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Origin of dispersionless transport in spite of thermal noise
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The “dispersionless transport” of a weakly damped Brownian particle in a tilted periodic potential is defined
by (i) a plateau of the particle’s coordinate dispersion extending over a very broad time interval and (ii) by the
impossibility to measure the diffusion coefficient within this plateau region. While the first part of this definition
has been explained in the literature, the second part has been thought to follow from (i). Here, the impossibility to
measure the diffusion coefficient is shown to be actually due to the wild fluctuations of the dispersion itself in the
plateau region. An expression for the timescale over which a reliable determination of the diffusion coefficient
is possible is derived. A procedure that allows accurate determination of the diffusion coefficient by observing
the particle trajectory only within a small part of the plateau region is suggested and shown to be feasible by
numerical simulations of a weakly damped Brownian particle in a tilted washboard potential.
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I. INTRODUCTION

When combined with nonlinearity, noise may produce a
number of surprising effects in dynamical systems out of
thermal equilibrium. Examples include stochastic resonance
[1], ratchet effect [2], absolute negative mobility [3–6], and
transport against temperature gradient [7] to name but a few.

To such effects belongs the “dispersionless transport,” first
reported by Lindenberg et al. [8]. They considered a weakly
damped Brownian particle in a periodic potential tilted by a
constant force. It is textbook knowledge that after an initial
transient process, the dispersion of the particle’s coordinate
should increase linearly in time, and the rate of its increase is
the diffusion coefficient multiplied by twice the dimensional-
ity of the system. But instead, it was observed in [8] that the
dispersion reached a plateau and stayed constant for a very
long time. For some parameter values, the duration of this
plateau was much longer than a reasonable computation time,
making it impossible to determine the diffusion coefficient
from the simulations [8].

Later, the effect of “dispersionless transport” was reported
in a ratchet system [9,10] for the time-periodic force of zero
mean value [11] and for a combination of dc and ac forces
[12], as well as for Brownian motion in a random potential
[13]. Although the explanation of this effect proposed in [8]
is intuitively appealing, some aspects of the “dispersionless
transport” remain unclear. In particular, it is well understood
why the plateau value of the dispersion is much larger than
the linearly increasing term due to diffusion [8]. But however
big, the dispersion plateau value is just a constant, i.e., the dis-
persion should still increase linearly in time, and the diffusion
coefficient should still be obtainable from the dispersion vs
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time plot by linear fitting in the plateau regime. Yet, this is not
the case in practice.

Here we expand the interpretation from [8] and explain
this by a combination of two factors: the large value of the
initial dispersion in the plateau region and by the fact that in
simulations, averaging is necessarily performed over a large
but finite number of stochastic trajectories. The latter aspect
has been overlooked in the literature but is crucial in under-
standing the impossibility to measure the diffusion coefficient
in the plateau regime. Finally, we introduce a simple modi-
fication of the measurement procedure that allows measuring
the diffusion coefficient by observing the system’s dynamics
in the plateau region over a relatively short timescale.

II. “DISPERSIONLESS TRANSPORT” IN A TILTED
PERIODIC POTENTIAL

A. Dispersion plateau

Consider a weakly damped Brownian particle in a tilted
one-dimensional periodic potential U (x) under the action of
a constant force F . The particle dynamics is governed by the
Langevin equation

mẍt = −U ′(xt ) + F − γ ẋt +
√

2γ T ξ (t ),

U (x) = −U0

2
cos

2πx

a
, (1)

where xt is the coordinate of the particle at time t , and the
prime and the overdot denote spacial and time derivatives,
respectively. The potential U (x) has corrugation depth U0 and
periodicity a; m and γ are the mass and damping coefficient,
respectively, T is the temperature, and ξ (t ) is unbiased Gaus-
sian white noise of unit strength: 〈ξ (t )〉 = 0, 〈ξ (t ) ξ (t ′)〉 =
δ(t − t ′). We are interested in the evolution of the particle
dispersion, defined as

σ 2
x (t ) := 〈

x2
t

〉 − 〈xt 〉2. (2)
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FIG. 1. Dispersion (2) (solid line) and average velocity vt = 〈ẋt 〉
(dashed line) of a Brownian particle in a tilted washboard potential
(1) with the parameters used in [8]: m = 1, U0 = 1, a = 1, γ = 0.04,
T = 0.2, and F = 0.5. The curves are obtained by simultaneously
simulating Eq. (1) for N = 1000 independent Brownian particles
with the initial conditions x0 = 0, ẋ0 = 0 and averaging over 1000
trajectories. The inset shows the dispersion vs time curve in the
plateau region on the linear scale.

In the long-time limit, it should increase linearly in time,

σ 2
x (t ) = 2Dt, (3)

where D is the diffusion coefficient. We performed simula-
tions of Eq. (1) for the parameters specified in the caption to
Fig. 1 with the initial conditions

x0 = ẋ0 = 0. (4)

It is clear that the dispersion has a plateau, where it practically
does not change in time, see Fig. 1. One may suspect that its
constancy might be due to the use of the logarithmic scale
on the time axis, but using the linear scale does not reveal
a linear increase according to (3), see inset in Fig. 1. Hence
this plateau is often termed “dispersionless transport” in the
literature [8–13].

B. Interpretation of the dispersion plateau

The interpretation of this effect offered in [8] is as fol-
lows. Suppose that initially the particle found itself near
some minimum of the total potential U (x) − Fx with |F | <

maxx |U ′(x)|. Its escape from that potential well is described
by Kramers’ theory. The mean escape time τ0 from the po-
tential well depends on the shape of the potential near the
minimum, the force, the damping, the temperature, and, most
importantly, on the barrier height �U that separates the cur-
rent potential minimum from the next one [14]. After escape,
the particle moves with a constant velocity F/γ . The distribu-
tion of the escape times τ is exponential and is proportional
to e−τ/τ0 . Hence, the initial width of the spacial probability
distribution to find the particle can be estimated as σ 2

plateau ∼
(Fτ0/γ )2. As the particle moves after the escape, its spacial
dispersion is

σ 2
x (t ) ≈ σ 2

plateau + 2Dt . (5)

From this, it is concluded [8] that the duration of the “disper-
sionless” phase is

tplateau = σ 2
plateau/(2D). (6)

Because the mean escape time is proportional to the Kramers-
Arrhenius factor [14], τ0 ∝ e�U/T and can be very large for
T � �U , the initial dispersion σ 2

plateau ∝ e2�U/T may also be
very large, implying very long duration of the “dispersionless”
phase.

Based on this interpretation, the authors of [8] identified
thermal fluctuations, weak damping, periodicity of the po-
tential U0(x), and the presence of a nonzero bias such that
|F | < maxx |U ′(x)| as necessary conditions for the onset of
the nondispersive regime.

III. DISPERSION FLUCTUATIONS AND DIFFUSION
COEFFICIENT MEASUREMENT IN THE

PLATEAU REGION

A. Dispersion plateau of a free Brownian particle

In fact, the above general argument from [8] can be used to
predict a dispersion plateau in any system where the diffusion
proceeds in two stages: a fast initial stage that results in a
broad initial dispersion of the coordinate to a large value
σ 2

plateau, and slow normal diffusion that follows the initial
spread. For example, a plateau can be observed even if the
dynamics (1) is simplified to

mẍt = −γ ẋt +
√

2γ T ξ (t ), (7)

provided the initial conditions are chosen in a special way.
Namely, we place initially all particles at x0 = 0, but we
assume that the initial temperature of our particles was very
high relative to the temperature of the environment: T0 	 T .
Then the initial distribution of the particle velocity v0 = ẋ0 is

P(v0) ∝ e−mv2
0/(2T0 ). (8)

Initially, the particles cool down to the environment tempera-
ture T . In this transient process, the particle’s velocity vt = ẋt

can be decomposed into an exponentially decaying part [the
homogeneous solution of Eq. (7)] and the noisy part (the par-
ticular solution of this equation): vt = e−γ t/mv0 + �vt , where
�vt describes the diffusive process with the diffusion coef-
ficient D = T/γ . As the particle cools down, the coordinate
dispersion rapidly increases until it reaches the rather high
value

σ 2
plateau =

∫
dv0 P(v0)

(∫ ∞

0
dt v0 e−γ t/m

)2

= T0m

γ 2
, (9)

as follows from the identities
∫ ∞

0 dt e−γ t/m = m/γ and∫
dv0 P(v0) v2

0 = T0/m.
After the transient cool-down process is over, normal

diffusion with dσ 2
x (t )/dt = 2D, D = T/γ begins. This ex-

pectation is confirmed by the numerical simulations of Eq. (7)
with m = γ = T = D = 1; see Fig. 2 showing the dispersion
vs time for two initial temperatures: T0 = 104 (lower curve,
left inset) and T0 = 108 (upper curve, right inset). For the
smaller initial temperature, σ 2

plateau = 104 and tplateau = 5 ×
103, in full agreement with Eq. (6). For the higher initial
temperature, the duration of the plateau predicted by Eq. (6),
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FIG. 2. Dispersion vs time, as obtained from the simulations of
Eq. (7) with m = γ = T = 1 and the initial temperatures T0 = 104

(lower curve, left inset) and T0 = 108 (upper curve, right inset). The
insets show the same plots on the linear scale.

tplateau = 5 × 107, is too long to reach the increasing part of
the curve within a reasonable computation time.

The interpretation offered in [8] and reiterated above only
explains the existence of the plateau region, where the 2Dt
term in Eq. (5) is much smaller than the first term σ 2

plateau.
This plateau can only be observed if a logarithmic scale is
chosen on the time axis, but a linear increase of σ 2

x (t ) should
be seen on the linear scale, see Eq. (5) and the dispersion
curves for T0 = 104 in the main part and in the left inset of
Fig. 2. What remains surprising and unexplained is that the
diffusion coefficient cannot be measured by linear fitting of
σ 2

x (t ) with Eq. (5) within the plateau region at large values of
σ 2

plateau when a linear scale is used, see inset in Fig. 1 and right
inset in Fig. 2. In the latter case, the dispersion even shows an
overall decrease over a broad timescale t ∼ 105, contrary to
the expected linear increase with a known rate 2D = 2T/γ .

Of course, such a decrease must be a spurious effect related
to the wild fluctuations of the dispersion in the plateau regime.
The diffusion coefficient cannot be established, not because
there is a dispersion plateau on the σ 2

x vs log(t) plot, but
because within the plateau region the diffusive term 2Dt in
Eq. (5) is submerged in these fluctuations.

B. Dispersion fluctuations

Next we try and understand the origin of the dispersion
fluctuations. Returning to the main part of Fig. 1, we observe
that the plateau of σ 2

x (t ) begins right after the average velocity
of the particle,

vt = 〈ẋt 〉, (10)

saturates at the value v∞ ≈ 12.5.
Hence, we choose the origin of the time axis to be at the

beginning of the dispersion plateau, assume the initial velocity
of the particle to be ẋ0 = v∞, and decompose the particle’s

coordinate into three parts:

xt = x0 + v∞t + yt , 〈x0〉 = y0 = 〈ẏt 〉 = 〈yt 〉 = 0, (11)

where x0 is now a random variable. Without loss of general-
ity, we set its average value to zero by suitably shifting the
origin of the x axis. Its dispersion is σ 2

x0
= σ 2

x (0) = σ 2
plateau.

The deviation yt is the diffusive part of the coordinate. Its
average velocity and its average value are both zero, because
the average coordinate of the particle is 〈xt 〉 = v∞t for t > 0.
Its dispersion should behave as

σ 2
y (t ) := 〈

y2
t

〉 − 〈yt 〉2 = 2Dt (12)

for sufficiently large t . This follows immediately from the
relation between σ 2

x (t ), given by Eq. (2), and σ 2
y (t ), namely,

σ 2
x (t ) = 〈(x0 + v∞t + yt )

2〉 − (v∞t )2

= σ 2
x (0) + σ 2

y (t ) + 2ct , (13)

where we have defined the correlation function

ct := 〈x0yt 〉. (14)

In view of the initial condition y0 = 0, the initial value c0 =
0. If the potential U (x) is flat, i.e., U0 = 0, then also at later
times we should have ct = 0; this is so, because in the frame of
reference moving with the average velocity v∞ of the particle,
positive and negative displacements yt are equally likely. If
the potential U (x) is corrugated, i.e., U0 > 0, the correlation
function ct may deviate from zero at t > 0. But even in this
case, the correlation between x0 and yt (if any) should very
quickly decay to zero on the timescale much shorter than the
duration of the plateau from Eq. (6). Keeping this timescale in
mind, we can write

ct → 〈x0〉〈yt 〉 = 0. (15)

This means that ct should play no role in the measurements
of the diffusion coefficient. Given that at large times we
should have σ 2

x (t ) = σ 2
x (0) + 2Dt , we conclude that, indeed,

σ 2
y (t ) = 2Dt .

However, this kind of reasoning only applies to an ideal-
ized numerical experiment, in which an infinite number of
stochastic trajectories are simulated. But in the real-life nu-
merical simulations, averaging is performed over a large but
finite number N of stochastic processes x(i)

t , y(i)
t , i = 1, . . . , N .

Correspondingly, the numerical correlation function, denoted
with a tilde,

c̃t = 1

N

N∑
i=1

x(i)
0 y(i)

t , (16)

is a random variable which goes to zero only in the limit
N → ∞, namely,

c̃t −−−→
N→∞

ct → 0. (17)

But at a finite number N of trajectories, the fluctuating part of
the dispersion does not go to zero at any time t > 0. In fact,
the size of the dispersion fluctuations increases in time.

To see this, we calculate the variance of c̃t based on the
definition (16). We consider an infinite number of independent
replicas of the numerical experiment, in each of which N
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stochastic trajectories are simulated, and perform averaging
over those replicas, denoted as 〈. . .〉 in the derivation below:

σ 2
c̃ (t ) := 〈

c̃2
t

〉 = 1

N2

N∑
i, j=1

〈
x(i)

0 y(i)
t x( j)

0 y( j)
t

〉

= 1

N2

N∑
i=1

〈
x(i)2

0 y(i)2
t

〉 =
〈
x(1)2

0 y(1)2
t

〉
N

→
〈
x2

0

〉〈
y2

t

〉
N

= 2Dt
σ 2

x (0)

N
. (18)

In the second line, we used independence of the repli-
cas, which implies that only the terms with j = i survive
in the double sum. For i �= j, the summands split into
〈x(i)

0 y(i)
t 〉〈x( j)

0 y( j)
t 〉 = c2

t → 0. Because all trajectories are sta-
tistically the same, the sum in the second line contains N
identical terms, each of which equals the first one. In the third
line we removed the superfluous superscript (1) and focused
on the timescale sufficient for the correlation between x0 and
yt to be lost, allowing us to replace 〈x2

0y2
t 〉 with 〈x2

0〉〈y2
t 〉. In the

last step we used the identities 〈x2
0〉 = σ 2

x (0) and 〈y2
t 〉 = 2Dt .

Thus in the realistic numerical simulations, the dispersion
(13) contains a linearly increasing part σ 2

y (t ) = 2Dt and a
fluctuating part 2c̃t . The standard deviation of the disper-
sion can be estimated as 2σc̃(t ) = 2

√
2Dt/Nσx(0), as follows

from Eq. (18). Note that σ 2
y (t ) ∼ t increases faster than

2σc̃(t ) ∼ √
t .

In order to measure the diffusion coefficient with a reason-
able accuracy, the former must be bigger than the latter by a
large number A inversely proportional to the desired accuracy
of D; e.g., A = 10 corresponds to the accuracy of 10%. This
means that the waiting time, tD, necessary to reliably measure
D, can be estimated as

σ 2
y (tD) = 2DtD = 2Aσc̃(tD), tD = 2A2 σ 2

x (0)

ND
. (19)

With the parameters used to build the graphs in Fig. 1
(σ 2

plateau = 3.2 × 107, D = 5, N = 1000), the inequality t >

tD implies that the diffusion coefficient becomes measurable
for the waiting times exceeding t > 106, in agreement with the
simulation results. Alternatively, one would need to simulate
N ∼ 10, 000 trajectories over the timescale of tD ∼ 105 to
measure D with a 10% accuracy, corresponding to A = 10.

On the other hand, for the parameters used to produce the
plot at T0 = 108 in Fig. 2 (σ 2

plateau = 108, D = 1, N = 1000),
we must wait over 2 × 107 time units to reliably measure D.
The timescale of 105 time units, see the right inset in Fig. 2,
is way too short to reveal an increase of σ 2

x (t ). Over this
timescale, the time evolution of σ 2

x (t ) may even exhibit an
overall decrease, which is entirely due to the small sampling
size.

Finally, for the initial temperature T0 = 104 we have tD =
2 × 103, much shorter than the simulation time in Fig. 2. It is
for this reason that the coordinate dispersion increases linearly
with time on the linear scale (Fig. 2, left inset), in spite of the
plateau observed on the logarithmic scale.
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C. Determination of the diffusion coefficient
in the plateau region

Fortunately, to accurately determine the diffusion coeffi-
cient from the simulations, it is not necessary to wait for such a
long time or to simulate a huge number of trajectories. Instead,
one may adopt the following numerical procedure.

First, the system is simulated to the point t0 when the initial
transient process has decayed and the dispersion plateau has
started. The time t0 does not have to be very large; for instance,
for the parameters from Fig. 1, it may be t0 = 104. At the
time t0, the coordinate of the particle xt0 is a random variable
characterized by a very broad distribution. Hence, one needs
to measure the dispersion of an auxiliary variable,

zt = xt − xt0 = yt − yt0 + v∞(t − t0),

σ 2
z (t ) = 〈

z2
t

〉 − 〈zt 〉2 = 2D(t − t0), (20)

see the discussion above. Again, neither the simulation time
nor the number of trajectories N have to be very large; as
Fig. 3 exemplifies, a very small portion of the total duration
of the plateau phase is sufficient to get a linear increase of
σ 2

z (t ) with very small fluctuations for N = 1000.
In this way we were able to obtain the force-dependent dif-

fusion coefficient of the system (1) with the parameters (other
than force) specified in the captions to Fig. 1, also covering
the range of forces 0.1 < F < 1 which was unaccessible for
the procedure adopted in [8]. At these forces, the diffusion
coefficient is practically constant and has the value T/γ = 5,
see Fig. 3. This value corresponds to the so-called running
state of the Brownian particle. At low forces, F < 0.1 in
Fig. 3, the diffusion proceeds via thermally activated hopping
over one or more barriers that separate the adjacent minima
of the total potential U (x) − Fx; since those barriers decrease
with force, D(F ) increases until it reaches a maximum. This
maximum is due to the high frequency of switching between
the running and the locked states, which leads to the fastest
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temporal growth of the particle coordinate dispersion in the
frame of reference which moves with the average velocity of
the particle.

IV. CONCLUSIONS

The “dispersionless transport” phenomenon is actually
more ubiquitous than suggested in the original paper [8]. It
can be expected in any noisy system, in which there is an
initial transient process leading to a broad spreading of the
coordinate. After the decay of this process, a plateau in the
coordinate dispersion can be expected for some time.

Even though the numerical examples discussed in this pa-
per involve a Brownian particle with finite mass and relatively
low damping, one can easily think of other possible scenarios
that result in a dispersion plateau even in the overdamped
limit, see Eq. (1) with m formally set to 0. For instance, con-
sider the free diffusion of an overdamped Brownian particle:
ẋt = √

2T/γ ξ (t ). One may start with a high temperature T =
TH and then abruptly change the temperature to a much lower
value T = TL � TH at some time t0 > 0. Then, for t 	 t0, the
dispersion will increase according to Eq. (5), with D = TL/γ

and σ 2
plateau = 2t0TH/γ . On the logarithmic scale, the disper-

sion will have a plateau of duration tplateau = t0TH/TL 	 t0,
which can be made arbitrarily long by adjusting the ratio
TH/TL.

Another question is why the diffusion coefficient cannot
be extracted from the dispersion vs time plot in the plateau
region. This has to do with both the large initial value of the
dispersion and with the fact that averaging is performed over
a finite number of stochastic trajectories.

In practice, the existence of the dispersion plateau does not
pose a problem in a numerical determination of the diffusion
coefficient. The only modification that is required to perform
this measurement is to account for the distribution of the
initial position in the beginning of the plateau phase. The
deviation of the coordinate from the initial position does ex-
hibit the standard linear increase characteristic of the regular
diffusive process.

Because the linear increase of the dispersion within the
plateau region is measurable, we believe that the term “dis-
persionless transport” is actually a misnomer and use it in
quotation marks throughout this paper.
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