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Effects of bidirectional phenotype switching on signal noise in a bacterial community
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Cells can sense and process various signals. Noise is inevitable in the cell signaling system. In a bacterial
community, the mutual conversion between normal cells and persistent cells forms a bidirectional phenotype
switching cascade, in which either one can be used as an upstream signal and the other as a downstream signal.
In order to quantitatively describe the relationship between noise and signal amplification of each phenotype, the
gain-fluctuation relationship is obtained by using the linear noise approximation of the master equation. Through
the simulation of these theoretical formulas, it is found that the bidirectional phenotype switching can directly
generate interconversion noise which is usually very small and almost negligible. In particular, the bidirectional
phenotype switching can provide a global fluctuating environment, which will not only affect the values of noise
and covariance, but also generate additional intrinsic noise. The additional intrinsic noise in each phenotype is
the main part of the total noise and can be transmitted to the other phenotype. The transmitted noise is also a
powerful supplement to the total noise. Therefore, the indirect impact of bidirectional phenotype switching is far
greater than its direct impact, which may be one of the reasons why chronic infections caused by persistent cells
are refractory to treat.

DOI: 10.1103/PhysRevE.104.054116

I. INTRODUCTION

Antibiotics have saved countless lives since they were in-
troduced into modern medicine because they provide good
treatments for many diseases, including serious infections
caused by bacteria. However, due to widespread use and
abuse, antibiotic resistance has gradually increased, while the
discovery of new antibiotics has decreased, bringing about a
global health crisis [1–3].

Persistence is believed to be the underlying cause of an-
tibiotic resistance [4]. It is a reversible phenotype switching
associated with heterogeneous bacterial populations [1,5],
which can lead to nongenetically encoded and reversible loss
of antibiotic susceptibility [6]. Persistence has become a new
method of controlling antibiotic resistance, and it has attracted
more and more attention.

The terms “persistence” and “persistent cells (PCs)” were
proposed by Bigger [7] in 1944. By exposing genetically ho-
mogeneous strains of Staphylococcus aureus to a bactericidal
concentration of penicillin for a long time, a small part of
bacteria can escape the killing of antibiotics and survive, but
their offspring are still sensitive to antibiotics [8–10]. This is
the persistence of the cell. The small part of bacteria is called
persistent cells. PCs are only temporarily resistant to antibi-
otics. When antibiotic pressure drops, they return to normal
cells (NCs) [11]. PCs are not genetic variation, but phenotype
switching [12–16]. In response to environmental triggers such
as resource pressure or the presence of antibiotics, NCs and
PCs can be transformed into each other [17–19] to form a
bidirectional phenotype switching cascade.
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Random fluctuations in the level of biomolecules are called
“noise.” In this bidirectional phenotype switching cascade,
NCs and PCs can self-proliferate and undergo procedural
death. Each biochemical reaction occurs randomly, which
creates inherent noise. Changes in the microenvironment will
generate external noise. So, noise is inevitable.

Cells can sense and process various signals that control
their basic and specific cellular processes [20,21]. Cell signal
transduction transmits intracellular and extracellular signals
to different cellular compartments to regulate various cell re-
actions, thereby responding to environmental and intracellular
changes [22]. It plays a vital role in almost all cell functions.

In the bidirectional phenotype switching cascade of the
bacterial community, each phenotype can be used as an up-
stream signal, and the other as a downstream signal. Now
interesting questions are pointed out: What is the relationship
between cellular noise and signal amplification? What are the
effects of phenotype switching on the signal noise? To address
these issues, the gain factor [21,23] is introduced so that the
gain fluctuation equation is obtained. Through simulation of
these theoretical formulas, the characteristics of signal noise
propagation can be studied.

The relevant experimental results in published papers so
far are so few that theoretical results cannot be compared with
actual data. In order to test whether the theoretical results
are correct, Gillespie’s algorithm [24,25] is used, which is a
classic approach for stochastic simulation of chemical sys-
tems [26]. Gillespie’s algorithm uses a strictly derived Monte
Carlo program to numerically simulate the time evolution of a
given chemical system and can correctly explain the inherent
fluctuations and correlations in the deterministic formula [24].

The paper is arranged as follows. We start by constructing
a bidirectional phenotype switching cascade in a bacterial
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FIG. 1. The bidirectional phenotype switching cascade in a bac-
terial community [29–31]. Normal cells (NCs) and persistent cells
(PCs) can undergo self-proliferation, death, and switching with the
rates of ai, bi, and ri j (i, j = 1, 2; i �= j), respectively. Normally, the
death rate bi, and the switching rate ri j are taken as constants. Due
to limited nutrition and exploitative competition, the self-proliferate
rate of phenotype i is usually taken as ai = ki[1 − (N1 + N2)/N0],
where ki is the maximum self-proliferation rate, N0 is the environ-
ment carrying capacity, and Ni (i = 1, 2) are the numbers of two
phenotypes.

community in Sec. II. In Sec. III, the gain-fluctuation relation
for theoretically analyzing is derived by using the linear noise
approximation of the master equation [27,28]. Using these
theoretical formulas, the effects of gain factors on signal noise
propagation is studied in Sec. IV. We end with conclusions
and discussion in Sec. V.

II. BIDIRECTIONAL PHENOTYPE SWITCHING
CASCADE IN A BACTERIAL COMMUNITY

The bidirectional phenotype switching cascade with ex-
ploitative competition in the bacterial community [29–31] is
shown in Fig. 1.

PCs and NCs can self-proliferate, and their maximum self-
proliferation rates are k1 and k2, respectively. Due to the
limited nutrition, the self-proliferation rate will be affected by
the environment carrying capacity, that is, the maximum total
number of cells N0. In addition, in order to obtain more re-
sources, there is an exploitative competition between different
cell phenotypes, that is, one cell phenotype maximizes the use
of resources and reduces resource sharing, thus exhausting the
resource availability of other cell phenotypes [29–31]. Based
on the classic competitive Lotka-Volterra equation, the actual
self-proliferation rates of two phenotypes are taken as a1 =
k1(1−N1+N2

N0
) and a2 = k2(1−N1+N2

N0
), respectively, where Ni

(i = 1, 2) are the numbers of two phenotypes.
PCs and NCs can be switched mutually. The switching

rates are described as r12 and r21, respectively. Since PCs are
only a small part of the bacterial community, the switching
rate is relatively small. Therefore, r12 and r21 are usually taken
as constants.

PCs and NCs can undergo death with the probabilities of
b1 and b2 per unit time, respectively. Normally, the death rate
bi is taken as a constant.

In the deterministic description, the time evolution is

dN1

dt
= a1N1 − b1N1 − r12N1 + r21N2, (1)

dN2

dt
= a2N2 − b2N2 − r21N2 + r12N1. (2)

Taking dNi/dt = 0 (i = 1, 2), the steady states Ns
i are ob-

tained as follows:

Ns
1 = ρ1s2 + r12

k2

N0

ρ1(1 + ρ1)
, Ns

2 = ρ1s2 + r12

k2

N0

1 + ρ1
, (3)

with

ρ1 = k1s2 − k2s1 +
√

(k1s2 − k2s1)2 + 4k1k2r12r21

2k2r21
. (4)

Here, s1 = k1 − b1 − r12, s2 = k2 − b2 − r21, denoting the
inherent net (per-capita) growth rates.

If there is no mutual switching, that is, r12 = r21 = 0, the
steady-state value is 0 when ai �= bi, and an arbitrary value
when ai = bi. Both of these situations are impossible in biol-
ogy. Therefore, the case of r12 = r21 = 0 is not included in the
following discussion.

III. NOISY SIGNAL PROPAGATION FORMULAS

A. The reaction flux elasticity

To measure how the balance between production and elim-
ination of Ni is affected by Nk , the reaction flux elasticity
[32–34] is defined by

Hki =
〈
∂ ln(J−

i /J+
i )

∂ ln Nk

〉
, (5)

where J+
i = ai + ∑

j �=i r jiNj is the pure production rate of
phenotype i, J−

i = bi + ∑
j �=i ri jNi is the pure elimination rate

of phenotype i. Angle bracket indicates the average value,
which can be replaced by the number of stationary population
in the mean-field theory, that is, 〈Ni〉 = Ns

i .
Equation (5) can be rewritten as

Hki = −
〈

Nk

J+
i

∂

∂Nk
(J+

i − J−
i )

〉
. (6)

Here, J+
i − J−

i is the net production rate of phenotype i.
Taking into account Eqs. (1) and (2), we have

H11 = k1〈N1〉/N0 + ρ1r21

a1 + ρ1r21
, (7)

H21 = ρ1
k1〈N1〉/N0−r21

a1 + ρ1r21
, (8)

H12 = k2〈N2〉/N0 − r12

ρ1a2 + r12
, (9)

H22 = r12 + ρ1k2〈N2〉/N0

ρ1a2 + r12
. (10)

In the bacterial community, the switching rate is relatively
small, so the sum of the two switching rates is always less
than the difference between the maximum growth rate and
the death rate of each phenotype, that is, r21 + r12 < k1 − b1,
and r12 + r21 < k2 − b2. Then, the value of each reaction flux
elasticity will be larger than zero, that is, Hi j > 0.

B. The gain factor

In signal transduction systems, the gain factor is used to
quantify the noise amplification. It is defined as the ratio of the
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relative change of the output signal to the relative change of
the input signal [21,23]. In the phenotype switching cascade,
the upstream phenotype is regarded as the input signal and
the downstream phenotype is regarded as the output signal.
Obviously, input and output signals are affected by the re-
action process, which is different from the gene-based signal
transduction systems. Thus, when the populations change very
little, we redefine the gain factor based on the reaction flux as

gik =
〈
�Nk/Nk

�Ni/Ni

〉
=

〈
∂ ln Nk

∂ ln Ni

〉

=
〈
∂ ln(J−

k /J+
k )

∂ ln Ni

〉〈
∂ ln Nk

∂ ln(J−
k /J+

k )

〉
= Hik

Hkk
. (11)

In the bacterial community including NCs and PCs, the
switching between the two phenotypes is bidirectional. Each
phenotype can be used as an input signal, and the other pheno-
type is an output signal. Therefore, there are two gain factors:

g12 = H12

H22
≡ g1,

g21 = H21

H11
≡ g2. (12)

Substituting Eqs. (7)–(10) into Eq. (12) and simplifying,
we can get

g1 = k2〈N2〉 − r12N0

ρ1k2〈N2〉 + r12N0
,

g2 = ρ1
k1〈N1〉−r21N0

k1〈N1〉 + ρ1r21N0
. (13)

C. The average lifetime

In the quantitative biology, the average lifetime τi is defined
as the population size divided by its total elimination rate.
Under the steady state, 〈J+

i 〉 = 〈J−
i 〉 = 〈Ji〉, so

τi =
〈

Ni

J−
i

〉
=

〈
Ni

J+
i

〉
=

〈
Ni

Ji

〉
. (14)

For NCs and PCs in the bacterial community, their average
lifetimes are as follows:

τ−1
1 = b1 + r12, τ−1

2 = b2 + r21. (15)

D. Gain-fluctuation relation

In stochastic dynamics theory, the master equation gives
the joint probability distribution P (N1, N2, t ) of population
dynamics [27]:

∂P(N1, N2, t )

∂t
=

{
2∑

i=1

[(
�−1

i − 1
)

aiNi + (
�1

i − 1
)

biNi
]

+(
�1

1�
−1
2 − 1

)
r12N1+

(
�1

2�
−1
1 − 1

)
r21N2

}

× P(N1, N2, t ). (16)

Here, �±m
i ( j) is the step operator that increases Ni ( j) by

±m, i.e., �±m
i f (Ni, Nj ) = f (Ni ± m, N j ), or �±m

j f (Ni, Nj ) =
f (Ni, N j ± m).

The master equation is almost of no direct use to us
because it cannot be solved. However, it can be expanded
using van Kampen’s �-expansion method. For large sys-
tem size �, let Ni(t ) = �xi(t ) + �1/2ξi(t ), and P(N1, N2, t ) =
�–1	(ξ1, ξ2, t ). Collecting the terms of �0 in the expansion
of Eq. (16), the Fokker-Planck equation [28] can be obtained:

∂

∂t
	(ξ 1, ξ2, t ) = −

2∑
i,k

Aik
∂

∂ξi
[ξk	(ξ 1, ξ2, t )]

+ 1

2

2∑
i,k

Bik
∂2	(ξ 1, ξ2, t )

∂ξi∂ξk
. (17)

A is the drift matrix and B is the diffusion matrix. Their
matrix elements are

Aik = ∂

∂Nk
(J+

i − J−
i )

= ∂

∂Nk

(
aiNi − biNi −

∑
j �=i

ri jNi +
∑
j �=i

r jiNi

)
, (18)

Bii = 2

(
aiNi +

∑
j �=i

r jiNj

)
,

Bik = −(rikNi + rkiNk ) (k �= i). (19)

The coefficients of the Fokker-Planck equation [Eq. (17)]
at the steady state satisfy the fluctuation-dissipation relation-
ship:

AC + (AC)T + �B = 0, (20)

where C is the covariance matrix. In order to quantify
the noise propagation, the fluctuation-dissipation relationship
[Eq. (20)] is usually normalized [35–37] as

MV + (MV)T + D = 0, (21)

with

Vik = Vki = Cik

〈Ni〉〈Nk〉 , (22)

Mik = Aik
〈Nk〉
〈Ni〉 , (23)

Dik = �Bik

〈Ni〉〈Nk〉 . (24)

Angle brackets indicate average values. In the mean-field
theory, the stationary population number can be replaced by
its mean value, namely Ns

i = 〈Ni〉. Equation (21) is named the
normalized fluctuation-dissipation formula. Here, V includes
normalized variance Vii and normalized covariance Vik (k �= i).
Vii describes the fluctuation (or noise) in the ith phenotype,
and Vik describes the correlation between the fluctuations in
the ith phenotype and in the kth phenotype.

M is the normalized drift matrix. Substituting Eq. (18) into
Eq. (23), and considering Eq. (11), we can get its elements:

Mik = −gki
i, (25)
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where 
i = Hii/τi = 〈∂ (J−
i − J+

i )/∂Ni〉, which is the net av-
erage death probability of the ith phenotype per unit time,
indicates the change rate of net death rate with its own popu-
lation.

D is the normalized diffusion matrix, and its element can
be obtained based on Eqs. (19) and (24):

Dii = 2
[
ai〈Ni〉 + ∑

j �=i r ji〈Nj〉
]

〈Ni〉2 , (26)

Dik = −
(

rik

〈Nk〉 + rki

〈Ni〉
)

(k �= i). (27)

Substituting Eqs. (25)–(27) into Eq. (21), we get

2∑
j=1

Vjig ji = 1

〈Ni〉τi
i
, (28)

2∑
j=1

(Vjk
ig ji + Vi j
kg jk ) = −
[

rik

〈Nk〉 + rki

〈Ni〉
]

(k �= i) .

(29)

By adopting the noise decomposition method used in gene
networks [32–34] and expanding Eqs. (28) and (29) with Vi j =
Vji(i �= j), g12 ≡ g1, and g21 ≡ g2, we can get

V ii =

Pure︷ ︸︸ ︷
1

〈Ni〉Hii
+

Additional︷ ︸︸ ︷

 j�

〈Ni〉Hii
gig j︸ ︷︷ ︸

Intrinsic noise
in the i-th phenotype

+ 
i�

〈Nj〉Hj j
g2

j︸ ︷︷ ︸
Transmitted noise

from the other phenotype

+
(

r ji

〈Ni〉 + ri j

〈N j〉
)

�g j︸ ︷︷ ︸
Interconversion noise

between two phenotypes

(i, j = 1, 2; i �= j), (30)

V12 = V21 =
(

− �
2g1

〈N1〉H11

)
︸ ︷︷ ︸

From additional intrinsic
noise in one phenotype

+
(

− �
1g2

〈N2〉H22

)
︸ ︷︷ ︸

From additional intrinsic
noise in the other phenotype

+
[
−�

(
r21

〈N1〉 + r12

〈N2〉
)]

︸ ︷︷ ︸
From interconversion noise

between two phenotypes

, (31)

with �−1 = (1 − g1g2)(
1 + 
2), which is determined by
two net average death probabilities 
i and two gain factors
gi. Except for the first term in Eq. (30), the other six terms all
contain factor �, indicating that the mutual switching between
NCs and PCs provides a fluctuating environment with a global
impact on the two phenotypes.

Equation (30) is the gain-fluctuation relationship [23,38]
of the bidirectional phenotype switching cascade. It is shown
that the total noise in one phenotype includes intrinsic noise,
transmitted noise from the other phenotype, and intercon-
version noise between the two phenotypes. In addition to
pure intrinsic noise, intrinsic noise also includes additional
intrinsic noise. The pure intrinsic noise is equal to the re-
ciprocal of the product of the average number 〈Ni〉 and the
reaction flux elasticity Hii. Obviously, the smaller the average

number, the more significant the pure intrinsic noise. The
additional intrinsic noise in the ith phenotype is (
 j�gig j )
times its pure intrinsic noise, reflecting the indirect influ-
ence of the mutual switching between NCs and PCs. The
transmitted noise comes from additional intrinsic noise in the
other phenotype, indicating that the noise can be transmitted
in this bidirectional phenotype switching cascade. The inter-
conversion noise is related to the two switching rates and
reflects the direct influence of the mutual switching between
NCs and PCs.

Equation (31) describes the correlation between the sig-
nal fluctuations in NCs and in PCs. It can be found the
correlation is related to the additional intrinsic noise in
each phenotype and the interconversion noise between the
two phenotypes.

IV. SIMULATIONS AND RESULTS

A. The character of gain factors

Stationary numbers of two phenotypes Ns
i are given in

Eqs. (3) and (4). We can see that the stationary number of each
phenotype is determined by all rate parameters. Generally,
the death rate bi and the switching rate ri j are considered
constants. Moreover, the maximum self-proliferation rate of
PCs k2 does not change much. Therefore, the parameter k1

is selected as the control variable. Here we take the dimen-
sionless parameters k2 = 0.121, b1 = b2 = 0.02, r12 = r21 =
0.001, and N0 = 1000 [29–31]. Considering the biological
significance of the parameters, let k1 vary within the range
of [0.1, 0.24].

The gain factors gi (i = 1, 2) as a function of k1 are given
in Fig. 2. In Fig. 2(a), lines are theoretical predictions of
Eq. (13), where 〈Ni〉 is replaced by Ns

i . Hollow markers are
from simulation results of Eq. (13), where 〈Ni〉 is replaced by
the output of the Gillespie method [24,25]. It can be seen that
when � (about 1000) is selected appropriately and the number
of iterations is large enough (about 109 times), the above two
simulation results are in good agreement. In addition to the
two change curves of gi, the change curve of 1/g2 is also
shown in Fig. 2(b), which is represented by a dotted line. We
can find that g1 �= 1/g2, which is different from the definition
in signal transduction system, because the gain factor we
define is related to the reaction process, rather than a simple
data ratio.

It can be seen that as k1 increases, g1 increases and grad-
ually reaches a constant value, while g2 decreases. It can be
seen from the partial enlargement that although g2 �= 0, it will
eventually become very small within the permitted parameter
range. When k1 = 0.12, the two gain factors are equal, that is,
g1 = g2 = 1, indicating that the relative change of the output
signal at this point is equal to the change of the input signal.
In addition, it is a turning point. Before and after k1 = 0.12,
the sign of the difference between the relative change of the
output signal and that of the input signal will be opposite.

B. Effects of gain factors on stationary numbers

It can be seen from Eqs. (3) and (4) that although the
expressions of stationary numbers do not obviously include
the gain factors gi, according to the definition of gi, the
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FIG. 2. Gain factors gi (i = 1, 2) as a function of k1. All the parameters are dimensionless. The values of other parameters are k2 = 0.121,
b1 = b2 = 0.02, r12 = r21 = 0.001, and N0 = 1000 [29–31], respectively. (a) Lines are theoretical predictions according to Eq. (13). Hollow
markers are from simulations using the Gillespie method [24,25]. (b) The dotted line shows the change curve of 1/g2.

relationship between the two can be given by numerical sim-
ulation, as shown in Fig. 3. Lines are theoretical predictions
according to Eqs. (3) and (4). Hollow markers are from sim-
ulations using the Gillespie method [24,25]. Two simulation
results are in good agreement.

We can find that as g1 increases, the stationary number of
PCs decreases, while that of NCs increases. On the contrary,
as g2 increases, the former increases, while the latter de-
creases. This fact is attributed to the exploitative competition
between the two phenotypes, that is, one phenotype maxi-
mizes the use of resources to allow itself to survive, thereby
depleting the resources of the other phenotype and making it
annihilate [29].

Moreover, whether it is viewed from g1 or g2, when the
stationary number of NCs is large, that of PCs is not zero,
indicating that PCs cannot be completely killed by NCs. This
is consistent with the fact that NCs can coexist with PCs
[17–19].

C. Effects of gain factors on the covariance

From Eq. (31), we can find that V12 seems to have a linear
relationship with g1 or g2. However, both g1 and g2 are closely
related to the average numbers of NCs and PCs. Therefore,

the true relationship between them should be judged through
numerical simulations.

Effects of gain factors gi(i = 1, 2) on normalized covari-
ance V12 are given in Fig. 4. Lines are theoretical predictions
according to Eq. (31). Hollow markers are from simulations
using the Gillespie method [24,25]. Two simulation results
are in good agreement, too. It is found that V12 < 0. So, there
is a negative correlation between the fluctuations in NCs and
in PCs. The responses of V12 to changes in g1 or g2 are
similar. Each curve is approximately a parabola with upward
opening. When g1 = 1.0 or g2 = 1.0, the absolute value of V12

is the largest. Therefore, within the permitted range of gi, the
dependence between the two phenotypes is the strongest, and
their interaction is the least likely to be destroyed.

D. Effects of gain factors on fluctuations

Effects of gain factors gi(i = 1, 2) on the normalized vari-
ance Vii are given in Fig. 5. Lines are theoretical predictions
according to Eq. (30). Hollow markers are from simulations
using the Gillespie method [24,25]. Two simulation results are
also in good agreement.

It can be seen that with the increase of g1, the nor-
malized variance of NCs V11 gradually decreases, while the

FIG. 3. Effects of gain factors gi (i = 1, 2) on stationary numbers Ns
i . Lines are theoretical predictions according to Eqs. (3) and (4). Hollow

markers are from simulations using the Gillespie method [24,25]. All the parameters are dimensionless. The values of other parameters are
k2 = 0.121, b1 = b2 = 0.02, r12 = r21 = 0.001, and N0 = 1000 [29–31], respectively.
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FIG. 4. Effects of gain factors gi (i = 1, 2) on normalized covariance V12. Lines are theoretical predictions according to Eq. (31). Hollow
markers are from simulations using the Gillespie method [24,25]. All the parameters are dimensionless. The values of other parameters are
k2 = 0.121, b1 = b2 = 0.02, r12 = r21 = 0.001, and N0 = 1000 [29–31], respectively.

normalized variance of PCs V22 gradually increases and
reaches a constant. With the increase of g2, V11 gradually
increases and reaches a constant, while V22 first increases
slightly, reaches the maximum value, then gradually de-
creases, and reaches a constant.

In the theory of statistical physics, the relative fluctuation
of the number of particles (called noise in quantitative bi-
ology) is inversely proportional to the number of particles.
When the number of particles is large enough, the noise
will be zero, and as the number of particles decreases, the
noise will gradually increase. However, it can be found from
Fig. 5(a) that as g1 increases [while the number of PCs
gradually decreases; see Fig. 3(a)], V22 will reach a constant
instead of gradually increasing. In addition, it can be seen
from Fig. 5(b) that as g2 increases, V22 has an extreme value;
when g2 is large enough [while the number of PCs is large
enough; see Fig. 3(b)], V22 is indeed small but not equal to
0. Why are these data results inconsistent with the theory of
statistical physics? For understanding, noise decomposition is
used; see the next section.

E. Effects of gain factors on noise propagation

The numerical simulation of Eq. (30) is carried out, and the
results are given in Fig. 6. The influence of gain factors gi (i =

1, 2) on the noise propagation in the bidirectional phenotype
switching cascade of the bacterial community are discussed.

It can be seen from Fig. 6(a) that for NCs, with the increase
of g1, both the pure intrinsic noise and the additional intrinsic
noise decrease and eventually reach zero. And, at the same
value of g1, the additional intrinsic noise is greater than that
of the pure intrinsic noise. The transmitted noise from PCs in-
creases first, reaches the maximum value, and then decreases.
Although relatively small, it will not be reduced to zero at the
end of the permitted range of g1 (see the line with circles in the
partial enlarged view). The interconversion noise between the
two phenotypes is almost zero and can be omitted. The change
trend of the total noise is the same as that of the addition
intrinsic noise. Due to the transmitted noise from the PCs, the
total noise in NCs is greater than its addition intrinsic noise,
and it is not zero even if g1 is large.

From Fig. 6(b), it is found that for PCs, as g1 increases,
the pure intrinsic noise increases monotonically. The addi-
tional intrinsic noise increases first, reaches the maximum
value when g1 = 3.0, and then decreases. When g1 < 4.4,
the additional intrinsic noise is greater than the pure intrinsic
noise. The transmitted noise from NCs increases first, reaches
a maximum quickly, and then decreases. The interconversion
noise between the two phenotypes is also almost zero and can
be omitted. Therefore, in the region of g1 > 3.0, due to the
increase of pure intrinsic noise, even if the additional intrinsic

FIG. 5. Effects of gain factors gi (i = 1, 2) on normalized variances Vii. Lines are theoretical predictions according to Eq. (30). Hollow
markers are from simulations using the Gillespie method [24,25]. All the parameters are dimensionless. The values of other parameters are
k2 = 0.121, b1 = b2 = 0.02, r12 = r21 = 0.001, and N0 = 1000 [29–31], respectively.
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FIG. 6. Effects of gain factors gi (i = 1, 2) on the noise propagation. Lines are theoretical predictions according to Eq. (30). All the
parameters are dimensionless. The values of other parameters are k2 = 0.121, b1 = b2 = 0.02, r12 = r21 = 0.001, and N0 = 1000 [29–31],
respectively.

noise decreases, the total noise in PCs will not decrease, but
will reach a constant value. In addition, due to the transmitted
noise from NCs, even if g1 is small and the number of PCs is
large [see Fig. 3(a)], its total noise is small but not zero.

From Fig. 6(c), we can find for NCs, with the increase of
g2, both the pure intrinsic noise and the additional intrinsic
noise increase. At the same value of g2, the additional intrinsic
noise is greater than the pure intrinsic noise. The transmitted
noise from PCs increases first, reaches the maximum value,
and then decreases. The interconversion noise is almost zero.
The change trend of the total noise is the same as that of the
addition intrinsic noise. Due to the transmitted noise from
PCs, the total noise in the NCs is greater than its addition
intrinsic noise.

From Fig. 6(d), it is found that for PCs, as g2 increases,
the pure intrinsic noise quickly drops to zero. The additional
intrinsic noise and the transmitted noise from NCs both in-
crease first, reach the maximum values, and then decrease.
However, the additional intrinsic noise reaches its maximum
value before the transmitted noise, and its maximum value is
greater than that of the transmitted noise. The interconversion
noise between the two phenotypes is also almost zero. Since
the extreme value of the additional intrinsic noise cannot be
offset by other noises, the total noise in PCs has an extreme
value. Due to the transmitted noise from NCs, even if g2 is
large and the number of PCs is large [see Fig. 3(b)], the total
noise in PCs is small but not zero.

All in all, whether it is for NCs or for PCs, and whether
it is viewed from g1 or g2, the additional intrinsic noise is the
main part of the total noise, and the transmitted noise is a pow-
erful supplement to the total noise, while the interconversion

noise between the two phenotypes is almost zero and can be
omitted.

In the bacterial community, NCs and PCs can convert into
each other. The direct effect of this mutual switching is the
generation of interconversion noise, but the interconversion
noise is generally very small and almost negligible. The in-
direct effect of this interconversion is to provide a global
fluctuating environment, which affects the values of transmit-
ted noise and interconversion noise. Especially, the fluctuating
environment can produce additional intrinsic noise, which is
the main part of the total noise. It can be seen that the indirect
impact of interconversion is far greater than its direct impact.

V. CONCLUSIONS AND DISCUSSION

Currently, PCs have been found in human pathogens (such
as S. aureus, Mycobacterium tuberculosis, and Pseudomonas
aeruginosa), eukaryotic microorganisms (such as Candida
albicans and Saccharomyces cerevisiae), and even tumor cell
populations [39]. Because PCs can restart cell division after
cessation of antibiotics [40], they greatly contribute to the
refractory of chronic infections [11]. There is now convincing
experimental evidence to prove their clinical relevance [41].
Therefore, insights into PCs will help us to cope with the
ongoing antibiotic crisis [7]. And, strategies to eliminate PCs
may improve the outcome of infection treatment [42].

In the bacterial community, NCs and PCs can switch into
each other, resulting in a bidirectional phenotype switching
cascade, in which either one can be used as an input signal,
and the other phenotype as an output signal. The bidirectional
phenotype switching provides a fluctuating environment that
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has a global impact on the two phenotypes, so the results are
very interesting. The global fluctuating environment will not
only affect the values of transmitted noise and interconversion
noise, but also generate additional intrinsic noise, which is the
main part of the total noise. Moreover, the additional intrinsic
noise in each phenotype can be transmitted to the other pheno-
type, and the transmitted noise is a powerful supplement to the
total noise. However, the interconversion noise directly caused
by the mutual switching is generally very small and almost
negligible. Therefore, the indirect impact of interconversion
is far greater than its direct impact, which may be one of the
reasons why chronic infections caused by persistent cells are
refractory to treatment.

In Ref. [32], one species can affect the growth rate of
the other species, but the latter cannot affect the growth rate
of the former (such as messenger RNAs and proteins). The
author derived the noise formulas of the two species in detail.
In Ref. [33], several models of stochastic gene expression
were reviewed and the corresponding noise formulas were
deduced. In Ref. [34], a synthetic network composed of four
genes was designed, in which upstream genes can regulate
their neighboring downstream genes, while downstream genes
cannot regulate their neighboring upstream genes. Since the
interactions between adjacent genes can be externally con-
trolled and quantified at the single-cell level, authors verified
the noise formulas in gene expression through experiments.
In our recent paper on the propagation of noisy signals in
colon cells [35], upstream cells can differentiate into down-

stream cells, but downstream cells cannot dedifferentiate into
upstream cells. In above cases, the interaction between genes
or cells is unidirectional. The unidirectional conversion can
only generate conversion noise, but cannot provide a global
fluctuating environment. Therefore, there is no additional in-
trinsic noise in the total noise of the cell. There is also no
factor similar to “�” in the formulas of transmitted noise,
interconversion noise, and covariance.

In addition, the bidirectional phenotype switching can
cause the interconversion noise, which is not present in gene
expression because although upstream genes can affect the
expression of downstream genes, there is no direct phenotype
switching between cells. Of cause, in this paper, the intercon-
version noise is relatively small and can be ignored.

The bidirectional phenotype switching cascade in the bac-
terial community includes only two phenotypes. In fact, there
are three or more phenotypes in other cascades. For example,
there are luminal cells, basal cells, and stemlike cells in breast
cancer cell lines [43]. The mutual switching between any two
phenotypes will provide a more complex fluctuating environ-
ment, and the characteristics of noisy signal propagation will
be more interesting. It will be one of our future works.
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