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Orbital diamagnetism of two-dimensional quantum systems in a dissipative environment:
Non-Markovian effect and application to graphene
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The non-Markovian dynamics of a charged particle confined in the harmonic oscillator and linearly coupled
to a neutral bosonic heat bath is investigated in the external uniform magnetic field. The analytical expressions
are derived for the time-dependent and asymptotic orbital angular momenta. The transition from non-Markovian
dynamics to Markovian dynamics and the transition from a confined charge particle to a free charge particle
are considered. The orbital diamagnetism of graphene in a dissipative environment and an external uniform
magnetic field is studied and compared with existing experimental data. The results are presented for the electric
conductivity and resonance behavior of the mass magnetization in graphene.
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I. INTRODUCTION

The electronic band structure, vibrational, mechanical, and
magnetotransport properties of graphene have been inten-
sively studied both experimentally and theoretically [1–8].
Graphene can be considered as the basis for all graphite-
like materials, including graphite, nanotube, and fullerene.
As known, there is almost no band gap in graphene, and it
has semimetallic and semiconducting properties, depending
on external factors (e.g., temperature, defects, etc.) Graphene
possesses high mechanical strength and belongs to the optical
transparent two-dimensional (2D) materials known to date
[8,9]. Several important properties of graphene allow it to be
used in many fields, for example, in nanotechnology, telecom-
munications, biotechnology, electronics, as an active medium
for amplifying light, and others. Therefore, a comprehensive
study of its electromagnetic, mechanical, and optical proper-
ties is of great interest.

In graphene [10,11], several experiments have been con-
ducted showing the dependencies of orbital diamagnetism on
temperature in the range of about from 10 to 300 K and on
magnetic fields ranged from 0 to 8 T. In these experiments
the graphene was not pure but derived from the thermal de-
composition of SiC crystals. Experimental possibilities are
limited, first, by the inaccessibility of graphene in its ideal
form; second, by the influence of external factors (substrates,
defects, and impurities) on graphene. A nonlinear dependence
of diamagnetic magnetization Mz on the external magnetic
field B at low temperatures T has been experimentally ob-
served in Ref. [10]. The magnetic susceptibility of graphene is
about two to three times stronger than that of normal materials
and graphite [10]. A grand canonical thermodynamic potential
and zero chemical potential for the undoped graphene have
been used [10] to explain the magnetization of graphene. In
Ref. [12], the orbital magnetism of graphene has been also
studied within the effective mass approximation.

The purpose of the present paper is to consider the de-
pendencies of graphene magnetization on temperature and
homogeneous magnetic field within the quantum Langevin
approach and to find the temperature dependencies of the
mobility and density of charge carriers in graphene. For
the orbital diamagnetism, the role of non-Markovian effect
in two-dimensional quantum systems (a free charge particle
and a charged particle enclosed in an oscillator potential)
is presented and analyzed. The basic idea of our model is
the following. We consider the charge carrier as a quantum
particle coupled to a neutral bosonic environment (heat bath)
through the particle-phonon interactions. For example, the
underlayer could be the heat bath for graphene. Note that the
quantum Langevin approach has been widely applied to find
the effects of fluctuations and dissipation in macroscopic sys-
tems [13–33]. The Markovian and non-Markovian dynamical
calculations of the orbital diamagnetism of quantum system
in a dissipative environment and an uniform magnetic field
have been performed within classical and quantum Langevin
approaches [21,27,32].

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the total system. Solving the second order
Heisenberg equations for the heat bath degrees of freedom, the
generalized non-Markovian Langevin equations are explicitly
obtained for a quantum particle. Using the solutions of these
equations, we derive the z component of time-dependent and
asymptotic angular moments Lz (or magnetizations Mz) for the
two–dimensional charged oscillator and free charged particle.
The model developed is used in Sec. III to study the influence
of non-Markovian and dissipative effects on the magnetization
for free charged particle and charged particle confined in the
oscillator potential. We also describe the experimental data
on the graphene magnetization and predict the temperature
dependence of mobility and density of charge carriers in
graphene. Some properties on the electrical conductivity in
graphene are predicted. A summary is given in Sec. IV. In
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FIG. 1. Schematic of the model. The 2D subsystem (on the xy
plane) is in a neutral heat bath with the temperature T0. The constant
magnetic field B is directed along the z axis.

addition, the solution of the system of Langevin equations and
the derivation of the expressions for orbital magnetism of the
free charged particle are presented in two Appendices.

II. NON-MARKOVIAN LANGEVIN EQUATIONS WITH AN
EXTERNAL UNIFORM MAGNETIC FIELD

In order to investigate the influence of external fields on the
dynamics of open quantum systems, we consider the motion
of charged particle with effective mass m and negative charge
e is considered in a 2D parabolic potential (on the xy plane)
surrounded by the neutral bosonic heat bath in the presence
of a perpendicular axisymmetric (along the z axis) magnetic
field (see Fig. 1). In the case of linear coupling in coordinates
between this particle and the heat bath, the total Hamiltonian
of the collective subsystem (the charged particle confined in
the 2D oscillator potential) plus the heat bath is as follows:

Ĥ = 1

2m
[p̂ + |e|Â(x̂, ŷ)]2 + m

2

(
ω2

x x̂2 + ω2
y ŷ2
)+

∑
ν

h̄ων b̂+
ν b̂ν

+
∑

ν

(αν x̂ + gν ŷ)(b̂+
ν + b̂ν ) +

∑
ν

1

h̄ων

(αν x̂ + gν ŷ)2,

(1)

where Â = (− 1
2 ŷB, 1

2 x̂B, 0) is the vector potential of the
constant magnetic field with the strength B = |B|, p̂ is the
canonically conjugated momentum, ωx and ωy are the fre-
quencies of the 2D oscillator potential, b̂+

ν and b̂ν are the
phonon creation and annihilation operators of the heat bath,
and αν and gν are the coupling parameters. The bosonic heat
bath is modeled by an ensemble of noninteracting harmonic
oscillators with frequencies ων . The coupling between the
heat bath and the collective subsystem is linear in coordinates.
The last term in Eq. (1) compensates the renormalizations of
the stiffness coefficients that arise because the collective and
heat-bath subsystems are coupled.

For convenience, we introduce the new definitions for mo-
menta,

π̂x = p̂x − 1
2 mωcŷ, π̂y = p̂y + 1

2 mωcx̂,

where ωc = |e|B/m is the cyclotron frequency and [π̂x, π̂y] =
−[π̂y, π̂x] = −ih̄mωc. Therefore, the total Hamiltonian (1) is
transformed into the form

Ĥ = 1

2m

(
π̂2

x + π̂2
y

)+ m

2

(
ω2

x x̂2 + ω2
y ŷ2
)+

∑
ν

h̄ων b̂+
ν b̂ν

+
∑

ν

(αν x̂ + gν ŷ)(b̂+
ν + b̂ν ) +

∑
ν

1

h̄ων

(αν x̂ + gν ŷ)2.

(2)

The system of the Heisenberg equations for the operators
x̂, ŷ, π̂x, π̂y, and the bath phonon operators b̂ν, b̂+

ν is ob-
tained by commuting them with Ĥ ,

˙̂x(t ) = i

h̄
[Ĥ, x̂] = π̂x(t )

m
,

˙̂y(t ) = i

h̄
[Ĥ, ŷ] = π̂y(t )

m
,

˙̂πx(t ) = i

h̄
[Ĥ, π̂x]

= −ωcπ̂y(t ) − mω2
x x̂(t ) − 2

∑
ν

αν

h̄ων

[b̂+
ν (t ) + b̂ν (t )],

˙̂πy(t ) = i

h̄
[Ĥ, π̂y]

= ωcπ̂x(t ) − mω2
y ŷ(t ) − 2

∑
ν

gν

h̄ων

[b̂+
ν (t ) + b̂ν (t )],

(3)

and

˙̂bν (t ) = i

h̄
[Ĥ, b̂ν] = −iων b̂ν (t ) − i

h̄
[αν x̂(t ) + gν ŷ(t )]. (4)

The solution of Eq. (4) is

b̂ν (t ) = f̂ν (t ) − αν x̂(t ) + gν ŷ(t )

h̄ων

+ αν

h̄ων

∫ t

0
dτ ˙̂x(τ )e−iων (t−τ )

+ gν

h̄ων

∫ t

0
dτ ˙̂y(τ )e−iων (t−τ ), (5)

where

f̂ν (t ) =
[

b̂ν (0) + i

h̄ων

�̂ν (0)

]
e−iων t ,

�̂ν (0) = αν x̂(0) + gν ŷ(0).

Therefore,

b̂+
ν (t ) + b̂ν (t ) = f̂ +

ν (t ) + f̂ν (t ) − 2
αν x̂(t ) + gν ŷ(t )

h̄ων

+ 2αν

h̄ων

∫ t

0
dτ ˙̂x(τ ) cos[ων (t − τ )]

+ 2gν

h̄ων

∫ t

0
dτ ˙̂y(τ ) cos[ων (t − τ )]. (6)
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Substituting (6) into (3), we eliminate the bath variables from
the equations of motion of the collective subsystem and obtain
the nonlinear integrodifferential stochastic dissipative equa-
tions,

˙̂x(t ) = π̂x(t )

m
, ˙̂y(t ) = π̂y(t )

m
,

˙̂πx(t ) = −ωcπ̂y(t ) − mω2
x x̂(t )

− 1

m

∫ t

0
dτ Kα (t − τ )π̂x(τ ) − F̂α (t ),

˙̂πy(t ) = ωcπ̂x(t ) − mω2
y ŷ(t )

− 1

m

∫ t

0
dτ Kg(t − τ )π̂y(τ ) − F̂g(t ). (7)

The presence of the integral parts in these equations indicates
the non-Markovian dynamics. The operators,

F̂α (t ) =
∑

ν

F̂ ν
α (t ) =

∑
ν

αν[ f̂ +
ν (t ) + f̂ν (t )],

F̂g(t ) =
∑

ν

F̂ ν
g (t ) =

∑
ν

gν[ f̂ +
ν (t ) + f̂ν (t )] (8)

play a role of random forces in the coordinates, and Eqs. (7)
are the generalized nonlinear quantum Langevin equations.
Following the usual procedure of statistical mechanics, we
identify these operators as fluctuations because of the un-
certainty in the initial conditions for the bath operators. To
specify the statistical properties of the fluctuations, we con-
sider an ensemble of initial states in which the fluctuations
have the Gaussian distribution with zero average value,〈〈

F̂ ν
α (t )

〉〉 = 〈〈
F̂ ν

g (t )
〉〉 = 0. (9)

Here, the symbol 〈〈· · · 〉〉 denotes the average over the bath.
We assume that there are no correlations between F̂ ν

α (t ) and
F̂ ν

g (t ) so that

∑
ν

ανgν

h̄ων

≡ 0. (10)

The dissipative kernels in Eqs. (7) are

Kα (t − τ ) = 2
∑

ν

α2
ν

h̄ων

cos[ων (t − τ )],

Kg(t − τ ) = 2
∑

ν

g2
ν

h̄ων

cos[ων (t − τ )]. (11)

Because these kernels do not contain the phonon occupation
numbers, they are independent of temperature T0 (in the en-
ergy units) of the heat bath. The temperature enters in the
analysis through the distribution of initial conditions. We use

the Bose-Einstein statistics for the heat bath,

〈〈 f̂ +
ν (t ) f̂ +

ν ′ (t ′)〉〉 = 〈〈 f̂ν (t ) f̂ν ′ (t ′)〉〉 = 0,

〈〈 f̂ +
ν (t ) f̂ν ′ (t ′)〉〉 = δν,ν ′nνeiων (t−t ′ ),

〈〈 f̂ν (t ) f̂ +
ν ′ (t ′)〉〉 = δν,ν ′ (nν + 1)e−iων (t−t ′ ), (12)

with occupation numbers for phonons nν = [exp(h̄ων/T0) −
1]−1 depending on T0. Using the properties of random forces,
we obtain the quantum fluctuation-dissipation relations,

∑
ν

ϕν
α (t, t ′)

tanh
[ h̄ων

2T0

]
h̄ων

= Kα (t − t ′),

∑
ν

ϕν
g (t, t ′)

tanh
[ h̄ων

2T0

]
h̄ων

= Kg(t − t ′),

where

ϕν
α (t, t ′) = 2α2

ν (2nν + 1) cos[ων (t − t ′)],

ϕν
g (t, t ′) = 2g2

ν (2nν + 1) cos[ων (t − t ′)]

are the symmetrized correlation functions ϕν
k (t, t ′) =

〈〈F̂ ν
k (t )F̂ ν

k (t ′) + F̂ ν
k (t ′)F̂ ν

k (t )〉〉, k = α, g. The quantum
fluctuation-dissipation relations differ from the classical ones
and are reduced to them in the limit of high temperature T0

(or h̄ → 0):
∑

ν ϕν
α (t, t ′) = 2T0Kα (t − t ′),

∑
ν ϕν

g (t, t ′) =
2T0Kg(t − t ′).

It is convenient to introduce the spectral density Dω of
the heat bath excitations which allows us to replace the sum
over different oscillators ν by the integral over frequency:∑

ν · · · → ∫∞
0 dω Dω · · · . This is accompanied by the follow-

ing replacements: αν → αω, gν → gω, ων → ω, and nν →
nω. Let us consider the following spectral functions:

Dω

α2
ω

ω
= λ2

x

π

γ 2

γ 2 + ω2
, Dω

g2
ω

ω
= λ2

y

π

γ 2

γ 2 + ω2
,

where the memory time γ −1 of dissipation is inverse to the
phonon bandwidth of the heat bath excitations and the coeffi-
cients,

λx = 1

m

∫ ∞

0
dτ Kα (t − τ ), λy = 1

m

∫ ∞

0
dτ Kg(t − τ )

are the friction coefficients in the Markovian limit [15]. This
Ohmic dissipation with the Lorenzian cutoff (Drude dissipa-
tion) results in the dissipative kernels,

Kα (t ) = mλxγ e−γ |t |, Kg(t ) = mλyγ e−γ |t |.

The relaxation time of the heat bath should be much less than
the period of the collective oscillator, i.e., γ � ωx,y.

The system of Eqs. (7) is solved by applying the Laplace
transformations. After the tedious algebra we obtain the solu-
tion of this system of equations,

x̂(t ) = A1(t )x̂(0) + A2(t )ŷ(0) + A3(t )π̂x(0) + A4(t )π̂y(0) − Îx(t ) − Î ′
x(t ),

ŷ(t ) = B1(t )x̂(0) + B2(t )ŷ(0) + B3(t )π̂x(0) + B4(t )π̂y(0) − Îy(t ) − Î ′
y(t ),

π̂x(t ) = C1(t )x̂(0) + C2(t )ŷ(0) + C3(t )π̂x(0) + C4(t )π̂y(0) − Îπx (t ) − Î ′
πx

(t ),

π̂y(t ) = D1(t )x̂(0) + D2(t )ŷ(0) + D3(t )π̂x(0) + D4(t )π̂y(0) − Îπy (t ) − Î ′
πy

(t ), (13)

where all time-dependent coefficients are given in Appendix A.
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A. Asymptotic angular momenta for a charged particle confined in an oscillator potential and free charged particle

1. Non-Markovian case

Using Eqs. (13), (A1), and the correlations of the random forces at different times, we find the time dependence of the z

component of angular momentum (or magnetic moment per unit volume M(t ) = − n0|e|Lz (t )
2m , where n0 is the concentration of

charge carriers),

Lz(t ) = 〈x̂(t )π̂y(t ) − ŷ(t )π̂x(t )〉

= mh̄γ 2

π

∫ ∞

0

∫ t

0

∫ t

0

dω dτ d τ̃ ω coth[h̄ω/(2T0)]

ω2 + γ 2
cos(ω[τ − τ̃ ])

×{λx[A3(τ )D3(τ̃ ) − B3(τ )C3(τ̃ )] + λy[A4(τ )D4(τ̃ ) − B4(τ )C4(τ̃ )]}. (14)

Here, the symbol 〈· · · 〉 denotes the average over the whole system (the collective plus the heat bath subsystems) and Lz(t = 0) =
0 is assumed for the simplicity. Based on the above Eq. (14), we find the asymptotic value,

Lz(∞) = 2h̄ωcγ
2

π

∫ ∞

0
dω ω3 coth

[
h̄ω

2T0

]
(ω2 + γ 2)

[
λx
(
ω2 − ω2

y

)+ λy
(
ω2 − ω2

x

)]− 2ω2γ λxλy∣∣s2
1 + ω2

∣∣2∣∣s2
2 + ω2

∣∣2∣∣s2
3 + ω2

∣∣2 , (15)

where the values of s1–3 are defined in Appendix A.
Employing the residue theorem, closing the contour in the upper half-plane, and using the cotangent function poles at

h̄ω/(2T0) = iπn with an integer n, we calculate analytically the integral over ω in Eq. (15) and obtain

Lz(∞) = h̄ωcγ
2(I + I∗ − Is), (16)

where

I = s2
1

{(
γ 2 − s2

1)
[
λx
(
s2

1 + ω2
y

)+ λy
(
s2

1 + ω2
x

)]− 2s2
1γ λxλy

}
(
s2

1 − s∗2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

)(
s2

1 − s2
3

)(
s2

1 − s∗2
3

) cot

[
h̄s1

2T0

]

+ s2
2

{(
γ 2 − s2

2

)[
λx
(
s2

2 + ω2
y

)+ λy
(
s2

2 + ω2
x

)]− 2s2
2γ λxλy

}
(
s2

2 − s2
1

)(
s2

2 − s∗2
1

)(
s2

2 − s∗2
2

)(
s2

2 − s2
3

)(
s2

2 − s∗2
3

) cot

[
h̄s2

2T0

]
,

+ s2
3

{(
γ 2 − s2

3

)[
λx
(
s2

3 + ω2
y

)+ λy
(
s2

3 + ω2
x

)]− 2s2
3γ λxλy

}
(
s2

3 − s2
1

)(
s2

3 − s∗2
1

)(
s2

3 − s2
2

)(
s2

3 − s∗2
2

)(
s2

3 − s∗2
3

) cot

[
h̄s3

2T0

]
, (17)

and

Is = 32π3 T 4
0

h̄4

∞∑
n=1

{
(γ 2 − n2π2)

[
λx
(
x2

n + ω2
y

)+ λy
(
x2

n + ω2
x

)]− 2x2
nγ λxλy

}
n3∣∣x2

n − s2
1

∣∣2∣∣x2
n − s2

2

∣∣2∣∣x2
n − s2

3

∣∣2 . (18)

Here, xn = 2πnT0/h̄, Re(s1) < 0, Re(s2) < 0, and Re(s3) < 0. At high temperatures, the contribution from the sum in Eq. (16)
becomes negligible.

2. Markovian case

For the Markovian dynamics (γ → ∞), we obtain from Eq. (15) the asymptotics,

Lz(∞) = 2h̄ωc

π

∫ ∞

0
dω ω3 coth

[
h̄ω

2T0

]
λx
(
ω2 − ω2

y

)+ λy
(
ω2 − ω2

x

)
∣∣s2

1 + ω2
∣∣2∣∣s2

2 + ω2
∣∣2 , (19)

where si and s∗
i (i = 1, 2) are the roots of the equation,

D(s) = (
ω2

x + s2 + sλx
)(

ω2
y + s2 + sλy

)+ s2ω2
c = 0. (20)

Note that one can obtain Eq. (20) from Eq. (A2) in the limit γ → ∞.
Calculating analytically the integral over ω in Eq. (19), we derive

Lz(∞) = h̄ωc(J + J∗ − Js), (21)

where

J = s2
1

[
λx
(
s2

1 + ω2
y

)+ λy
(
s2

1 + ω2
x

)]
(
s2

1 − s∗2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

) cot

[
h̄s1

2T0

]
+ s2

2

[
λx(s2

2 + ω2
y

)+ λy
(
s2

2 + ω2
x

)]
(
s2

2 − s2
1

)(
s2

2 − s∗2
1

)(
s2

2 − s∗2
2

) cot

[
h̄s2

2T0

]
, (22)
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and

Js = 32π3 T 4
0

h̄4

∞∑
n=1

[
λx
(
x2

n + ω2
y

)+ λy
(
x2

n + ω2
x

)]
n3∣∣x2

n − s2
1

∣∣2∣∣x2
n − s2

2

∣∣2 . (23)

Here, Re(s1) < 0 and Re(s2) < 0. At high temperatures, Eq. (21) is simplified to

Lz(∞) = h̄ωc(J0 + J∗
0 ), (24)

where

J0 = h̄s3
1

[
λx
(
s2

1 + ω2
y

)+ λy
(
s2

1 + ω2
x

)]
6T0

(
s∗2

1 − s2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

) + h̄s3
2

[
λx
(
s2

2 + ω2
y

)+ λy
(
s2

2 + ω2
x

)]
6T0

(
s∗2

2 − s2
2

)(
s2

2 − s2
1

)(
s2

2 − s∗2
1

) . (25)

In the case of ωc � ωx,y, the roots of Eq. (20) are well approximated as

s1 = iωc − 1

2
(λx + λy), s2 = ωxωy

ω2
c + 1

4 (λx + λy)2

[
iωc − 1

2
(λx + λy)

]
. (26)

Substituting (26) into Eq. (21) and assuming ωx = ωy = ω0 and λx = λy = λ, we obtain the following expression:

Lz(∞) = − h̄
(
ω2

c + λ2
)2

2
[(

ω2
c + λ2)2 − ω4

0

]
{

ω2
0 coth

[
h̄ω2

0 (ωc+iλ)
2T0(ω2

c +λ2 )

]
ω2

0 + (ωc − iλ)2
+

ω2
0 coth

[
h̄ω2

0 (ωc−iλ)
2T0(ω2

c +λ2 )

]
ω2

0 + (ωc + iλ)2

+ 2
[
ω2

0

(
ω2

c − λ2
)+ (

ω2
c + λ2

)2]
sinh

[ h̄ωc
T0

]+ 4ω2
0ωcλ sin

[
h̄λ
T0

]
[
ω2

0 + (ωc − iλ)2
]
[ω2

0 + (ωc + iλ)2]
(
cos

[
h̄λ
T0

]− cosh
[ h̄ωc

T0

])
}

−
∞∑

n=1

64n3π3T 4
0 h̄3ωcλ

(
ω2

c + λ2
)2

[
16n4π4T 4

0 + 8n2π2h̄2T 2
0

(
ω2

c − λ2
)+ h̄4

(
ω2

c + λ2
)2]

×
(
4π2n2T 2

0 + h̄2ω2
0

)
[
16π4n4T 4

0

(
ω2

c + λ2
)2 + 8π2n2T 2

0 h̄2ω4
0

(
ω2

c − λ2
)+ h̄4ω8

0

] . (27)

At high temperatures, it is transformed into the simple formula,

Lz(∞) = h̄2ωc
(
ω2

c + λ2
)

6T0
(
ω2

0 + ω2
c + λ2

) . (28)

Note that Eq. (28) does not depend on the friction at ω0 → 0 and

Lz(∞) = h̄2ωc

6T0
. (29)

Thus, the Bohr–Van Leeuwen theorem (there is no diamagnetism in the classical system) is only restored in the limit of high
temperature.

In the limiting case of zero friction coefficients, λx = λy = λ = 0, and ωx = ωy = ω0, Eq. (27) is simplified to

Lz(∞) = − h̄

2
√

4ω2
0 + ω2

c

⎧⎨
⎩(
√

4ω2
0 + ω2

c − ωc
)

coth

⎡
⎣ h̄

(√
4ω2

0 + ω2
c − ωc

)
4T0

⎤
⎦

− (√
4ω2

0 + ω2
c + ωc

)
coth

⎡
⎣ h̄

(√
4ω2

0 + ω2
c + ωc

)
4T0

⎤
⎦
⎫⎬
⎭. (30)

In the case of λx 
= λy and ω0 → 0, we obtain

Lz(∞) = − 8T0ωc

4ω2
c + (λx + λy)2

+ h̄ sinh[h̄ωc/T0]

2{sinh2[h̄ωc/(2T0)] + sin2[h̄(λx + λy)/(4T0)]}

−
∞∑

n=1

128nπT 2
0 h̄3ωc(λx + λy)

|4nπT0 + h̄(2iωc − λx − λy)|2|4nπT0 − h̄(2iωc − λx − λy)|2 . (31)
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If the friction is isotropic, λx = λy = λ, then the expression,

Lz(∞) = − 2T0ωc

ω2
c + λ2

− h̄ sinh[h̄ωc/T0]

cos[h̄λ/T0] − cosh[h̄ωc/T0]
−

∞∑
n=1

16nπT 2
0 h̄3λωc

16n4π4T 4
0 + 8h̄2n2π2T 2

0

(
ω2

c − λ2
)+ h̄4

(
ω2

c + λ2
)2 (32)

follows from Eq. (31). As noted above, the contribution of the
sum to Lz(∞) [i.e., to Eqs. (31) or (32)] is negligible at high
temperatures.

In the limit of zero friction (λ → 0), Eq. (32) results in the
Landau formula or the Langevin function,

Lz(∞) = −h̄

(
2T0

h̄ωc
− coth

[
h̄ωc

2T0

])
. (33)

So, Eqs. (31) and (30) naturally generalize the Landau for-
mula (33) in the case of dissipative system. In Appendix B,
we show the impossibility of obtaining Eq. (33) by starting
directly from the total Hamiltonian for free charged particle.
So, the important effect of confined boundaries [34] should
be considered starting directly from the total Hamiltonian (1).
Equation (33) can be also derived from Eq. (30) in the limit
ω0 → 0. Note that Eqs. (30), (32), and (33) are also derived
in Ref. [21]. Here, we derive them from the non-Markovian
expressions.

At h̄ωc � 2T0, we again obtain Eq. (29) but from
Eq. (33). Because Eq. (33) is transformed into Lz(∞) = h̄ at
h̄ωc � 2T0, we find the quantization conditions [T0/(h̄ωc) →
0, γ → ∞, λ → 0] for the orbital angular momentum in
a dissipative environment. As seen, for large values of the
cyclotron frequency, the asymptotic magnetization is equal to
one (negative) Bohr magneton if m = me (me is the mass of the
electron). The reason for this is the localization of the charged
particles with increasing magnetic field, when the variance
|σ 2

xπy
(∞)| = Lz(∞)/2 reaches the minimal value of h̄/2 [27].

III. CALCULATED RESULTS

A. Influence of non-Markovian and dissipative
effects on magnetization

In the Markovian (γ → ∞) and non-Markovian
[h̄γ /(2T0) = 12] cases, the dependencies of z component
of the asymptotic angular momentum Lz(∞) on h̄λ/(2T0)
are shown in Fig. 2. As seen, the value of Lz(∞) decreases
monotonically and approaches zero with increasing friction
coefficients (λx = λy = λ). The rate of this approach
decreases with increasing cyclotron frequency ωc. So,
this is diamagnetism of the system even in the presence
of a dissipative environment. The absolute value of
Lz(∞) increases with decreasing frequency of oscillator
(ωx = ωy = ω0) and reaches its maximal value for the
free charged particle (ω0 = 0). As seen in Fig. 2 at
h̄ωc/(2T0) = 0.5 and λ = 0, the average value of the angular
momentum of a free charged particle is about 1.5 times larger
than that of charged particle in the harmonic oscillator with
h̄ω0/(2T0) = 2. This difference between angular momenta
decreases with growing h̄λ/(2T0). It should be noted that
without taking the contribution of the “boundary” charge
carriers [34] into account, the angular momentum of the free

charged particle is much larger [31] than that of the charged
particle in the harmonic oscillator.

The influence of non-Markovian effect on Lz(∞) is rather
weak (Figs. 2 and 3). For the charged particle confined in
the oscillator potential, the non-Markovian Lz(∞) is slightly
larger than the Markovian one. For a free charged particle,
there is almost no difference between the Markovian and the
non-Markovian cases. The values of Lz(∞) obtained in the
Markovian and non-Markovian cases are almost the same
(Fig. 3). The difference between both cases weakly changes
with increasing frequency of the oscillator. As seen in Fig. 3
for the oscillator with ω0/λ = 2, the value of Lz(∞) is almost
independent of T0 at very low temperatures. This means that
the heat bath phonons cannot significantly affect the oscillator
because their energies are small.

FIG. 2. The calculated dimensionless asymptotic z component
of angular momentum Lz(∞)/h̄ as a function of h̄λ/(2T0 ) at
(a) h̄ω0/(2T0 ) = 0 and (b) 2. Here, λx = λy = λ and ωx = ωy = ω0.
The values of h̄ωc/(2T0) used are indicated. In the Markovian case,
Eqs. (27) and (32) are used. In the non-Markovian case, Eq. (16) with
ω0 
= 0 and Eq. (16) in the limit ω0 → 0 are used.
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FIG. 3. The calculated dimensionless asymptotic z component
of angular momentum Lz(∞)/h̄ as a function of 2T0/(h̄λ) at
(a) h̄ω0/(2T0 ) = 0 and (b) 2. Here, λx = λy = λ and ωx = ωy = ω0.
The values of ωc/λ used are indicated. In the Markovian case, Eqs.
(27) and (32) are used. In the non-Markovian case, Eq. (16) with
ω0 
= 0 and Eq. (16) in the limit ω0 → 0 are used.

We calculate the z component of angular momentum for
the charged oscillator settled in increasing the external mag-
netic field at different h̄λ/(2T0)’s (Fig. 4). The results indicate
the values of Lz(∞) in the Markovian and non-Markovian
cases are close to each other even at large B. At large B, the
value of Lz(∞) approaches h̄, which means it tends to the
usual quantization of the z component of angular momentum
even in the dissipative system. It should be noted that the
dependencies of Lz(∞) on h̄ωc/(2T0) at h̄ω0/(2T0) = 0 and
2 are almost the same.

B. Magnetization and electrical conductivity of graphene

Because the values of Lz(∞) are almost the same in the
Markovian and non-Markovian cases and there is almost no

FIG. 4. The calculated dimensionless asymptotic z component
of angular momentum Lz(∞)/h̄ as a function of h̄ωc/(2T0) at
(a) h̄ω0/(2T0 ) = 0 and (b). Here, λx = λy = λ and ωx = ωy = ω0.
The values of h̄λ/(2T0) used are indicated. In the Markovian case,
Eqs. (27) and (32) are used. In the non-Markovian case, Eq. (16)
with ω0 
= 0 and Eq. (16) in the limit ω0 → 0 are used.

band gap in graphene, we employ Eq. (32) for the free charged
particle with the Markovian dynamics for the description of
the magnetization of graphene. Note that for carbon materials
the main contribution to the diamagnetism is made by the free
electrons (Landau’s diamagnetism) [35]. In the calculations
we set λx = λy = λ and ωx = ωy = ω0. In order to turn to the
observable values, all parameters λ and ωc in the expressions
are multiplied by the ratio m

|e| ,

λ → m

|e|λ = λ̃ = μ−1, ωc → m

|e|ωc = B, (34)

and the temperature T0 is replaced by kBT0, where kB is the
Boltzmann constant. Using Eq. (32), we determine the mass
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magnetization,

Mz(∞) = −n0|e|Lz(∞)

2mρ

= C0

[
2T0B

A(B2 + λ̃2)
+ sinh[AB/T0]

cos[Aλ̃/T0] − cosh[AB/T0]
+

∞∑
n=1

16nπT 2
0 A2Bλ̃

16n4π4T 4
0 + 8n2π2T 2

0 A2(B2 − λ̃2) + A4(B2 + λ̃2)2

]
, (35)

where ρ is the density of the material, m = 0.04me

is the effective mass of the charge carriers [3,8], A =
h̄|e|/(kBm), λ̃−1 = μ = μ(T0) is the temperature-dependent
charge carriers mobility and C0 = C0(T0) = n0|e|h̄/(2mρ) is
the effective charge carriers density. The values of μ(T0) and
C0(T0) are the free parameters of our model, and they are
extracted from the experimental data.

The dependencies of the magnetization Mz of graphene on
the magnetic field and temperature are presented in Figs. 5
and 6. They are described separately for low (approximately
T0 � 45 K) and high (approximately T0 � 50 K) temperature
regimes since the properties of graphene change drastically
at around T0 ≈ 45–50 K. This is reflected in the fact that we

FIG. 5. The calculated (lines) dependence of the mass magne-
tization in graphene on the external magnetic field at indicated
temperatures. In the calculations, Eqs. (35), (36), and (37) are used.
The symbols denote experimental data [10].

use two sets of μ(T0) and C0(T0) to describe the graphene
magnetization,

μ = (2.198 057 − 0.001 9185T0 − 0.117 6485 ln T0)−1,

C0 = 1.48 (36)

for the low temperature regime, and

μ = (1.5497 + 0.0404T0)−1,

C0 = 1.824 8912 + 0.011 9269T0 − 0.000 0188T 2
0 (37)

for the high temperature regime. Here, the charge carriers
mobility is in units of m2 V−1 s−1 and effective charge car-
riers density is in units of emu/g. Note that the temperature
dependence of the mobility means that for the description of
the properties of graphene we need the temperature-dependent
coupling between the charge carrier and the heat bath. In other
words, the temperature affects this coupling.

The convergence of the series contained in Eq. (35) de-
pends on temperature T0 and magnetic field B. For example,
if we choose the numerical error to be less than 1% and use
the temperature-dependent mobility μ from Eq. (36), then at
B = 0.5 T (B = 3 T) the maximum numbers of terms of the
series are 3.5 × 105 (1.15 × 106), 300 (1000), and 7 (25) at
T0 = 1 mK, 1, and 40 K, respectively.

The temperature dependencies of μ(T0) at low and high
temperature regimes are shown in Fig. 7. The extracted μ(T0)
and C0(T0) lead to the following conclusions. (1) At low tem-
peratures, the charge carriers mobility in graphene increases
with temperature. This behavior is similar to that of poly-
crystalline graphite [35]. (2) At low temperatures, the density
of charge carriers in graphene is almost independent of tem-
perature. In this case, the charge carriers cannot be removed
from the valence band and, correspondingly, the number of
charge carriers in the conduction band does not change. (3) At
the high temperatures, the charge carriers mobility changes
as T −1

0 , such as in the metals. (4) In the high-temperature
regime, the charge carrier density monotonically increases
with temperature. (5) The extracted charge carrier mobilities
at low and high temperatures are well consistent with the
experimental data [8].

As seen in Figs. 5 and 6, the calculated mass magnetization
are in good agreement with the experimental data. At high
temperatures and weak magnetic fields, Mz ∼ −B/T0 that is
consistent with Eq. (29). At low temperatures, the mass mag-
netization weakly depends on T0. The predicted dependencies
Mz on T0 at B = 5 and 8 T are similar to those at weaker
magnetic fields (Fig. 6). We also predict the resonance in
the dependence of the magnetization Mz on T0 at very low
temperatures.
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FIG. 6. The calculated (lines) dependencies of the mass magne-
tization of graphene on temperature at indicated external magnetic
fields. In the calculations, Eqs. (35), (36), and (37) are used. The
symbols denote experimental data [10].

For example, the resonance condition approximately corre-
sponds to T0 = 1 mK at B = 0.5 and B = 3.0 T (Fig. 8). The
resonance temperature is almost independent of the magnetic
field. The resonance becomes more pronounced at small T0

(Fig. 8). Because of this resonance behavior of the magnetiza-
tion, in Fig. 5,

|Mz(T0 = 0.2 mK)| > |Mz(T0 = 10 K)| > |Mz(T0 = 1 K)|.

FIG. 7. The calculated temperature dependencies of charge carri-
ers mobility in graphene at (a) low and (b) high temperature regimes.
In the calculations, Eqs. (36) and (37) are used.

Note that the resonance type behavior of Mz was also reported
in Ref. [11].

Using the extracted μ(T0) and C0(T0) from Eqs. (36) and
(37) for low and high temperature regimes, the temperature
dependencies of the diagonal σxx and nondiagonal σxy ele-
ments of the Drude electric conductivity [32] in graphene are
predicted in Fig. 9. As seen, at very low temperatures and
B � 1 T, the values of σxx and σxy strongly decrease with
decreasing temperature. These calculated values of electric
conductivity are quite close to the experimental data [3,8]. As
seen from the description of the experimental data on the mass
magnetization (Figs. 5 and 6), the graphene properties change
dramatically around T0 ≈ 45–50 K and, as a consequence, the
charge carrier mobility (Fig. 7) and, accordingly, electrical
conductivity (Fig. 9) have a pronounced discontinuities be-
tween T0 = 45 and 50 K.

IV. SUMMARY

The influence of the external uniform magnetic field on the
open 2D quantum system linearly coupled in coordinates to
the neutral bosonic heat bath was studied beyond the Markov
approximation. In order to average the influence of bosonic
heat bath on the charged particle, we applied the spectral
function of heat-bath excitations which describes the Drude
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FIG. 8. The calculated dependence of the mass magnetization in
graphene on temperature at indicated external magnetic fields. In the
calculations, Eqs. (35) and (36) are used.

dissipation with Lorentzian cutoffs. Our formalism is valid
at arbitrary coupling strengths, and, hence, at arbitrary low
temperature. At the initial time interval, the magnetic field
acts on the quantum particle through its contribution to the
Lorentz force. The dissipation and external magnetic field
do affect each other due to the non-Markovian dynamics of
the quantum system. The combined action of the constant
magnetic field and random forces leads to the emergence of
angular momentum. The explicit expressions for the asymp-
totic angular momenta were obtained for the two-dimensional
charged quantum harmonic oscillator and for the free charged
particle in the Markovian and non-Markovian cases. We found
the weak influence of the non-Markovian effect on the orbital
diamagnetism of the open 2D quantum systems.

Using the analytical Markovian expression (35) for the
asymptotic angular momentum of the free charged parti-
cle and the temperature-dependent coupling between the
charge carriers and the environment, we have described well
the dependencies of diamagnetic magnetization in graphene
on the magnetic field and temperature. For graphene, the tem-
perature dependencies of the mobility and density of charge
carriers were extracted [Eqs. (36) and (37)]. A pronounced
discontinuity of the mobility between T0 = 45 and 50 K was

FIG. 9. The calculated dependencies of diagonal (a) and (b) σxx

and (c) and (d) nondiagonal σxy components of the Drude electric
conductivity in graphene on temperature at indicated external mag-
netic fields.
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found. The dependencies of the mass magnetization on the
temperature (magnetic field) at B = 5 and 8 T (T0 = 1 and
0.2 mK) were predicted. The resonance behavior of the dia-
magnetic magnetization of graphene was predicted at very
low temperatures (T0 ≈ 1 mK). Using the extracted mobility
and density of charge carriers in graphene, we also found the
temperature dependence of the electric conductivity on tem-
perature at different magnetic fields. At very low temperatures

and weak magnetic fields, a strong decrease in the electric
conductivity with decreasing temperature was demonstrated.
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APPENDIX A: SOLUTION OF EQS. (7)

The coefficients in Eq. (13) are

Îx(t ) =
∫ t

0
A3(τ )F̂α (t − τ )dτ, Î ′

x(t ) =
∫ t

0
A4(τ )F̂g(t − τ )dτ,

Îy(t ) =
∫ t

0
B3(τ )F̂α (t − τ )dτ, Î ′

y(t ) =
∫ t

0
B4(τ )F̂g(t − τ )dτ,

Îπx (t ) =
∫ t

0
C3(τ )F̂α (t − τ )dτ, Î ′

πx
(t ) =

∫ t

0
C4(τ )F̂g(t − τ )dτ,

Îπy (t ) =
∫ t

0
D3(τ )F̂α (t − τ )dτ, Î ′

πy
(t ) =

∫ t

0
D4(τ )F̂g(t − τ )dτ,

where

A1(t ) =
6∑

i=1

βi[(si + γ )
[
si(si + γ )

(
s2

i + ω2
y + ω2

c

)+ λxγ
(
s2

i + ω2
y

)]+ siλyγ (si(si + γ ) + λyγ )]esit ,

A2(t ) = ωcω
2
y

6∑
i=1

βi(si + γ )2esit , A3(t ) = 1

m

6∑
i=1

βi(si + γ )
[
(si + γ )

(
s2

i + ω2
y

)+ siλyγ
]
esit ,

A4(t ) = −ωc

m

6∑
i=1

βisi(si + γ )2esit ,

B1(t ) = −A2(t )|x↔y, B2(t ) = A1(t )|x↔y, B3(t ) = −A4(t )|x↔y, B4(t ) = A3(t )|x↔y,

C1(t ) = −m2ω2
x A3(t ), C2(t ) = mȦ2(t ), C3(t ) = mȦ3(t ), C4(t ) = mȦ4(t ),

D1(t ) = mḂ1(t ), D2(t ) = −m2ω2
y B4(t ), D3(t ) = mḂ3(t ), D4(t ) = mḂ4(t ). (A1)

Here, si are the roots of the equation,

D(s) = (si + γ )
{[

s4
i + ω2

xω
2
y + s2

i

(
ω2

c + ω2
x + ω2

y

)]
(si + γ ) + siγ λx

(
s2

i + ω2
y

)}+ siγ λy
[(

s2
i + ω2

x

)
(si + γ ) + siγ λx

] = 0,

(A2)

and βi = [
∏

j 
=i(si − s j )]−1 with i, j = 1–6. These roots satisfy the conditions s4 = s∗
1, s5 = s∗

2, and s6 = s∗
3. Equation (A2) is

transformed into Eq. (20) in the limit γ → ∞.

APPENDIX B: FREE CHARGED PARTICLE IN CONSTANT MAGNETIC FIELD:
NON-MARKOVIAN AND MARKOVIAN CASES

Let us consider the dynamics of the free charged particle in the constant magnetic field and neutral bosonic heat bath (see
Sec. II). In this case, the Hamiltonian of total system is

Ĥ = 1

2m

(
π̂2

x + π̂2
y

)+
∑

ν

h̄ων b̂+
ν b̂ν +

∑
ν

(αν x̂ + gν ŷ)(b̂+
ν + b̂ν ) +

∑
ν

1

h̄ων

(αν x̂ + gν ŷ)2. (B1)

Using Eq. (B1), we obtain the nonlinear integrodifferential stochastic dissipative equations,

˙̂x(t ) = π̂x(t )

m
, ˙̂y(t ) = π̂y(t )

m
, ˙̂πx(t ) = −ωcπ̂y(t ) − 1

m

∫ t

0
dτ Kα (t − τ )π̂x(τ ) − F̂α (t ),

˙̂πy(t ) = ωcπ̂x(t ) − 1

m

∫ t

0
dτ Kg(t − τ )π̂y(τ ) − F̂g(t ), (B2)
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where Kα (t ) and Kg(t ) are the dissipative kernels. Employing solutions of Eq. (B2), we derive the analytical expression for the z
component of asymptotic angular momentum,

Lz(∞) = 4γ 2λh̄ωc

π

∫ ∞

0
dω ω coth

[
h̄ω

2T0

]
ω2 + γ (γ − λ)∣∣ω2 + s2

1

∣∣2∣∣ω2 + s2
2

∣∣2
= 4γ 2λh̄ωc

π

∫ ∞

0
dω ω coth

[
h̄ω

2T0

]
[ω2 + γ (γ − λ)]/

{(
ω2 − ω2

c

)2
(ω2 + γ 2)2

− 4ω2γ λ
(
ω2 − ω2

c

)
(ω2 + γ 2) + 2γ 2λ2

[
3ω4 − ω2ω2

c + γ 2
(
ω2 + ω2

c

)]− 4ω2γ 3λ3 + γ 4λ4
}
. (B3)

Here λx = λy = λ and s1, s2, s3 = s∗
1, s4 = s∗

2 are the roots of the equation,(
s2 + ω2

c

)
(s + γ )2 + 2γ λs(s + γ ) + γ 2λ2 = 0. (B4)

Using the theory of residues, one can calculate analytically the integral in the first line of Eq. (B3) and derive the following
expression:

Lz(∞) = h̄ωcγ
2(I f + I∗

f − I f s), (B5)

where

I f = 2λ
[
γ (γ − λ) − s2

1

]
(
s2

1 − s∗2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

) cot

[
h̄s1

2T0

]
+ 2λ

[
γ (γ − λ) − s2

2

]
(
s2

2 − s2
1

)(
s2

2 − s∗2
1

)(
s2

2 − s∗2
2

) cot

[
h̄s2

2T0

]
, (B6)

and

I f s = 16πλ
T 2

0

h̄2

∞∑
n=1

[
γ (γ − λ) − x2

n

]
n∣∣x2

n − s2
1

∣∣2∣∣x2
n − s2

2

∣∣2 . (B7)

In the Markovian limit (γ → ∞), we obtain from Eq. (B3),

Lz(∞) = 4λh̄ωc

π

∫ ∞

0
dω

ω coth[h̄ω/(2T0)]

ω4 − 2ω2
(
ω2

c − λ2
)+ (

ω2
c + λ2

)2 . (B8)

The similar expression was derived in Refs. [21,31]. If the friction coefficient is zero, then

Lz(∞) = h̄ coth

[
h̄ωc

2T0

]
. (B9)

As seen, Eq. (B9) contains only the second term of Eq. (33) and, correspondingly, it does not take into consideration the important
contribution of the boundary charge carriers [34].
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