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Prime numbers and random walks in a square grid
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In recent years, computer simulations have played a fundamental role in unveiling some of the most in-
triguing features of prime numbers. In this paper, we define an algorithm for a deterministic walk through a
two-dimensional grid, which we refer to as a prime walk. The walk is constructed from a sequence of steps
dictated by and dependent on the sequence of the last digits of the primes. Despite the apparent randomness of
this generating sequence, the resulting structure—in both two and three dimensions—created by the algorithm
presents remarkable properties and regularities in its pattern, which we proceed to analyze in detail.
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I. INTRODUCTION

One can argue that prime numbers present perplexing fea-
tures, in a hybrid of local unpredictability and global regular
behavior. It is this interplay between randomness and regular-
ity that motivated searches for both local and global patterns
that could potentially become signatures for certain under-
lying fundamental mathematical properties. Patterns such as
the connections that are known to exist between the prime
number sequence and the nontrivial zeros of the Riemann
zeta function [1] constitute one of the most important open
problems in mathematics [2].

Since the formulation of the Riemann hypothesis, much
has been done, and yet much remains in the dark. It is of-
ten acknowledged that not a small number of mathematical
discoveries have been accomplished after having assumed
many conjectures or hypotheses to be valid a priori. For
this reason, instead of attempting an analysis of the under-
lying behavior of the prime numbers, which has been an
aspiration of mathematicians for centuries, we choose to per-
form ultralarge-scale computer calculations at a fundamental
level.

In this paper, presented as an unbiased computational ex-
periment, we observe, rather than prescribe, exactly how the
motion of a deterministic walk defined over the prime number
sequence conspires to produce radically different results when
compared with a simple random walk.

The algorithm defined below that creates our prime walk
(PW) is simple; yet again, the PW itself appears to be complex
and unpredictable. It can thus be placed as an example of
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emergent complexity. In fact, within the subfield of prime
number theory, many examples [3–7] can be found in which
a simple algorithm defined over the prime number sequence
gives rise to complex structures spontaneously, a complex-
ity within which regularities can be found, thus opening
a new avenue for research into the distribution of prime
numbers.

II. METHODOLOGY

Here, we propose a way of number arrangement yielding
an appealing visual structure in the form of a fractal plot.
Inspired by Ulam’s spiral [3], we assign positions to posi-
tive integers in a two-dimensional (2D) plane following these
rules:

(i) The starting point is (0, 0), assigned to N = 1.
(ii) Given the point (x, y) assigned to number N , if N + 1

is not a prime, the same point is assigned to it.
(iii) If N + 1 is a prime and its last digit is 1, we move up

in the plane: (x, y) → (x, y + 1).
(iv) If N + 1 is a prime and its last digit is 3, we move

down in the plane: (x, y) → (x, y − 1).
(v) If N + 1 is a prime and its last digit is 7, we move to

the left in the plane: (x, y) → (x − 1, y).
(vi) If N + 1 is a prime and its last digit is 9, we move to

the right in the plane: (x, y) → (x + 1, y).
Note that the last digits of prime numbers are 1, 3, 7,

and 9. The only exceptions are primes 2 and 5 at the very
beginning of the algorithm. This can be easily implemented
in a computer code. For details, see Appendix A.

Of course, the choices above are arbitrary and could be
modified, with a permutation of the moves for the different
digits. However, it can be easily shown that any permutation
necessarily leads to an equivalent result, the path described by
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FIG. 1. Example of the PW plot up to N = 2 × 107. The color
code represents the zmax value. The x and y axes are shown as red
dashed lines

the algorithm being a rotation or a mirror symmetry of the one
resulting from the choice above. Equivalent algorithms can be
ruled out.

III. RESULTS

Following the algorithm, the walker will move through
the grid in an erratic way, impossible to predict a priori.
Figure 1 shows the PW created by the path up to 2 × 107. The
color code is interpolated from the first steps (in dark blue)
to the final steps (in yellow). The Supplemental Material [8]
includes an animation (see Movie 1) showing how the path
grows with the increasing number of steps.

Our computation is not large enough to produce a symmet-
ric Gaussian distribution or bell-shaped curve when we look at
the structure constructed by the PW algorithm; however, it is
natural to expect no preferences for any of the four quadrants
of the plane.

We can define the number of points (x, y) visited without
repetition as the “area” covered by the path. Since the PW
is allowed to pass more than once through the same point
in the grid, we can additionally keep track of the number of
times that a certain point has been visited and use this value
as a third coordinate z in order to visualize a structure in
three dimensions. In the Supplemental Material [8], another
animation (Movie 2) is presented showing how this area of the
path grows with the number of steps in terms of the maximum
value of z up to N = 5 × 1010.

Furthermore, in order to help pinpoint patterns in our
results, it can be interesting to compare them with those ob-
tained from a random algorithm, in which at every prime N
the walker may move up, down, left, or right in a random way
(with equal probability). This produces a pseudorandom walk
(pRW). Results from this alternative algorithm are presented
in following figures along with the results obtained from the
main prime walk.

Finally, we also calculate the area covered by the path up
to step N . Figure 2 plots this area vs the number of steps. A
linear scaling appears, with slope b = 0.00414 ± (9 × 10−6),
up to N = 1011 steps. Whether this linear trend will hold for

FIG. 2. Total area covered by the PW vs number of steps N . We
can see that a linear trend (red line) is followed up to 1011 (linear fit:
y = bx). The purple and dark blue lines represent the results of two
pseudorandom walks (pRWs). The inset shows the ratio of the pRW
area to the PW area vs N ; note the log scale.

longer or start to saturate when a larger interval is explored is
unclear.

The first thing one notices in Fig. 2 is that, clearly, the area
covered by the PW is smaller than the one covered by the
pRWs. The difference is a factor of 2 when N is large enough
(see inset).

It seems clear that the randomness of the prime number
sequence produces an exact half-spread-path when the PW is
compared with the pRW. This more compact random walk
(RW) is in contrast with the recently defined concept of
the maximum entropy random walk (MERW). As opposed
to generic random walks (GRWs), which maximize entropy
locally (neighbors are chosen with equal probabilities), the
MERW does it globally (all paths of given length and end-
points are equally probable) [9].

The fact that, in a geometrical sense, the PW is more
convoluted, spreading at a slower pace than the pRW, is also
reflected in the maximum value of the z coordinate, zmax.
This value can be computed, both in a cumulative way and
within separate intervals. The differences between the values
obtained from the PW and the pRWs are again clear in this
case, zmax being higher for the PW by a factor that tends
approximately to 1.6 (see Fig. 3).

IV. CONJECTURES

Euclid’s theorem tells us that there exists an infinite amount
of primes; however, does this necessarily imply that the area
covered by our PW path will turn out to be infinite?

It is natural to assume from the start that the area covered
by the path after N steps must be related in some way to the
number of primes π (N ). In particular, we expect

π (N ) ∼ N

log N
when N → ∞. (1)

In our results, within the explored range, the covered area
follows an approximately linear trend (see Fig. 2), and a more

054114-2



PRIME NUMBERS AND RANDOM WALKS IN A SQUARE … PHYSICAL REVIEW E 104, 054114 (2021)

FIG. 3. Maximum z value in the structure created by the PW vs
number of steps N . Full symbols are values corresponding to two
pseudorandom walks.

careful analysis shows it to be proportional to the number
of primes by a certain constant value ψ � 1/10 (see Fig. 4).
Apparently, the ratio

π (N )

ApRW(N )
→ 10 (2)

when N is big enough. Will this be the case for even larger
values of N?

We present here a plausible conjecture derived from our
analysis, and two corollaries will follow straightforwardly.
One of the main questions that our results invite us to ponder is
whether there is an infinite number of points which are never
visited by the PW, or whether the whole 2D plane is visited at
least once.

Consequently, we propose the following.

FIG. 4. Dark blue symbols, area covered by the path up to 1010.
Purple symbols, number of primes in the same interval, for compar-
ison. The inset shows the ratio of the number of primes to the area
covered by the path vs N .

Conjecture 1. The number of points within the area’s
perimeter which go unvisited by the PW increases homoge-
neously with N .

Corollary 1.1. If Conjecture 1 is true, then there is an
infinite number of points (x, y) which are never visited by the
PW.

Corollary 1.2. If Conjecture 1 is true, then the area visited
by the PW continues to grow indefinitely, ultimately becom-
ing infinite in the limit N → ∞.

In the explored range (up to 5 × 1010) we observe an
almost perfectly linear growth, but it seems clear that sub-
sequently, with the primes becoming less frequent, the area
will foreseeably continue growing at a lower rate. However,
we conjecture that its growth will not stop (this is what
Conjecture 1 supports). The exact function describing this
asymptotic growth is beyond the scope of this paper.

V. DISCUSSION

The covered area, as well as the value of zmax, is governed
partially (in a nontrivial way) by the gaps between primes.
In the algorithm, every time the walk reaches a point (x, y)
of the grid, it stays there until the next prime is drawn and it
can move to the next point. Since z keeps track of the number
of times that a certain point is visited, it is by construction a
(nonrandom) sum of prime (but not necessarily consecutive)
gaps.

It is to be noted, though, that in an unlimited simulation, the
“structure” created by the PW would not be bounded in the z
direction by any upper limit, since the gaps between primes
can become arbitrarily large and thus for any given bound
b, a gap g > b would eventually appear within the infinite
sequence. Nevertheless, this is just half of the problem, since
for any given point (x, y), it is impossible to know a priori how
many times it will have been revisited by the PW after a given
number of steps N . Additionally, there is also the question of
whether or not the PW is confined between some upper and
lower values in x and/or y.

Regarding the gaps between primes, it is known that gaps
between consecutive prime numbers cluster on multiples of
6 [10,11]. Because of this, 6 is frequently called the “jumping
champion,” and it is conjectured that it holds this title all the
way up to about 1035. Beyond 1035, and until 10425, the jump-
ing champion then becomes 30 (= 2 × 3 × 5), and beyond
that, the most frequent gap is 210 (= 2 × 3 × 5 × 7) [11]. Fur-
ther important results on some statistical properties between
gaps have been recently discovered [12,13]. However, all of
the aforementioned numerical observations, despite revealing
intriguing properties about the prime sequence, cannot be
easily applied to our problem to help figure out whether or
not the PW will acquire definite boundaries.

On the other hand, according to Ares and Castro [14],
the apparent regularities previously observed [15–17] reveal
no structure in the sequence of primes; au contraire, those
regularities are precisely a consequence of its randomness.
This is, however, a highly controversial topic. Recent com-
putational work points out that “after appropriate rescaling,
the statistics of spacings between adjacent prime numbers
follows the Poisson distribution” [18]. See Refs. [18,19] and
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FIG. 5. Histogram of the values of zmax for N = 1010. Note the
log scale of the vertical axis. The green line shows the linear fit of
the data (see inset). Among the first 100 000 000 primes (modulo
10), there is substantial deviation from the prediction that each of the
16 pairs (a, b) should have about 6.25 × 106 occurrences [24].

references therein for more on the statistics of the gaps be-
tween consecutive prime numbers.

In Fig. 5 we show the histogram C(zmax), which behaves
almost as logC(zmax) = b − azmax with a = 0.0019 and b =
5.5 × 105 for N = 1010 (fit done removing low x, low y points
in the graph). This is similar to the histogram for differences
between primes (prime gaps); see Fig. 1 a of Ref. [14].

However, we can be rather sure of a certain fact: These
gaps, despite all of the complexity they present, lead to
an absolutely clear Benford’s law behavior for zmax (see
Appendix B for extra analysis). This result cannot be
coincidental.

The second part of the problem concerns the last digit of
the primes, a relatively unexplored topic. Many papers have
been published about the first digits in the sequence of prime
numbers [2,20,21], but much less work has been devoted to
studying the last digits. Firstly, it is important to note that in
view of Chebyshev’s bias [22,23] it may not be so obvious that
the last digits of primes are distributed with equal probability
(an assumption made in this paper for simplicity). This is
not a hard fact, however, since some of the results regarding
this phenomena are only proved assuming strong forms of the
Riemann hypothesis.

Additionally, if we look at a pair of consecutive prime
numbers (a, b), assuming a purely random distribution, one
would expect it to be just as likely that these consecutive
primes end in 1 and 1, or in 3 and 7, or in 3 and 9, and so
on. However, intriguing irregularities (or biases) are actually
observed in the distribution of consecutive primes. For exam-
ple, it is a known fact that among the first 100 000 000 primes
(modulo 10), there is substantial deviation from the prediction
that each of the 16 pairs (a, b) should have about 6.25 000 000
occurrences. The inset in Fig. 5 shows the results according
to Oliver and Soundararajan [24]. Note that in our study we
explored a little bit further since up to 1010 the number of
primes is around 4.34 × 108.

This result must ultimately be the cause of the factor 2
observed in Fig. 2. The bias observed in Ref. [24], which es-
sentially means that the prime numbers’ last digits are usually
not repeated when taken in consecutive pairs, seems to be the
cause of the properties of the PW, and it contributes even more
to its complexity when compared with the pRW. It actually
does so in a very precise way, resulting in the covered area
being exactly half the pRW value.

We know that the set of primes is algorithmically decidable
since one can always find an effective primality test or a sieve
to separate all primes. The problem of the same set having
an underlying order or pattern is of a different nature. Specifi-
cally, measures such as Shannon’s entropy may be insufficient
in that they only count collective symbol occurrences. How-
ever, we know that certain periodic as well as disordered
patterns can give the same probabilities inside a whole multi-
nomial set and, hence, the exact same entropy value. For this
reason a different measure of complexity as opposed to “ran-
domness” was proposed by Kolmogorov [25] in terms of the
shortest formula or “program” that can reproduce a given se-
quence. Although in principle an incalculable quantity, it can
be approximated with data compression theory [26], which
searches for redundancies, this then being the equivalent of
the shortest string able to reproduce the original. One can
record in memory sufficiently large chunks of the last digit
sequence and pass them through standard algorithms such
as the Lempel-Ziv algorithm [27] to find large compression
ratios. Yet any such subset does not suffice for discovering a
complete set of rules of fixed length for all primes.

Finally, we note that the algorithm for the PW is built
onto the number system in base 10. In different bases it will
not be possible to obtain a walk with four directional steps,
and random walks could be produced in higher dimensions
(the number of dimensions being dictated by the number of
possible last digits of the primes in the corresponding repre-
sentation). Further research could go in this direction; in fact,
this work could be extended in many ways, considering as
well different types of grids (tessellations) to define different
walks.

VI. CONCLUSIONS

In this paper we have intensively used simple numerical
representations of prime numbers in two and three dimensions
to investigate the distribution of primes along the natural num-
bers.

Our mathematical experiment shows some important, un-
expected, and rather remarkable results. Within the explored
range, the following was found:

(i) The area covered by the PW is smaller than the one
covered by the pRWs, the difference being “exactly” a factor
of 2 when N is big enough.

(ii) The number of primes up to N is 10 times the area
covered by the PW, A(N ). In other words, the covered area is
1/10 the number of primes π (N ).

(iii) We showcase a remarkable match between the first-
digit count of the zmax values and Benford’s law.

The results presented here highlight the important role of
large-scale computer calculations as a way to discover possi-
ble new properties of prime numbers. “Possible” needs to be
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stressed since we cannot prove that the results we observed
will hold for any given larger range.

With the availability of increasing computational power, in
a few years it will be possible to explore further orders of
magnitude. This, however, will clearly never be enough. We
need to turn our conjectures into demonstrated theorems.

It is interesting to note that the approach described both
here and in our previous paper [28] can be easily applied
to any infinitely large sequence of numbers, such as, for ex-
ample, the decimal digits of π , e, γ , or any other irrational
number (either working in base 4, or selecting an arbitrary
set of four final digits to build an algorithm). Some inter-
esting studies have been published about the randomness of
π [29,30]; however, a plethora of questions remain open still.
Could similar insights be extracted for them to some extent?
We believe this to be an open question deserving of our
attention.
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APPENDIX A: IMPLEMENTATION

PYPY implementation

To satisfy the speed demands and reach the larger prime
numbers, primality-testing and prime-number-generating al-
gorithms play a crucial role. The most crucial criteria in the
analysis of the prime number generators are the number of
probes, the number of generated primes, and the average time
required in producing each prime. For our study we used the
simple and efficient Sequences Containing Primes algorithm,
which employs the function m = 6k + 1 or m = 6k − 1. The
algorithm can be easily implemented in a code.

We used PYPY, which is an implementation of the PYTHON

programming language written in RPYTHON, a subset of the
PYTHON language, with its own interpreter [31–33]. It imple-
ments PYTHON 2.7.10 and passes the PYTHON test suite with
some minor modifications [34]. PYPY is intended to perform
faster than CPYTHON by employing a tracing just-in-time (JIT)
compiler. A JIT compiler, as the name suggests, compiles
code during execution rather than before, as an ahead-of-time
(AOT) compiler would do. The JIT used in PYPY is a metatrac-
ing JIT compiler. It does not encode any language semantics
or profile in the execution of the program. Instead, it profiles
the execution of the interpreter running the program. PYPY

uses several optimizing techniques in its compiler: constant
folding, common subexpression elimination, function inlin-
ing, and loop invariant code motion, among others [35]. The
trace also contains guards for each point in the recorded code
that could branch off in another direction, for example, in an
IFstatement. When the trace is compiled to machine code,
each guard is compiled into a check that the execution is
still correct. If it is not, the interpreter once again takes over
execution. If a guard failure occurs more times than a certain
limit, PYPY will attempt to compile the new execution branch
as well.

FIG. 6. Leading-digit histogram of the zmax values (PW up to
5.5 × 107). The black squares show the proportion of each of the
zmax values. The blue squares show another example, here up to 109,
but the (x, y) points considered are only those on the x axis. The
expected values according to Benford’s law are shown by the red
curve. P, proportion; d, leading digit; M, ×106; B, ×109.

Random implementation

For the random implementation, we used probably the
most widely known tool for generating random data in
PYTHON, its random module library. PYTHON uses the
Mersenne Twister pseudorandom number generator (PRNG)
algorithm [36] as its core generator. The Mersenne Twister
(MT) was proposed for generating uniform pseudorandom
numbers. For a particular choice of parameters, this algo-
rithm provides a superastronomical period of 219 937 − 1 and a
623-dimensional equidistribution up to 32-bit accuracy, while
using a working area of only 624 words. The underlying
implementation in C is both fast and threadsafe. MT is one
of the most extensively tested random number generators in
existence.

APPENDIX B: EXTRA ANALYSIS

Benford’s law

Figures 1 and 2 in this paper invite us to ask: Are these z
values randomly distributed, or do they possibly follow some
kind of distribution? Could they actually follow Benford’s
law [37]? Figure 6 seems to indicate this to be the case (al-
though a proof is beyond the scope of this paper) by plotting
the zmax values even for small numbers from a statistical point
of view.

For instance, when the PW reaches just 5.5 × 107, we have
zmax = 155 802 points, and sorting these values according to
the leading digit and comparing with Benford’s law, the match
is remarkable (black squares in Fig. 6). Even if we take just
the zmax values along some given line (the x axis, for example),
the match is obvious (blue empty squares in Fig. 6).

It is worth noting that the construct presented here resem-
bles Jacob’s ladder [28] (the description of the equivalence is
beyond the scope of this paper), so this result seems to point
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FIG. 7. Fractal dimension vs N calculated in a cumulative
way (blue inverted triangles) and in steps of 108 (magenta empty
triangles).

towards a behavior of the zeros in Jacob’s ladder following
Benford’s law as well when N is large enough.

Fractal dimension

Fractal analysis is a contemporary method of applying
nontraditional mathematics to describe patterns that defy
understanding according to traditional Euclidean concepts.

Recently, fractal analysis has been used to study a wide variety
of complex patterns, such as those of many types of biological
cells [38], tree and tumor growth [39], gene expression [40],
forest fire progression [41], economic trends, and cellular
differentiation in space and time [42].

In fractal analysis, complexity refers to the change in detail
that comes with a change in scale. Many metrics of complex-
ity can be defined, but the main parameter to capture them is
the fractal dimension DF defined as a scaling rule comparing
how detail in a pattern changes with the scale at which it is
measured. Formally, each iteration driving the change in detail
introduces new pieces into the fractal construct. The number
of pieces N at every step is related to the corresponding scale
ε by

N ∝ εDF . (B1)

Figure 7 shows results for the fractal dimension DF as calcu-
lated with IMAGEJ. The data points represent the result of the
covered area vs N . We can safely conclude that DF tends to a
value of 1.91 (±0.01).

On the other hand, we can see that if steps of 108 are
considered separately, larger oscillations are observed, and
the shorter the length of intervals under examination, the
larger the oscillations may be. These oscillations are ex-
pected [43,44], and similar “chaotic behavior” is observed in
other properties such as the area. However, when taken in a
cumulative way, these properties show a smooth trend as we
have seen.
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