Indeed, as illustrated
in a series of recent studies, the machine learning method has
been found superior in studies of thermal conduction issue
(see Ref. [23] for a recent review and references cited therein).
Its advantage lies in that the brutal searching in the parameter
space can be avoided; instead, aiming at the prescribed TR
target, the learning machine may figure out the shortcuts to the
target. For the TR effect that sustains in the thermodynamical
limit, the structure of the known models, such as that with the
integrable spacer and the graded rotor lattice, can be used as
input for training. It would be rewarding if new mechanisms
and models unknown yet can be solved out by this strategy.
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