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Kapitza resistance at a domain boundary in linear and nonlinear chains
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We explore Kapitza thermal resistance on the boundary between two homogeneous chain fragments with
different characteristics. For a linear model, an exact expression for the resistance is derived. In the generic case
of frequency mismatch between the domains, the Kapitza resistance is well defined in the thermodynamic limit.
At the same time, in the linear chain, the resistance depends on the thermostat properties and therefore is not
a local property of the considered domain boundary. Moreover, if the temperature difference at the ends of the
chain is fixed, then neither the temperature drop at the domain boundary nor the heat flux depend on the system
size; for the normal transport, one expects the scaling N–1 for both. For specific assessment, we consider the
case of an isotopic boundary—only the masses in different domains are different. If the domains are nonlinear,
but integrable (Toda lattice, elastically colliding particles), the anomalies are similar to the case of linear chain,
with the addition of well-articulated thermal dependence of the resistance. For the case of elastically colliding
particles, this dependence follows a simple scaling law Rk ∼ T −1/2. For Fermi-Pasta-Ulam domains, both the
temperature drop and the heat flux decrease with the chain length, but with different exponents, so the resistance
vanishes in the thermodynamic limit. For the domains comprised of rotators, the thermal resistance exhibits the
expected normal behavior.
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I. INTRODUCTION

Thermal resistance between two dissimilar materials is an
ubiquitous phenomenon, well known in science and engineer-
ing. In the case of a simple one-dimensional heat transport
through the boundary, it is usually defined as Rk = �T

J , where
�T is the temperature drop at the boundary, and J is the heat
flux through the boundary. Existence of such a resistance was
mentioned in 1936 [1,2]. Since the experimental proof given
by Kapitza in 1941 [3], numerous experimental and analytical
studies were reported [4–9]. An early theoretical explanation
of the Kapitza resistance is the famous acoustic mismatch
model (AMM) [10,11] which is more applicable for classical
solids and very low temperature. There were many attempts
to improve the AMM [12–16]. At high temperature, diffuse
scattering of phonons is the predominant factor responsible
for Kapitza resistance [17] and one of the satisfactory theoret-
ical explanations for high temperature experiments is given
by the diffuse mismatch model (DMM) [9]. Khalatnikov’s
theory with some modification for the one-dimensional har-
monic system is considered in Refs. [18,19]. The calculation
of optimized couplers for the interfacial thermal transport in
the linear model has been performed in Refs. [20,21]. All
known theoretical models are based on certain intermedi-
ate scale assumptions, rather than relating the resistance to
a particular microstructure. Recent papers [22,23] explored
Kapitza resistance in the chain models with isolated defects,
and in Ref. [23] the exact solution for the linear chain with
linear time-independent inclusion has been derived. As for
the nonlinear chain models, in Ref. [22], the behavior of the
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Kapitza resistance in general has been found to correlate with
two well-known universality classes with respect to the bulk
conductivity [24–30].

In the current paper, we generalize the ideas developed in
[23] for the more complicated and interesting problem of the
thermal resistance on the boundary between two chain do-
mains with different properties. For linear systems, the exact
analytic solution is derived. As for the nonlinear models, we
consider two qualitatively different cases: the chain domains
belonging to the class of integrable models (Toda potential,
chain of colliding particles) and nonintegrable [Fermi-Pasta-
Ulam (FPU), chain of rotators]. One expects that in a realistic
system the boundary resistance will be independent of the
system size. Below it is demonstrated that in conditions of
constant temperature difference between the ends of the chain
this situation can be achieved by two different scenarios—
when the thermal drop and the heat flux are both size
independent (linear chain, Toda potential, chain of colliding
particles), or both scale as N−1 in the thermodynamic limit
(chain of rotators). In our opinion, only the latter scenario can
be considered as “normal,” since otherwise the resistance is
not a local property of the boundary. The FPU model exhibits
somewhat “intermediate” behavior—both the thermal drop
and the heat flux scale with the system length, although with
different exponents. As a result, the Kapitza resistance be-
tween the FPU domains vanishes in the thermodynamic limit.

The paper is structured as follows. In Sec. II, the exact
analytic solution for the general case of linear domains with
a linear time independent (LTI) inclusion is derived. Then,
the particular cases of the isotopic domain boundary and of
the perfect frequency matching are explored. In Sec. III, Toda
lattice and the chain of hard particles with the isotopic bound-
ary are considered. In Sec. IV, a similar study is performed for
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FIG. 1. Sketch of the model system.

the β FPU and for the chain of rotators. Section V is devoted
to the concluding remarks.

II. KAPITZA RESISTANCE AT THE BOUNDARY
BETWEEN LINEAR DOMAINS

A. General derivation with the LTI inclusion

The consideration follows a recent paper [23] with neces-
sary modifications. We consider the Kapitza resistance in two
sequentially coupled linear chain domains coupled through
the LTI inclusion (Fig. 1). The left domain includes N1 par-
ticles and the right domain includes N2 particles. In the left
domain, the masses and stiffness are set to m1 and k1, and in
the right domain they are set to m2 and k2. The domain bound-
aries are connected to single Langevin thermostats at both
ends. The dynamics of the boundary particles is described by
the following equations:
m1ü(t )−N1

+ k1
(
2u(t )−N1

− u(t )−N1+1

)+ γ u̇(t )−N1
= ξ+(t ),

m2ü(t )N2
+ k2

(
2u(t )N2

− u(t )N2−1

)+ γ u̇(t )N2
= ξ−(t ).

(1)
Here, un represents the position of the nth particle. The

coupling friction at each end is γ . ξ±(t ) are the white-noise
excitations obeying the relation 〈ξ±(t )〉 = 0, 〈ξ±(t1)ξ±(t2)〉 =
2γ T±δ(t1 − t2). For the considered linear system, without re-
ducing the generality, the left thermostat is set to temperature
T and the right thermostat is set to zero temperature. The
particles apart from both the thermostats and the LTI inclusion
are described by the equations

m1ü(t )n + k1(2u(t )n − u(t )n−1 − u(t )n+1) = 0,

m2ü(t )n + k2(2u(t )n − u(t )n−1 − u(t )n+1) = 0. (2)

To switch to the nondimensional variables, one defines κ =
k1
k2

; μ = m1
m2

; �1 =
√

k1
m1

; �2 =
√

k2
m2

and the new time variable

τ = t
�2

. Without loss of generality, we set k2 and m2 to unity.
Then, Eq. (1) can be rewritten as

μu′′(τ )−N1
+ κ

(
2u(τ )−N1

− u(τ )−N1+1

)+ γ u′(τ )−N1
= ξ+(τ ),

u′′(τ )N2
+ (

2u(τ )N2
− u(τ )N2−1

)+ γ u′(τ )N2
= ξ−(τ ).

(3)

Similarly, Eq. (2) will be transformed into the following
form:

μu′′(τ )n + κ (2u(τ )n − u(τ )n−1 − u(τ )n+1) = 0,

u′′(τ )n + (2u(τ )n − u(τ )n−1 − u(τ )n+1) = 0. (4)

The dispersion relations for traveling waves in the chain
fragments are presented as

ω1 = 2ω∗ sin

(
q1

2

)
(domain1),

ω2 = 2 sin

(
q2

2

)
(domain2). (5)

Here ω∗ =
√

κ
μ

and ωi, qi, i = 1, 2 denote the frequencies

and the wave vectors in the chain fragments. Due to the lin-
earity, in the thermodynamic limit the waves that can transfer
energy through the system should belong to the common prop-
agation zone of both domains, ω � min(2ω∗, 2). Appropriate
conditions for the wave frequencies and the wave vectors are
written as follows:

ω = ω∗ sin

(
q1

2

)
= sin

(
q2

2

)
, − 2 arcsin

(
1

2ω∗ min (2ω∗, 2)

)
� q1 � 2 arcsin

(
1

2ω∗ min (2ω∗, 2)

)
,

− 2 arcsin

(
1

2
min (2ω∗, 2)

)
� q2 � 2 arcsin

(
1

2
min (2ω∗, 2)

)
. (6)

The displacements of the particles apart from the boundaries can be presented as Fourier integrals in the common propagation
zone (6):

un =
∫

P
exp(iωτ )[α1(ω) exp(−iq1n) + β1(ω) exp(iq1n)]dω (domain1),

un =
∫

P
exp(iωτ )[α2(ω) exp(−iq2n) + β2(ω) exp(iq2n)]dω (domain2). (7)
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α1,2 and β1,2 are the partial wave amplitudes in the domains. Substituting (7) in (3), one obtains

α1 exp(iq1N1)c1,+ + β1 exp(−iq1N1)c1,− = �, α2 exp(−iq2N2)c2,− + β2 exp(iq2N2)c2,+ = 0,

c1,± = κ exp(±iq1) + iγω, c2,± = exp(±iq2) + iγω. (8)

Here, � represents the Fourier transform of the forcing function ξ (t ), and in a particular case of Gaussian noise its amplitude
can be calculated using Parseval’s theorem as |�|2 = γ T

π
. The inclusion is linear and time independent, therefore, it is possible

to connect the partial wave amplitudes in the domains by a transfer matrix G:(
α1

β1

)
= G

(
α2

β2

)
, G =

(
g11 g12

g21 g22

)
. (9)

Substituting (9) in (8), one obtains

α2[g11 exp(iq1N1)c1,+ + g21 exp(−iq1N1)c1,−] + β2[g12 exp(iq1N1)c1,+ + g22 exp(−iq1N1)c1,−] = �,

α2 exp(−iq2N2)c2,− + β2 exp(iq2N2)c2,+ = 0. (10)

Equation (10) can be solved for α2 and β2:

α2 = � exp(iq2N2)c2,+
D

, β2 = −� exp(−iq2N2)c2,−
D

,

D = g11 exp [i(q1N1 + q2N2)]c1,+c2,+ + g21 exp [i(−q1N1 + q2N2)]c2,+c1,−
− g12 exp [i(q1N1 − q2N2)]c1,+c2,− − g22 exp [−i(q1N1 + q2N2)]c1,−c2,−. (11)

For finding the most general form of the transfer matrix, first we use the reciprocity theorem [31]. Interchanging the
thermostats at the boundaries of the transforms (10) to the following form:

α̃2[g11 exp(iq1N1)c1,+ + g21 exp(−iq1N1)c1,−] + β̃2[g12 exp(iq1N1)c1,+ + g22 exp(−iq1N1)c1,−] = 0,

α̃2 exp(−iq2N2)c2,− + β̃2 exp(iq2N2)c2,+ = �. (12)

α̃1,2 and β̃1,2 are the partial wave amplitudes in the chain after interchanging the thermostats.
According to the reciprocity theorem, the displacement in the right domain will be equal to the displacement in the left domain

when thermostat positions are interchanged [31]. Then, one obtains

α2 exp(−iq2N2) + β2 exp(iq2N2) = α̃1 exp(iq1N1) + β̃1 exp(−iq1N1);

(
α̃1

β̃1

)
= G

(
α̃2

β̃2

)
. (13)

This gives the first condition for the elements of the transfer matrix:

g11g22 − g21g12 = c2,+ − c2,−
c1,+ − c1,−

= cos q2

2√
μκ cos q1

2

= χ. (14)

We denote the average temperature apart from the thermostats and the boundary, and the heat flux in each domain as T̃1,2

and J̃1,2 respectively. These parameters can be calculated if one knows the energy density of the waves propagating leftwise
and rightwise in each domain, which is given by ρL(ω) = μiω

2

2 |αi(ω)|2 and ρR(ω) = μiω
2

2 |βi(ω)|2, i = 1, 2, μ1 = μ,μ2 = 1.
For each domain, the sum of energy densities in each direction yields the temperature and the difference between the energy
densities in each direction multiplied by the respective group velocity and vi,gr (ω), i = 1, 2 yields the net heat flux. By taking
into consideration the symmetry ω → −ω, the expressions can be written as follows:

T̃1 =
∫

P
μω2(|α1|2 + |β1|2)dω, J̃1 =

∫
P
μω2(|α1|2 − |β1|2)|v1,gr |dω;

T̃2 =
∫

P
ω2(|α2|2 + |β2|2)dω, J̃2 =

∫
P
ω2(|α2|2 − |β2|2)|v2,gr |dω;

|v1,gr | =
∣∣∣∣dω1

dq1

∣∣∣∣ =
∣∣∣ω∗ cos

q1

2

∣∣∣, |v2,gr | =
∣∣∣∣dω2

dq2

∣∣∣∣ =
∣∣∣cos

q2

2

∣∣∣. (15)

At this stage, we assume that the inclusion does not contain any dissipative elements. The energy conservation condition
J̃1 = J̃2 yields

μ(|α1|2 − |β1|2)
∣∣∣ω∗ cos

q1

2

∣∣∣ = (|α2|2 − |β2|2)
∣∣∣cos

q2

2

∣∣∣. (16)

Then, one obtains the following conditions for the elements of transfer matrix:

|g11|2 − |g21|2 =
∣∣∣∣ cos q2

2√
μκ cos q1

2

∣∣∣∣ = χ ; |g22|2 − |g12|2 =
∣∣∣∣ cos q2

2√
μκ cos q1

2

∣∣∣∣ = χ ; g11g∗
12 = g21g∗

22. (17)
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From (14) and (17), we find that for linear chain fragments, the transfer matrix can be presented in the following general
form:

G = √
χ

(
cosh x exp(iθ1) sinh x exp(−iθ2)

sinh x exp(iθ2) cosh x exp(−iθ1)

)
; x ∈ [0,∞), θ1, θ2 ∈ [0, 2π ). (18)

The coefficients α1,2 and β1,2 are found by substituting (18) in (11) and (9). The heat flux through the chain and average
temperatures on each fragment far away from the boundaries are expressed as follows:

J̃ =
∫

P
ω2(|α2|2 − |β2|2)|v2,gr |dω =

∫
P
ω2|�|2|v2,gr | |c2,+|2 − |c2,−|2

|D|2 dω;

T̃1 =
∫

P
μω2(|α1|2 + |β1|2)dω

=
∫

P

μχω2

|D|2 |�|2
[

(cosh2x + sinh2x)(|c2,+|2 + |c2,−|2)

− sinh 2x[c2,+c∗
2,− exp i(θ1 + θ2 + 2qN ) + c∗

2,+c2,− exp i(−θ1 − θ2 − 2qN )]

]
dω;

T̃2 =
∫

P
ω2
(|α2|2 + |β2|2

)
dω =

∫
P
ω2|�|2 |c2,+|2 + |c2,−|2

|D|2 dω;

D = √
χ

(
cosh x exp i[(q1N1 + q2N2) + θ1]c1,+c2,+ + sinh x(c2,+c1,−eiθ2 − c1,+c2,−e−iθ2 )

− cosh x exp i[−θ1 − (q1N1 + q2N2)]c1,−c2,−

)
. (19)

A further step is the transition to the thermodynamic limit N1,2 → ∞. Setting aside for a moment the case of a perfect
acoustical matching between the domains with ω∗ = 1, one can note that the relationship between the wave vectors (6) is
expressed by the transcendental equation. Therefore, for almost all values of frequency the ratio between the rapidly oscillating
phases ϕ1,2 = q1,2N1,2 will be irrational and the transition to the thermodynamic limit should be performed through a nonresonant
averaging:

〈F [exp(iϕ1), exp(iϕ2)]〉N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2F [exp(iϕ1), exp(iϕ2)]. (20)

The averaging in Eq. (19) yields (see the Appendix)〈
1

|D|2
〉

N1→∞
N2→∞

= 1

χ
√

Q2 − 4PP∗ , (21)

〈
exp[i(2ϕ2 + θ1 + θ2)]

|D|2
〉

N1→∞
N2→∞

= Q −
√

Q2 − 4PP∗

2χP
√

Q2 − 4PP∗ .. (22)

Here

Q = (|c1,+|2|c2,+|2 − |c1,−|2|c2,−|2)cosh2x + (|c1,+|2|c2,−|2 − |c2,+|2|c1,−|2)sinh2x,

P = (|c1,+|2 − |c1,−|2) sinh x cosh x(c2,+c∗
2,−). (23)

Applying (21)–(23) in (19) results in the following set of equations for the nonresonant case:

T̃1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

⎛
⎜⎝
∫ min (2ω∗,2)

0
μω2√

Q2−4PP∗
γ T
π

[(cosh2x + sinh2x)(|c2,+|2 + |c2,−|2 )

− 2Q

(|c1,+|2−|c1,−|2 )

]
dω

+ ∫ max (2ω∗,2)
0

μω2γ T
π

[
2

(|c1,+|2−|c1,−|2 )

]
dω

⎞
⎟⎠, if μ < 1

2

⎛
⎜⎝
∫ min(2ω∗,2)

0
μω2√

Q2−4PP∗
γ T
π

[(cosh2x + sinh2x)(|c2,+|2 + |c2,−|2 )
− 2Q(

|c1,+|2−|c1,−|2)
]
dω

+ ∫ min (2ω∗,2)
0

μω2γ T
π

[
2

(|c1,+|2−|c1,−|2 )
]
dω

⎞
⎟⎠, if μ > 1

= T − 2

(∫ min (2ω∗,2)

0

μω2√
Q2 − 4PP∗

γ T

π

[
2Q

(|c1,+|2−|c1,−|2 )

−(cosh2x + sinh2x)(|c2,+|2 + |c2,−|2 )

]
dω

)
,

T̃2 = 2
∫ min (2ω∗,2)

0
ω2 γ T

π

|c2,+|2 + |c2,−|2
χ
√

Q2 − 4PP∗ dω,

J̃ = 2
∫ min (2ω∗,2)

0
ω2 γ T

π
|v2,gr | |c2,+|2 − |c2,−|2

χ
√

Q2 − 4PP∗ dω. (24)
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The Kapitza resistance is given by

R̃K = T̃1 − T̃2

J̃
. (25)

B. Particular system: Isotopic interface

Here we consider the case of the isotopic domain, where
the LTI is a single mass at n = 0 similar to the particles in
the second domain, and all stiffness coefficients are the same.
To find the elements of the transfer matrix, we consider the

particle with n = 0:

u′′
0 (τ ) + 2u0(τ ) − u1(τ ) − u−1(τ ) = 0. (26)

Substituting (7) in (26), one obtains

α1 + β1 = α2 + β2,

exp(iq1)α1 + exp(−iq1)β1

= [2 − ω2 − exp(−iq2)]α2 + [2 − ω2 − exp(iq2)]β2.

(27)

From (27) one obtains the transfer matrix in the following
form:

G = i

2 sin q1

(
e−iq1 + ω2 + e−iq2 − 2 e−iq1 + ω2 + eiq2 − 2

−eiq1 − ω2 − e−iq2 + 2 −eiq1 − ω2 − eiq2 + 2

)
= i

2 sin q1

(
e−iq1 − eiq2 e−iq1 − e−iq2

−eiq1 + eiq2 −eiq1 + e−iq2

)
. (28)

Some further simplification yields

cosh2x = 2(μ + 1) − μω2 +
√

(4μ − μ2ω2)(4 − ω2)

2χ (4μ − μ2ω2)
;

sinh2x = 2(μ + 1) − μω2 −
√

(4μ − μ2ω2)(4 − ω2)

2χ (4μ − μ2ω2)
;

χ = 1√
μ

√
4 − ω2√

4 − μω2
. (29)

Evaluation of the Kapitza resistance using (24), (25), and
(29) demonstrates clear convergence to the average value in
the thermodynamic limit (20) for various relative positions
of the domain boundary with increasing total length (Fig. 2).
Noticeable divergence of the resistance from the average,
when the isotopic boundary is close to the end of the chain, is
related to influence of the excitations in the attenuation zone

FIG. 2. For the isotopic interface problem, the Kapitza resistance
is plotted for various interface positions in the chain for various
chain lengths using the numerical solution [24]. Horizontal line
corresponds to the nonresonant background value obtained from (22)
and (23), T = 1, μ = 2, γ = 1.

that affect the temperature distribution close to the thermostats
but are not taken into account in the analytic treatment.

Dependencies of the resistance on the mismatch μ and
dissipation coefficient in the thermostat γ are presented in
Figs. 3 and 4.

To derive the “cusp” in Fig. 3, one sets ε = |μ−1| � 1 and
obtains

cosh2x = 2(2 + ε) − (1 + ε)ω2

2
√

4 − ω2
√

4(1 + ε) − (1 + ε)2ω2
+ 1

2

= 1 + O(ε2), sinh2x = O(ε2). (30)

In addition,
√

Q2 − 4PP∗ = Q + O(ε2). Then, using
(30) and expanding the terms |c1,±|2 and |c2,±|2, the
asymptotic estimations for T̃1, T̃2, and J̃ are obtained as

FIG. 3. Dependence of Kapitza resistance on mass μ for the
isotopic interface problem. T = 1, γ = 1, κ = 1.
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follows:

T̃1 ≈ T − 2

(∫ min
(

2
√

1
μ
,2
)

0

μω2

Q

γ T

π

[ 2Q
(|c1,+|2−|c1,−|2 )−
−(|c2,+|2 + |c2,−|2)

]
dω

)

≈

⎧⎪⎨
⎪⎩
∫ 2

√
1
μ

0 2μω2 γ T
π

|c2,+|2+|c2,−|2
|c1,+|2|c2,+|2−|c1,−|2|c2,−|2 dω, if μ > 1

T − 2sin−1(
√

μ)T
π

+ ∫ 2
0 2μω2 γ T

π

|c2,+|2+|c2,−|2
|c1,+|2|c2,+|2−|c1,−|2|c2,−|2 dω, if μ < 1

=

⎧⎪⎨
⎪⎩
∫ 2

√
1
μ

0
2μT
π

1√
4−ω2+

√
4μ−μ2ω2

dω, if μ > 1

T − 2sin−1(
√

μ)T
π

+ ∫ 2
0

2μT
π

1√
4−ω2+

√
4μ−μ2ω2

dω, if μ < 1

=
{

T
2 , if μ > 1

T − T
π

sin−1(
√

μ) ≈ T − T
π

(
π
2 − √

μ − 1
) ≈ T

2 + T
π

√
μ − 1, if μ < 1

. (31)

Similarly,

T̃2 ≈
{

T
π

sin−1
(

1√
μ

)
≈ T

π

(
π
2 − √

μ − 1
) ≈ T

2 − T
π

√
μ − 1, if μ > 1

T
2 , if μ < 1

, (32)

J̃ ≈

⎧⎪⎪⎨
⎪⎪⎩
∫ 2

√
1
μ

0
γ T

√
μ

π

ω2(4−ω2 )

(1+γ 2ω2 )
(

4−ω2√
4−μω2

+√
μ

√
4−ω2

)dω, if μ > 1∫ 2
0

γ T
√

μ

π

ω2(4−ω2 )

(1+γ 2ω2 )
(

4−ω2√
4−μω2

+√
μ

√
4−ω2

)dω, if μ < 1
= γ T

2
. (33)

Then the Kapitza resistance exhibits the “cusp” presented
in Fig. 3:

T̃1 − T̃2 ≈ T

π

√
|μ − 1|; J̃ ≈ 1

2
γ T ; R̃K ≈ 2

√|μ − 1|
πγ

.

(34)
For the opposite asymptotic limit of very large mass

mismatch one assumes |μ−1|  1, γ � 1 and obtains the
following estimation for the heat flux:

J̃ ≈
∫ 2/

√
μ

0

γ T

π
ω2
√

4 − ω2
4γω2

√
4−ω2

√
μ
√

4−μω2
4γω2√μ

dω

=
∫ 2/

√
μ

0

γ T

π
ω2
√

4 − μω2dω = γ T

μ3/2
. (35)

The nonmonotonous dependence of the resistance on the
thermostat friction (Fig. 4) can be attributed to nontrivial
dependence of the heat flux on the friction even in the well-
known problem of pure chain [24]—the flux is proportional
to the friction if the latter is small, and inversely proportional
when the friction is large. This behavior can be explained
by the double role played by the friction in the model. From
one side, in the Langevin thermostat model the amount of en-
ergy irradiated into the system is proportional to the damping
coefficient for fixed temperature. From the other side, large
damping prevents efficient energy absorption and almost all
waves are reflected back into the chain, thus substantially
reducing the net flux. Thus, the effective resistance increases
in the case of large friction.

C. Particular system: Perfect acoustic match

For primarily academic purposes, we treat also the case of
the perfect acoustic match between the domains. Accordingly,
it is assumed that ω∗ = 1 (accordingly,q1 = q2) and that the
domains are connected through the second domain mass. Here
we do not expect the existence of a thermodynamic limit,
since the rapidly oscillating phases ϕ1,2 can be locked in, and
both nonresonant and resonant cases will appear, similarly
to [23]. The dependence of the Kapitza resistance on the
interface position is plotted in Fig. 5 and the resonant cases
readily reveal themselves on the nonresonant background.

FIG. 4. Dependence of Kapitza resistance on the thermostat fric-
tion γ for the isotopic interface problem. T = 1, μ = 1.9, κ = 1.
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FIG. 5. Kapitza resistance for the isotopic boundary in the case
of the perfect acoustical match, for various boundary positions in
the chain with fixed length. Horizontal line corresponds to the non-
resonant background value. T = 1, μ = 1.9, γ = 1, and N1 + N2 =
1000.

Since q1 = q2, the transfer matrix can be simplified as follows
[similar to (26)–(28)]:

G = i

2k1 sin q

×
(

k1e−iq − k2eiq − k1+k2 k1e−iq − k2e−iq − k1 + k2

−k1eiq+k2eiq + k1 − k2 −k1eiq + k2e−iq + k1 − k2

)
,

(36)

cosh2x = (κ − 1)2(1 − cos q) + 2κsin2q

2χκ2sin2q
;

sinh2x = (κ − 1)2(1 − cos q)

2χκ2sin2q
; χ = 1

κ
. (37)

Dependencies on the resistance on μ and γ are presented
in Figs. 6 and 7.

FIG. 6. Nonresonant Kapitza resistance at the isotopic boundary
in the conditions of perfect acoustical match on μ. Here, T = 1,

γ = 1, �2 = 2.

For the asymptotic case |μ−1| � 1, |κ−1| � 1, γ � 1,
one obtains the following asymptotic limit:

R̃K ≈ �2|μ − 1|
γ

. (38)

The Kapitza resistance again demonstrates nonanalytic be-
havior in the limit of small mass mismatch, but the exponent
differs from the generic case of no matching (34).

III. ISOTOPIC BOUNDARY BETWEEN NONLINEAR
INTEGRABLE DOMAINS

In this section, we consider the isotopic boundary between
integrable fragments—Toda lattice and its high-temperature
limit, the chain of rigid colliding particles. These models
are integrable and have many similarities with the har-
monic model such as undefined thermal conductivity since
the temperature profile is horizontal. One also expects that
the boundary resistance will be well defined; the substantial
difference compared to the linear case is the temperature
dependence. From this section onwards, unless mentioned
otherwise, the thermostat temperatures are set to T± =
T (1 ± �), with � = 0.1. We use the molecular dynamics
simulation with the Verlet algorithm with time step ranging
dt = 0.001–0.01. For each simulation, a simulation length of
τ = 109 time steps are used with 640 realizations. The error
bar is smaller than the size of the marker.

A. Toda lattice

The nearest neighbor interaction potential for the Toda
lattice [32] is given by

V (u) = exp(u). (39)

The typical temperature and heat flux profiles in the Toda
lattice are shown in Fig. 8; it is clear that local thermal equilib-
rium is absent for this case and the temperature profile is flat.
The Kapitza resistance here is size independent and depends
on the thermostats, similarly to the linear model. First, the
asymptotic limit of very high mass mismatch is checked for

FIG. 7. Nonresonant Kapitza resistance at the isotopic boundary
in the conditions of perfect acoustical match on coupling friction γ ,
T = 1, μ = 1.9, �2 = 2.
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FIG. 8. Temperature profile of the Toda lattice model with iso-
topic interface is shown in (a) and the heat flux profile is shown in
(b). N = 500, T+ = 1.9, T− = 0.1, μ = 1.9.

moderate temperatures T = 1–4. As shown in Fig. 9, the
temperature and mass dependence are close to Eq. (35).

In Fig. 10, the dependence of Kapitza resistance on the
mass mismatch is presented. The Toda lattice in the limit of
very low and high temperatures behaves like the harmonic
model and the chain of colliding particles respectively (the
latter is considered in next section). As shown in the inset
of Fig. 10, at very low temperatures, one observes RK ∼
|μ−1|0.5, similarly to the harmonic model; at moderate tem-
peratures RK ∼ |μ−1|0.7 and again RK ∼ |μ−1|0.5 at very
high temperature where the Toda lattice model behaves like
the colliding particles.

The thermal dependence of the Kapitza resistance is pre-
sented in Fig. 11. One can observe the crossover from the flat
dependence at the low temperatures (the quasilinear case) to
(presumably) the power law at high temperatures.

FIG. 9. For the isotopic-interface problem, heat flux variation
with the chain temperature and μ for Toda lattice model at γ �
1, |μ−1|  1. Here N = 500, γ = 0.1, � = 0.1.

FIG. 10. Kapitza resistance versus the mass mismatch in the
Toda model. The inset shows asymptotic dependence of Kapitza re-
sistance on small mass mismatch at very small to high temperatures.
The crossover from harmonic case to hard particle case is observed.
N = 500, � = 0.1.

B. Chain of colliding particles

Next, let us consider the chain of colliding particles. Sep-
arate consideration of this high-temperature limit of the Toda
model is justified, since we use an alternative (Maxwell) ther-
mostat. The setting of the model is as follows: N is the number
of hard particles in a chain of length L with a lattice constant A
(A = 1)considered. The two boundaries of the system are con-
nected to the Maxwell wall at different temperatures T+ and
T−. The simulation is based on an event-driven algorithm; a
total simulation length of 109 events is considered. The veloci-
ties of each colliding pair after the collision is calculated using
the energy and momentum conservation laws as follows:

v′
i = mi − mi+1

mi + mi+1
vi + 2mi+1

mi + mi+1
vi+1,

v′
i+1 = 2mi

mi + mi+1
vi − mi − mi+1

mi + mi+1
vi+1. (40)

FIG. 11. The thermal dependence of Kapitza resistance and the
crossover from harmonic case to hard particle case for the Toda
model. N = 500, � = 0.1.
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FIG. 12. Kapitza resistance for the chain of hard particles model
versus the mass mismatch,N = 500, T+ = 1.9, T− = 0.1. The inset
shows the asymptotic dependence of Kapitza resistance on small
mass mismatch.

Here, v is the velocity and the prime symbol represents
the updated velocities. When the particle hits the wall, it is
reflected at the velocity according to the Maxwell distribution:

P(v) = m|v|/T±exp[−mv2/(2T±)]. (41)

In Fig. 12, the Kapitza resistance dependence on the left
fragment mass is shown. As is clear from the inset of Fig. 12,
the trend is very similar to the harmonic case and high-
temperature case of Toda lattice, i.e., Kapitza resistance obeys
square root dependence on the mass mismatch at |μ−1| � 1.

The temperature dependence of the chain of colliding par-
ticles is easy to estimate. The Kapitza resistance is defined
as RK = �T

J . Here, �T ∼ T , since in the chain of colliding
particles, there are no additional parameters with the dimen-
sionality of energy and the heat flux is proportional to T
multiplied by the particle velocity, i.e., J ∼ T 3/2, therefore
Kapitza resistance behaves like RK ∼ T −1/2. One can conjec-
ture that the exponent denoted in Fig. 11 is not final, and for
even higher temperatures one should obtain the square root
dependence.

For |μ−1|  1, the heat flux dependence on the mass μ is
shown in Fig. 13. As it is derived in the previous paragraph,
the heat flux dependence on temperature is J ∼ T 3/2 (this is
the exact exponent) and the mass dependence is as given by
the asymptotic Eq. (35).

IV. ISOTOPIC BOUNDARY BETWEEN
NONINTEGRABLE DOMAINS

The current section is devoted to the resistance at the iso-
topic boundary between the nonintegrable domains. Here also
we set the parameters μ = m1, �2 = 1, and κ = 1. For model-
ing, we use two potentials that belong to different universality
classes with respect to the bulk conductivity: β-FPU potential,

V (u) = 1

2
u2 + β

4
u4, (42)

and periodic potential (chain of rotators),

V (u) = 1 − cos u. (43)

FIG. 13. Heat flux variation with the chain temperature and μ for
chain of colliding particle as |μ−1|  1. Here N = 500.

FIG. 14. Heat flux variation with the chain temperature and μ for
β−FPU chain as γ � 1, |μ−1|  1. Here N = 500, β = 0.1, γ =
0.1, � = 0.1.

FIG. 15. Numerical results of Kapitza resistance plotted by vary-
ing chain length N for various temperatures in β-FPU model. At very
low temperature and very small chain lengths, Kapitza resistance
behavior is similar to linear model. μ = 1.9, γ = 1, � = 0.1.
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FIG. 16. Scaling of heat flux with chain size is shown for FPU
model. A significant crossover is observed. In the insets, the scaling
of temperature drop (a) and Kapitza resistance (b) for small chain
lengths are plotted. T = 100, μ = 10, � = 0.1, �2 = 1.

A. β-FPU model

First, we check the asymptotic limit of very high mass mis-
match, similar to Eq. (33), for the case of the β-FPU model.
The heat flux variation for mass-interface system is shown in
Fig. 14 for very large μ and for very small friction γ = 0.1
at T = 0.1–0.3. In Fig. 14, the data can be collapsed into a
single equation for relatively large μ, which is somewhat sim-
ilar to the asymptotic equation (35), besides the temperature
dependence.

In Fig. 15, we present the size dependence of Kapitza re-
sistance for β FPU for various temperatures T = 0.001–100.
At very low temperatures and for moderate chain size,
the Kapitza resistance is very close to the size-independent
value predicted for the linear chain. For the moderate chain
length and high temperatures, one observes the decrease of
the resistance according to the scaling law Rk ∼ N−0.3. For
larger systems and intermediate temperatures, one observes a
crossover. So, it is possible to conjecture that even for low
temperatures one will observe substantial size dependence of

the Kapitza resistance. For this sake, one should consider very
long chains, beyond our numeric capabilities.

Besides, the Kapitza resistance is only meaningful when
there exists a significant temperature drop at the interface.
From the numerical studies, it is observed that such a sig-
nificant temperature drop only exists at small to moderate
chain lengths with sufficiently higher temperature in the non-
integrable models. In Fig. 16, the details of the scaling of
the Kapitza resistance are presented. It is commonly known
from several numeric experiments [33] that J ∼ N−2/3 for the
FPU model. For Kapitza resistance, there is a crossover to the
exponent −2/3 from a mass-mismatch-dependent exponent
in the thermodynamic limit. For the small chain lengths, as
shown in the inset of Fig. 16, the temperature drop �T is
also proportional to mass-mismatch dependent exponent (not
proportional to N−1) resulting in more or less universal size
dependence of the resistance.

In Fig. 17(a), the Kapitza resistance dependence on μ is
shown. At T = 0.01 the plot resembles the harmonic case (cf.
Fig. 3), although the square-root cusp is not observed clearly.
At higher temperature T = 3 the nonlinearity fully reveals
itself, and the plot clearly deviates from the harmonic case.
In Fig. 17(b), the temperature dependence is shown. For very
low temperatures, one encounters the linear limit (for given
chain length). From intermediate temperature, a crossover is
observed and the resistance monotonously decreases with the
temperature. One can conjecture that for this particular model,
as the temperature increases, the nonlinearity facilitates the
energy exchange between the modes. Thus, some part of
energy is transferred to the modes with smaller scattering, and
thus the resistance decreases. In the same time, the example
of the chain of colliding particles points to the possibility of
alternative mechanisms for the decrease of the resistance—the
increase of characteristic velocity of the heat carriers. One
encounters here multiple possible mechanisms that require
further exploration. In addition to the dependence on the sys-
tem size, the resistance also depends on the coupling friction.

B. Isotopic boundary between the rotator domains

It is well known that the rotator model exhibits normal
bulk heat conductivity, since the ballistic transport phonons

FIG. 17. Kapitza resistance for the β-FPU model versus the mass mismatch μ (N = 500, γ = 1, � = 0.1) in (a) and the average chain
temperature T (N = 500, μ = 1.9, γ = 1) in (b).
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FIG. 18. Kapitza resistance versus the chain length N for various
temperatures in rotator model. Here μ = 1.9, γ = 1, � = 0.1. The
lines are to guide the eye.

FIG. 19. Scaling of heat flux with chain size is shown for chain
of rotators. All the parameters show normal behavior. Both �T (a)
and J (b) proportional to 1

N , and RK does not depend on the chain
size in the thermodynamic limit. T+ = 0.55, T− = 0.45, μ = 10.

FIG. 21. Heat flux dependence on μ for the chain of rotators at
γ � 1, |μ−1|  1. Here N = 500, γ = 0.1.

are locked by the rotobreathers [29]. The dependence of the
Kapitza resistance on the system size is shown in Fig. 18.
Similar to the FPU model, at very low temperatures and small
system size the Kapitza resistance approaches the linear limit.
Then, one observes an interesting behavior: for higher tem-
peratures the size dependence saturates for moderate chain
length, whereas for lower temperatures a crossover to (pre-
sumably) saturation is observed. Moreover, both �T (a) and
J(b) in the saturation regime scale normally, as N−1 (see
Fig. 19). In addition, the Kapitza resistance does not depend
on the thermostat friction. The asymptotic mass dependence
at |μ−1| → 0 conforms to the linear case at low temperatures
and deviates from it as temperature increases [see Fig. 20(a)].
In Fig. 20(b), the temperature dependence of Kapitza re-
sistance is presented, and demonstrates the crossover from
almost linear to substantially nonlinear behavior.

In the limit of the strong mass mismatch, one obtains
the collapse of the heat flux, similarly to the β-FPU model
(Fig. 21).

V. CONCLUSION

In the explored case of the domain boundary, one can de-
rive the exact expression for the Kapitza resistance. Contrary

FIG. 20. Mass-mismatch dependence of the Kapitza resistance (N = 500, γ = 1) in (a) and temperature dependence of the Kapitza
resistance for chain of rotators in (b) (N = 500, μ = 1.9, γ = 1, � = 0.1).
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to the case of isolated defect [23], generically the resistance
is well defined in the thermodynamic limit. However, in the
linear case, as well as in the cases of Toda potential and
colliding particles, the temperature drop and the heat flux do
not depend on the system size. Therefore, the resistance is not
a local property of the boundary, and should be still considered
as anomalous. This anomalous nonlocality also reveals itself
in the dependence of the resistance on the thermostat char-
acteristics. For the FPU chain, the anomaly is different—the
resistance vanishes in the thermodynamic limit. The normal
behavior with appropriate scaling behavior and locality is
restored for the boundary between the rotator domains.

Contrary to the problem of the bulk conductivity, linear ap-
proximation is relevant for the nonlinear models (Toda, FPU,
rotators) in the case of very small temperatures for the finite
system size. As the system size grows for given temperature,
one encounters the deviations from predictions of the linear
theory—even weak nonlinearity reveals itself as the system
size increases.

Consideration of the nonlinear integrable domains sheds
light on the reason of thermal dependence on the Kapitza

resistance. Indeed, for the chain of colliding particles one
obtains the exact scaling Rk ∼ T −0.5 for the Toda lattice and
can conjecture the crossover to a similar scaling for very high
temperatures. For the FPU case, the final exponent may be
different; this issue requires further exploration. For the chain
of rotators, the temperature dependence is qualitatively dif-
ferent, presumably due to periodicity of the nearest-neighbor
potential. For high mass mismatch μ  1, one observes the
data collapse of the form J ∼ T αμβ . For exponent α, one has
exact values α = 1 for the linear system and α = 3/2 for the
colliding particles. For other explored models, the values are
between or close to these limits. For the other exponent, the
linear system yields β = −3/2. For the nonlinear models, this
parameter exhibits substantial variability. This question also
requires further exploration.
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APPENDIX: AVERAGING IN EXPRESSIONS (19)

〈
1

|D|2
〉

N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

1

χ

∣∣∣∣∣
cosh xei(ϕ1+ϕ2+θ1 )c1,+c2,+ + sinh xc2,+c1,−ei(ϕ2−ϕ1+θ2 )−
− sinh xc1,+c2,−e−i(ϕ2−ϕ1+θ2 ) − cosh xe−i(ϕ1+ϕ2+θ1 )c1,−c2,−

∣∣∣∣∣
2 ζ1=ϕ1+(θ1−θ2/2)

ζ2=ϕ2+(θ1+θ2/2)

= 1

4π2

∫ 2π

0
dζ1

∫ 2π

0
dζ2

1

χ (Aeiζ1 − Be−iζ1 )(A∗e−iζ1 − B∗eiζ1 )
= 1

2π

∫ 2π

0

dζ2

χ ||A|2 − |B|2| , (A1)

A = cosh xeiζ 2 c1,+c2,+ − sinh xc1,+c2,−e−iζ2 , B = cosh xe−ζ2 c1,−c2,− − sinh xc2,+c1,−eiζ2 ,

1

2π

∫ 2π

0

dζ2

χ
∣∣|A|2 − |B|2∣∣ =

j=exp(iζ2 )

−i

2π

∮
| j|=1

1

χ

d j

j(Q − P j − P∗/ j)
= 1

χ
√

Q2 − 4PP∗ ,

Q = (|c1,+|2|c2,+|2 − |c1,−|2|c2,−|2)cosh2x + (|c1,+|2|c2,−|2 − |c2,+|2|c1,−|2)sinh2x, (A2)

P = (|c1,+|2 − |c1,−|2) sinh x cosh x(c2,+c∗
2,−),〈

exp(i(2ϕ2 + θ1 + θ2)

|D|2
〉

N1→∞
N2→∞

= 1

4π2

∫ 2π

0
dζ1

∫ 2π

0
dζ2

exp(2iζ2)

χ (Aeiζ1 − Be−iζ1 )(A∗e−iζ1 − B∗eiζ1 )

= 1

2π

∫ 2π

0

exp(2iζ2)dζ2

χ
∣∣|A|2 − |B|2∣∣ = −i

2π

∮
| j|=1

1

χ

jd j

j(Q − P j − P∗/ j)
= Q −

√
Q2 − 4PP∗

2χP
√

Q2 − 4PP∗ , (A3)

〈
exp[−i(2ϕ2 + θ1 + θ2)]

|D|2
〉

N1→∞
N2→∞

= Q −
√

Q2 − 4PP∗

2χP∗√Q2 − 4PP∗ . (A4)
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