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Eikonal formulation of large dynamical random matrix models
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The standard approach to dynamical random matrix models relies on the description of trajectories of
eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle (rays) and the
Huygens principle (wavefronts), we formulate the Hamilton-Jacobi dynamics for large random matrix models.
The resulting equations describe a broad class of random matrix models in a unified way, including normal
(Hermitian or unitary) as well as strictly non-normal dynamics. This formalism applied to Brownian bridge
dynamics allows one to calculate the asymptotics of the Harish-Chandra-Itzykson-Zuber integrals.
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I. INTRODUCTION

In this work, we study matrices undergoing additive or
multiplicative random dynamics [1]. Besides their purely
theoretical appeal, such models have proven useful in vari-
ous problems spanning from quantum mechanics to machine
learning. Typical examples are disordered mesoscopic wires
where the dynamical time t is identified with the wires’ length.
In quantum systems with broken time reversal symmetry, t
is in turn related to the external magnetic field [2]. In two-
dimensional Quantum Chromodynamics, the time parameter
corresponds to the area of the loop configuration [3], whereas
in quantum gravity, it is interpreted as the size of the string
[4]. Remarkably, the variable in which the dynamics takes
place is seldom related to the physical time. Other applications
share such exotic interpretations as the timelike variable is the
depth of the neural network [5] or the strength of noise in
signal-plus-noise statistical models [6].

The aim of this work is to describe the classical mechan-
ics perspective on dynamical matrices as the third natural
interpretation besides the previously studied hydrodynam-
ical and optical approaches. The hydrodynamical picture
is based on the standard approach to dynamical random
matrix models due to Dyson and relies on tracing the tra-
jectories of individual eigenvalues via stochastic differential
equations of the Langevin type or by the correspond-
ing Smoluchowski-Fokker-Planck (SFP) equations for joint
eigenvalue probability distribution functions. In the limit of
a large dimension of matrices, N → ∞, the dynamics of
random matrices simplifies considerably and attains a hy-
drodynamical description, with parameter 1/N being the
viscosity of the flow of the eigenvalue fluid [7,8].

Besides the hydrodynamics, an optical analogy in dynam-
ical matrices was likewise established. In the simplest case
of a Gaussian unitary ensemble (GUE), the resolvent evolves
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according to the complex Burgers equation. It can be easily
solved by the method of complex characteristics, in analogy to
the real characteristics method applied to the Euler equation.
This immediately brings connotations with geometric optics,
where rays of light play the role of characteristics. Moreover,
fold and cusp diffraction catastrophes in optics [9] seem to
have their counterparts in random matrix models, in terms
of Airy [10] and Pearcey [7] microscopic universalities. We
summarize these findings in Table I.

As a motivation to the present work, we utilize the long-
standing ray and wavefront duality in optics between Fermat
and Huygens (also known as the geometric vs wave optics),
which essentially mirrors the formalisms of Hamilton and
Hamilton-Jacobi [11]. In the context of dynamical matrices,
our aim is to bring into the forefront the mechanics perspective
with special emphasis on the Hamilton-Jacobi (HJ) formal-
ism.

Before we present the full formalism for the HJ equation
in random matrix theory, let us explain the main concept on
the basis of a matricial additive Brownian walk. We consider
the process Yt = Yt−1 + Xt , where Xt are independent large
(N → ∞) N by N matrices drawn from the GUE. When
interested only in the average spectral density, one studies the
evolution of the averaged resolvent G(z, t ) = 〈 1

N Tr 1
z−Yt

〉, with
the large-N limit taken implicitly. The averaging 〈·〉 is taken
with respect to the random process Yt . In the above-mentioned
limit, the resulting differential equation is the complex invis-
cid Burgers equation ∂t G + G∂zG = 0 [12]. Using the method
of complex characteristics [shown as gray dotted arrows in
Fig. 1(b)], the solution is given implicitly by the Pastur for-
mula [13] G = G0(z − tG), where G0 is the initial resolvent.
For a trivial initial condition X0 = 0, G0(z) = 1/z and the
Pastur formula reduces to a quadratic equation for which one
of the solutions, G−(z, t ) = 1

2t (z − √
z2 − 4t ), results in the

eigenvalue density given by the Wigner semicircle law. In this
approach, we omit the wavefronts altogether.

However, following Huygens, the picture will be complete
only when we recast the problem in the HJ form. Then the role
of the principal Hamilton function is played by a potential-
like function of the form 〈 1

N Tr ln(z − Yt )(z̄ − Y †
t )〉, with the
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TABLE I. Relations between optics and random matrices.

Airy (fold or edge) singularity Pearcey (cusp) singularity

Optics Random matrices

Wavelength λ Inverse of matrix size 1/N
Geometric optics λ = 0 Global (or macroscopic) scaling
Wave optics λ → 0 Local (or microscopic) scaling
Light intensity E (x, y) ∼ 1

λμ �( x
λσx ,

y
λσy ) Characteristic determinant D(z, t )

Fold singularity μ = 1/6, σx = 2/3, σy = 0 Edge singularity D(z, t ) ∼ N1/6Ai[( z√
t
− 2)N2/3]

Cusp singularity μ = 1/4, σx = 1/2, σy = 3/4 Pearcey singularity D(z, t ) ∼ N1/4P( t−1
2 N1/2, zN3/4)

large-N limit taken implicitly. Its equipotential surfaces are
precisely the omitted wavefronts, shown as black solid lines
and surfaces in Fig. 1(b).

Since Yt is Hermitian, the proposed principal Hamilton
function is decomposed as a sum of holomorphic φ(z, t ) =
〈 1

N Tr ln(z − Yt )〉 and its (trivial) antiholomorphic copy φ̄ =
φ(z̄, t ), which we omit in what follows. Moreover, the
function φ is basically a logarithm of the characteristic deter-

FIG. 1. The construction of the duality between wavefronts
(black solid lines) and rays (dotted gray arrows) in (a) optics
and (b) dynamical random matrices is highly analogous. Optical
wavefronts in real space trace light-ray propagation, while matrix
wavefronts �(z, t ) = const trace complex plane propagation of the
characteristics. In the latter, the insets show a highly anisotropic
wavefront and ray evolution when projected along real and imagi-
nary axes. The presented random matrix dynamics is given by the
Gaussian diffusion with zero initial condition giving rise to GUE.
Details are given in Appendix A.

minant since 〈Tr ln(z − Yt )〉 = 〈ln det(z − Yt )〉 = ln〈det(z −
Yt )〉, where the last equality holds only in the N → ∞ limit.
The HJ equation for the principal Hamilton function (modulo
its trivial, decoupled antiholomorphic copy) reads

∂tφ + H (p = ∂zφ, z, t ) = 0,

where H (p, z, t ) = p2/2 is the Hamiltonian. The role of the
canonical coordinate q is played by a complex variable z,
while the role of the canonical momentum p is the derivative
of the principal Hamilton function with respect to coordinate
z, i.e., p = ∂zφ. Note that the momentum p is, by definition,
the resolvent G. Surprisingly from the random matrix point
of view, the HJ formalism treats the canonical pair (q, p) ↔
(z, G) as completely independent. As we will see in the next
section, GUE is the random matrix analog of a free, one-
dimensional particle in classical mechanics (see Table IV).

Using the formalism of classical mechanics, we write
the pair of Hamilton equations ż = ∂H

∂ p = p, ṗ = − ∂H
∂z = 0,

which, together with the initial conditions z(0) = z0 and
p(0) = p0, lead to the solutions p(t ) = p0 and z(t ) = p0t +
z0. In accordance with the previous ray-centered approach, the
latter equation gives the characteristics. If initial conditions
are represented by a set of N points xi corresponding to the
eigenvalues of X0, then p0 = ∂zφ(z, t = 0)|z=z0 = 1

N

∑ 1
z0−xi

and eliminating z0 from the equations of motion reproduces
the Pastur formula p = p0(z − pt ). Alternatively, one can dif-
ferentiate the HJ equation with respect to z, again recovering
the inviscid Burgers equation ∂t p + p∂z p = 0.

The main result of the present work is an extension of the
above duality to a broader class of dynamical random matrix
models, not necessarily Hermitian or Gaussian.

II. ADDITIVE MATRIX DYNAMICS

We define a general additive matrix process Yt by

RYt (z, t ) = RX0 (z) + tRX (z), (1)
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with the R-transform RX for the increment matrix and an
initial matrix X0. In the above, the large matrix size limit was
taken implicitly. Although it is advantageous to introduce this
quite involved definition of the matrix process, one can think
of it in simpler terms by considering the finite-dimensional
case. For Gaussian increments, formulation (1) is equivalent
to a limit of the additive process Yt = X0 + X1 + X2 + X3 +
· · · + Xn with independent finite-dimensional increments Xi,
each with variance δt where the limit n → ∞, δt → 0 is taken
with nδt = t fixed. Beyond Gaussianity, a similar definition
is also possible, although it is slightly more involved as the
increments contain additional random projections on top of
the Xi’s [14].

A. Hermitian Hamilton-Jacobi equation

We first look at the case when the increment matrix X
is Hermitian. Unless otherwise stated, we work in the limit
N → ∞. To derive the Hamilton-Jacobi equation, we intro-
duce several well-known results of free probability applicable
to Hermitian matrices.

Basics of free probability. The one-point spectral density
ρ(λ) = 〈 1

N

∑N
i=1 δ(λ − λi )〉 is uniquely given by its Stjelties

(Cauchy) transform, also known in the physics literature as
the Green’s function G(z) = ∫

ρ(λ)(z − λ)−1dλ = 〈 1
N Tr(z −

X )−1〉, which encodes all its moments. One recovers the spec-
tral density by the Sochocki-Plemelj formula,

ρ(λ) = − 1

π
lim

ε→0+
Im G(λ + iε).

Free probability offers several operational tools to deal with
the spectra of asymptotically large matrices. In particular, with
the use of freeness (a counterpart of independence in noncom-
muting random variables), one is able to find an eigenvalue
density of a sum of two matrices by knowing their separate
densities.

To this end, one introduces a functional inverse of the
Green’s function, called Blue’s function, satisfying

B(G(z)) = z, G(B(z)) = z, (2)

which is an intermediate step to calculate the R-transform
R(z) = B(z) − 1/z. Remarkably, the R-transform is additive
for two mutually free random variables X and Y , that is [15],

RX+Y (z) = RX (z) + RY (z).

This additive property explains and enables the definition
of the matrix process in terms of the R-transform given in
Eq. (1).

Derivation of HJ equation

First, we add 1/z to both sides of Eq. (1) resulting in
B(z, t ) = BX0 (z) + tRX (z), which we then differentiate with
respect to t and obtain

∂t B(z, t ) = RX (z). (3)

Since the matrix Yt evolves, both the Green’s and Blue’s
functions depend on time, but the relation (2) is satisfied at
any time,

BYt (GYt (z, t ), t ) = z. (4)

From now on, we skip the subscripts BYt → B, GYt → G. Dif-
ferentiating the above definition with respect to t , we get

∂t B(z, t )|z=G + ∂B(z, t )

∂z

∣∣∣∣
z=G

∂t G(z, t ) = 0. (5)

On the other hand, we differentiate Eq. (4) with respect to
variable z ∂B(z,t )

∂z |z=G
∂G(z,t )

∂z = 1 and substitute it to formula (5)
to obtain ∂t B(z, t )|z=G + ( ∂G

∂z )−1∂t G(z, t ) = 0. Knowing the
time derivative of the Blue’s function (3), we finally arrive
at

∂t G(z, t ) + RX (G)∂zG(z, t ) = 0, (6)

which is the Voiculescu equation.
Formal solution of Voiculescu equation. We proceed to

formally solve Eq. (6) by the method of characteristics. The
result are two equations:

∂t z = RX (G), ∂t G = 0,

which we interpret as Hamilton equations q̇ = ∂pH, ṗ =
−∂qH , where pair (z, G) becomes the coordinate-momentum
pair (q, p). Then the Hamiltonian is specified by ∂GH =
RX (G), ∂zH = 0, which gives

H (G, z) =
∫ G

0
dzRX (z). (7)

The lower integration limit is a convention introduced to fix a
constant term in the Hamiltonian. Knowing the Hamiltonian,
we write the corresponding Hamilton-Jacobi equation for the
Hamilton’s principal function S as ∂t S = −H (∂zS, z) and take
the derivative with respect to z, which results in the Voiculescu
equation (6) with identification ∂zS = G. Hence, we identify
the principal function S with the electrostatic potential,

φ(z, t ) = 1

N
〈Tr ln(z − Yt )〉,

as ∂zφ = G. As a result, the sought Hamilton-Jacobi equation
for the electrostatic potential reads

∂tφ + H (p = ∂zφ, z) = 0. (8)

Comments. Although Hamiltonians expressed in the most
general form via the R-transform (7) are functions of momenta
only, the HJ equation (8) holds beyond such cases. Perhaps the
simplest instance is the Hamiltonian

HOU = 1
2 p2 + a(1 − zp), (9)

where the coupling between coordinate z and momentum p
reproduces the Ornstein-Uhlenbeck process with a drift pro-
portional to a [16].

In Table II, we summarize examples of Hamiltonians con-
sidered throughout this work, supplemented with Jacobi and
Wishart processes.

B. Non-Hermitian Hamilton-Jacobi equation

We now continue to outline the HJ formalism in the case
when the matrix dynamics Yt is still additive but lacks sym-
metry constraints. We start off with free probability terms and
definitions applicable to this scenario.

Non-Hermitian free probability. Eigenvalues of diagonaliz-
able (not necessarily normal) random matrices form a subset
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TABLE II. Hamiltonians for HJ equation (8) describing Hermitian additive matrix dynamics. Besides the bridge scenario discussed in
Sec. IV where phase space is comprised of two complex pairs (z, p), (α, pα ) and the Hamiltonian is nonstationary, all remaining examples are
defined for a single complex pair (z, p) and do not depend explicitly on time t .

Dynamics type Hamiltonian Details

GUE p2/2

R-based
∫ p

0 RX (z)dz A general R-transform

Ornstein-Uhlenbeck 1
2 p2 + a(1 − zp) a is the drift parameter

Bridge 1
2 p2 + 1

1−t [1 − zp − (α − 1)pα] Details in Sec. IV

Wishart (1 − r)p + rzp2 r is the rectangularity parameter [56]

Jacobi λθz(1 − z)p2 + p[θ (1 − λ) − (1 − 2λθ )z] θ, λ are defined in [57]

of the complex plane. In order to work with such objects, we
use the following representation of the Dirac δ [17–20]:

δ(2)(z) = 1

π
lim
ε→0

ε2

(zz̄ + ε2)2
.

In the spirit of the electrostatic analogy, one introduces the
potential

�(z,w, t ) =
〈

1

N
Tr ln[(z − Yt )(z̄ − Y †

t ) + |w|2]

〉
. (10)

The limiting spectral density can be recovered from the Pois-
son law,

ρ(z) = lim
w→0

1

π
∂zz̄�(z,w, t ).

Using known identity Tr ln = ln det, the determinant in (10)
can be rewritten in block form,

�(z,w, t ) =
〈

1

N
ln det(Q − X)

〉
,

where

Q =
(

z −w̄

w z̄

)
, X =

(
X 0
0 X †

)
.

Q is a 2 × 2 matrix representation of the real quaternion.
In direct analogy to Hermitian matrices, one constructs the
Green’s function of a quaternion argument, which is now a
2 × 2 matrix,

G(Q) = DQ� =
(

∂z� ∂w�

−∂w̄� ∂z̄�

)
, (11)

with a quaternionic derivative (DQ)i j ≡ ∂
∂Q ji

(i, j = 1, 2).
In direct analogy, the inverse of the quaternionic Green’s
function is the non-Hermitian analog of the Blue’s function
B(G(Q)) = Q = G(B(Q)). This directly leads to the quater-
nionic R-transform R(Q) = B(Q) − Q−1. As previously
shown, it is additive under the addition of free non-Hermitian
matrices [21],

RX+Y (Q) = RX (Q) + RY (Q). (12)

A generalized resolvent G was previously proposed to
solve non-Hermitian problems in the past [18–21], although
without any link to the underlying Hamilton dynamics.

1. Deriving the HJ equation

We use indices α, β = 1, 2 to specify matrix elements.
Non-Hermitian additive dynamics is defined by Eq. (1) with
straightforward substitutions R → R, z → Q motivated by
additive property (12). We add Q−1 to the resulting equation
so that

Bαβ (Q, t ) = B0
αβ (Q) + tRX

αβ (Q),

where B = BYt is the Blue’s function for the matrix Yt while
RX is the R-transform of the increment matrix X with stan-
dard variance. We again calculate the time derivative,

∂tBαβ (Q, t ) = RX
αβ (Q). (13)

It is convenient to treat quaternionic objects not as 2 × 2
matrices but as column vectors with four components in, say,
lexicographic order: Qα = (Q11,Q12,Q21,Q22)T . Now, α =
1, 2, 3, 4. Such vector representation makes derivation less
convoluted. The quaternionic Blue’s Bα (Q, t ) and Green’s
Gα (Q, t ) functions are, by definition, related as

Bα (G(Q, t ), t ) = Qα.

As previously shown, we differentiate the above definition
with respect to time to get

∂tBα (Q, t )|Q=G +
4∑

β=1

∂Bα (Q, t )

∂Qβ

∣∣∣∣
Q=G

∂Gβ (Q, t )

∂t
= 0,

(14)
and with respect to the quaternionic element Qβ ,

4∑
β=1

∂Bα (Q, t )

∂Qβ

∣∣∣∣
Q=G

∂Gβ (Q, t )

∂Qγ

= δαγ .

We see that the above matrices of derivatives are mutual
inverses. By multiplying (14) on the left by ∂Gγ /∂Qα , sum-
ming over repeated indices, and substituting the expression
(13), we are led to

∂tGα +
4∑

β=1

RX
β (G)

∂Gα

∂Qβ

= 0.

Finally, we restore the quaternionic structure to arrive at a
generalized Voiculescu-type equation,

∂tGαβ +
2∑

μ,ν=1

RX
μν (G)

∂Gαβ

∂Qμν

= 0, (15)
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which is a direct generalization of Voiculescu equation (6).
Formal solution. As previously shown, the obtained equa-

tion is amenable to solving by the method of characteristics
which result in first-order Ordinary Differential Equations:

Q̇μν = RX
μν (G), Ġμν = 0,

where μ, ν = 1, 2. The above equations are again in
Hamilton form, where the pair (Q,G) is identified with a
set of coordinate-momentum pairs (Q,P T ). Transposition is
indispensable to align the Green’s function (11) as a derivative
of the potential with respect to quaternion Q. As a con-
sequence, the first equation reads Q̇μν = RX

νμ(P ) following
from R(P T ) = R(P )T . Hamiltonian H (P ,Q) is found from
equations ∂Pνμ

H = RX
μν (P ) and ∂Qμν

H = 0. We integrate out
each one separately so that the result is a sum of integrals,

H (P ,Q) =
∫ P

0
dQ11R

X
11(Q) +

∫ P

0
dQ12R

X
21(Q)

+
∫ P

0
dQ21R

X
12(Q)+

∫ P

0
dQ22R

X
22(Q), (16)

where the lower limit is again introduced to fix an arbitrary
additive constant in the Hamiltonian. Instead of the multiple
terms present in Eq. (16), in what follows we introduce a
succinct notation,

H (P ,Q) =
∫ P

0
Tr[RX (Q)dQ]. (17)

The newfound Hamiltonian admits the following Hamilton-
Jacobi equation for Hamilton’s principal function S:

∂t S + H[P = (DQS)T ,Q] = 0.

Lastly, we identify the principal function with a known ma-
trix object. To this end, we take the derivative DQ so that
(DQ)klH (P ,Q) = ∑

i j R
X (P )i j (DQ)klP ji and

∂t (DQ)klS +
∑

i j

RX (DQST )i j (DQ)i j (DQ)klS = 0.

We again use R(P T ) = R(P )T so that

∂t (DQ)klS +
∑

i j

RX (DQS) ji(DQ)i j (DQ)klS = 0.

Since (DQ)i j = ∂Q ji , we recreate the Voiculescu-type equa-
tion (15) when the principal function S is identified with
electrostatic potential � (10) so that DQS = G.

As a result, we have derived the main result of this paper, a
Non-Hermitian Hamilton-Jacobi equation,

∂t� + H[P = (DQ�)T ,Q] = 0 (18)

that matches Eq. (15). The Hamilton equations are readily
solved as P = P0[Q − tR(P )T ] with initial condition P0 =
DQ�T . Coordinates Q,P comprise a set of action-angle
variables casting the problem as fully integrable and stable
with respect to small perturbations according to the seminal
Kolmogorov-Arnold-Moser theorem [11].

2. Examples

In this section, we consider a few examples of descrip-
tions of non-Hermitian additive matrix dynamics in terms

TABLE III. Hamiltonians for HJ equation (18) describing non-
Hermitian additive matrix dynamics.

Dynamics type Hamiltonian Details

Ginibre −|pw|2
R-based

∫ P
0 Tr[RX(Q)dQ] A general non-Hermitian

R-transform
Elliptic τ

2 (p2
z + p2

z̄ ) − |pw|2 τ is the interpolation
parameter

R-diagonal
∫ −|pw |2

0 A(x)dx A is a cumulant generating
function

of Hamilton-Jacobi equations. We provide a summary in
Table III, where we present examples of the discussed Hamil-
tonians for non-Hermitian HJ equation (18).

a. Reduction to Hermitian case. The non-Hermitian for-
malism presented in this section is not disjoint from the
Hermitian dynamics considered in Sec. II A. Now we show
that in fact, it is contained within a non-Hermitian frame-
work, at least in part. In the case of Hermitian matrices,
the quaternionic embedding is redundant and one can set w

to zero from the very beginning, projecting the quaternion
to a complex number. In this way, both the potential � →
φ + φ̄ and the quaternion R = diag[RX (z), RX (z)] decouple
into holomorphic and antiholomorphic copy. The Hamiltonian
(17) likewise decouples and reads

H =
∫ p

0
RX (z)dz +

∫ p

0
RX (z)dz̄,

so the dynamics of each part separately is equivalent; the
holomorphic part of the Hamiltonian exactly recreates Eq. (7)
found in the Hermitian scenario.

b. Non-normal increment matrix X . The crucial difference
between Hermitian and non-Hermitian models comes from
the fact that the separability into holomorphic and antiholom-
porhic parts breaks down, since the support of the spectra
represents the nonholomorphic region. This was known in the
literature [22] and the variable |w|2 ≡ ε was kept nonzero
before the large-N limit was taken. In such a case, the spec-
tral density follows from the two-dimensional (2D) Gauss
law ρ = 1

π
∂z̄g, where g = ∂z� plays the role of the electric

field. Considering ε only as an infinitesimal regularizer is
too reductive, as it is responsible for the crucial dynamics of
eigenvectors, which, contrary to the Hermitian case, do not
decouple from the eigenvalues during the evolution. This is
perhaps best visible when we diagonalize Yt in terms of left
and right eigenvectors Yt = ∑

i |Ri〉λi〈Li| = R�L†. Then the
potential � explicitly reads

�(z,w, t ) = 1

N

〈
ln det

(
z − � −w̄L†L
wR†R z̄ − �†

)〉
.

Since the N by N blocks in the determinant do not commute,
eigenvalues are correlated with eigenvectors. In the large-N
limit, the off-diagonal momenta in G are responsible for the
diagonal part of the Chalker-Mehlig correlator [23–25],

O(z, t ) = 1

N2

〈∑
i

Oiiδ
(2)(z − λi )

〉
= − 1

π
|pw|2w=0,
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where Oii is the diagonal part of the overlap matrix [25] Oi j =
〈Li|Lj〉〈Rj |Ri〉 (see [26]). This quantity is also related to the
Petermann factor [27] and the eigenvalue condition number in
the stability theory [28]. One can therefore see that during the
evolution parameters, z and w need to be treated on an equal
footing.

It is useful to illustrate this democracy of dynamics of
eigenvalues and eigenvectors in the case of the elliptic en-
semble [29], corresponding to the matricial measure P(X ) ∼
exp(− N

1−τ 2 {TrXX † − τ
2 Tr[X 2 + (X †)2]}). Parameter τ allows

for continuous interpolation between GUE (τ = 1) and the
Ginibre ensemble (τ = 0). The generalized R-transform for
the elliptic ensemble reads [23,24]

RX (Q) =
(

τ z −w̄

w τ z̄

)
.

The application of the HJ formula (17) leads to

Helliptic =
∫ P

0
(τ zdz + τ z̄d z̄ − wdw̄ − w̄dw)

= τ

2

(
p2

z + p2
z̄

) − |pw|2, (19)

with a pair of momenta pz = G11, pw = G12 comprising the
quaternionic resolvent G. Indeed, setting τ = 1 reproduces
the GUE case as the “eigenvector part” vanishes in the large-
N limit. Although eigenvector and eigenvalue parts in the
Hamiltonian are decoupled, they are coupled by the initial
condition. The presence of the τ part is actually spoiling the
rotational symmetry of the Ginibre ensemble and reproduces
the ellipse, as easily seen from solving the corresponding HJ
equations. The signs in front of the “kinetic” terms are also
important. In the Hermitian limit τ = 1, the positive kinetic
term in the Hamiltonian is responsible for the Airy oscillations
at the wavefront. When Hermiticity is broken, the term −|pw|2
shapes the critical behavior at the edge and is the source of
smooth decay of the Erfc type [30,31].

Along the solution of the HJ equation, H, τ
2 p2

z ,
τ
2 p2

z̄ and
|pw|2 are constants of motion since the corresponding Pois-
son brackets vanish. We stress here the crucial dynamics of
eigenvectors, which is a generic feature of non-normal random
matrix models as argued recently in [32,33].

In the Ginibre case τ = 0, the entire evolution of eigen-
values and eigenvectors is solely driven by the w dynamics,
and in this simplest non-normal case, by the Chalker-Mehlig
eigenvector correlator. Explicitly, the HJ equations read ṗw =
0, ẇ = −pw and form equations along characteristic lines
reproducing the recent result [30].

c. R-diagonal matrices. If we consider a random complex
number, its probability distribution function (PDF) can take,
in general, a complicated form. One can consider simplified
PDF’s, which are effectively one dimensional. One of the
examples is the isotropic random variables, defined as follows.
Any complex number can be written in a polar form z = reiϕ .
A complex random variable is said to be isotropic if its PDF
depends only on r. In such a case, the PDF for a phase ϕ is
uniform on a unit circle, yet r and ϕ are independent.

In the analogy to isotropic complex random variables, one
considers a class of non-Hermitian random matrices which we
call isotropic. Any matrix X possesses a polar decomposition

X = HU , where H is Hermitian positive definite and U is
unitary. U plays a role of the “phase” of a matrix; therefore, if
X was to be isotropic, U has to be distributed uniformly on the
U (N ) group. Such a probability distribution function exists
and is called the Haar measure. Moreover, U and H have
to be mutually free. In the literature, such matrices belong
to the bi-unitary ensembles because the probability density
for their elements is invariant under multiplication by two in-
dependent unitary matrices from both sides. Mathematically,
P(X ) = P(UXV ) for U,V ∈ U (N ).

In this case, the spectral properties of the isotropic matrix
are completely determined by the spectral distribution of the
“squared modulus” XX †. The precise relation is given by the
Haagerup-Larsen theorem [34] (or the single-ring theorem
[35–37]). Recently, this theorem was extended to also describe
the eigenvector correlation function [24].

The only nonvanishing cumulants are of the form αk =
1
N Tr(XX †)k . Let us define a generating function for all cu-
mulant of such matrices,

A(x) :=
∞∑

k=1

αkzk−1,

which is also known as a generating sequence. The quater-
nionic R-transform of such matrices assumes a remarkably
simple form [38],

RX (Q) = A(−|w|2)

(
0 −w̄

w 0

)
.

By direct substitution to (17), we calculate the R-diagonal
Hamiltonian as

HR-diag =
∫ −|pw |2

0
A(x)dx. (20)

III. MULTIPLICATIVE MATRIX DYNAMICS

The HJ equation also shows up for multiplicative matrix
dynamics of the form

Zt =
M∏

j=1

exp
√

δtXj,

where Xj are independent random matrices. A continuous
version of such random walk is defined in the limit

√
δt → 0,

M → ∞, Mδt = t fixed. In general, symmetries of Xj induce
two natural classes of such dynamics:

(1) Xj = iHj , with Hj Hermitian. Zt is unitary, its eigenval-
ues lie on the unit circle.

(2) Xj is non-Hermitian. Zt has complex eigenvalues.
Below we provide examples for each type of dynamics.

A. Hermitian multiplicative dynamics

Let Hj be a Gaussian Hermitian matrix. Since unitary
matrices are normal, eigenvectors and eigenvalues decouple.
As eigenvalues of Pt lie on the unit circle, it is convenient
to investigate their phases λi(t ) = exp iθi(t ) and consider a
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potential which respects the 2π periodicity of the phase,

φ(θ, t ) = 1

N

〈
N∑

i=1

∑
k∈Z

ln[θ − θi(t ) + 2kπ ]

〉
.

In this case, the evolution resembles an additive case, modulo
that the principal Hamilton function has to take into account
the periodicity of the angular variable. The conjugate momen-
tum ∂θφ ≡ J is obtained by noticing the series expansion of
the cotangent,

J (θ ) = 1

2

∫ π

−π

cot
(θ − ϕ)

2
ρ(ϕ)dϕ.

The Burgers equation reads ∂t J + J∂θ J = 0 [39]. Equiva-
lently, φ(θ, t ) evolves according to the HJ equation with the
Hamiltonian H = J2

2 . This example, where the unitary evo-
lution is represented by the canonical pair (angle θ , angular
momentum J), is a free rotator.

The same problem can be formulated in the z = eiθ vari-
able[40], where the principal Hamilton function is given again
by the log of the characteristic determinant, but the resulting
Hamiltonian is less trivial and reads

H = − 1
2 z2 p2 + 1

2 zp. (21)

Hermitian multiplicative dynamics is also investigated in pure
mathematics [41].

B. Non-Hermitian multiplicative evolution

The non-normal evolution is highly nontrivial as eigen-
vectors enter nontrivially into the evolution process. Like its
unitary analog, such evolution also develops a structural phase
transition manifested by the change of topology in the sup-
port of complex eigenvalues [42–44]. This topological phase
transition does not depend on the type of Xj and appears in
both Hermitian (GUE) and non-Hermitian (Ginibre) cases.
Although the shape of the boundary was explicitly calculated
for the Ginibre case in [42,43], understanding of the spectral
density was beyond the reach of mathematical methods avail-
able at that time. Only very recently, explicit spectral formulas
were calculated by [45,46], using the formalism of the partial
differential equations of the HJ type. Somewhat conserva-
tively, the authors concentrated on the spectral evolution, but
their Hamiltonian, when rephrased in our language of (z,w)
variables, explicitly reads

H = r

2
pr

(
1 + |z|2 − r2

2r
pr − zp − z̄ p̄

)
,

where r = |w| is the radial coordinate and pr its conjugate
momentum. Clearly, the dynamics is driven primarily by the
w evolution (eigenvectors), coupled nontrivially to the z evo-
lution (eigenvalues).

Interestingly, the HJ equation can be applied to the
singular-value problem of this non-Hermitian evolution with
Xj drawn from the Ginibre ensemble, where the spectra are
real and decoupled from the eigenvectors, with the result
HZt Z

†
t

= z2 p2 − zp, i.e., identical to the Hamiltonian for the
unitary diffusion (21), modulo factor −1/2. The correspond-
ing HJ equations for both ensembles are related by replacing
time t in unitary diffusion by t → −t/2 for singular-value

evolution, pointing at some a priori unexpected dualities
between these two models. Such model also has practical ap-
plications, in particular in the study of trainability of residual
neural networks [47].

IV. ASYMPTOTICS OF
HARISH-CHANDRA-ITZYKSON-ZUBER INTEGRAL

Finally, the presented formalism offers an appealing way
to study the asymptotics of the celebrated Harish-Chandra-
Itzykson-Zuber (HCIZ) [48,49] integral,

IHCIZ =
∫

dUe
β

2 NTrUAU †B,

for fixed matrices A, B and parameter β encoding whether
the integral is taken over unitary β = 2 or orthogonal β = 1
matrices.

Following [50], the main asymptotic contribution in the
N → ∞ limit reads

IHCIZ ∼ e− β

2 N2S,

where the Euler-type hydrodynamic action reads

S = 1

2

∫ 1

0
dt

∫
dxρ

[
μ2 + π2

3
ρ2

]
, (22)

with “fluid” density ρ and momentum profile μ. Action is
evaluated on the fluid trajectory such that the initial ρ(x, t =
0) = ρA(x) and final ρ(x, t = 1) = ρB(x) densities are speci-
fied by matrices A and B, respectively. The proper density is
found by solving the following Euler equations:

∂tμ + μ∂xμ = π2

2
∂x(ρ2), (23)

∂tρ + ∂x(ρμ) = 0. (24)

One possible way, pursued in [50], is to compose a complex
solution h = μ + iπρ for which we recreate a well-known
Burgers’ equation,

∂t h + h∂zh = 0. (25)

Its solutions should then obey boundary conditions Im h(t =
0) = πρA and Im h(t = 1) = πρB. Such an approach, while
elegant, was of limited use to solve either special cases [51]
or as a method of the indirect generation of solutions [50].

Our approach to finding proper solutions h is slightly dif-
ferent and has two stages—first we look for a proper density
ρ based on the solution of bridge-type matrix dynamics and
then match a velocity function μ such that the Euler equations
(23) and (24) close.

A. Brownian bridge matrix dynamics

Finding a proper density consists of constructing matrix
dynamics Yt starting at Y0 = A and reaching matrix Y1 = B.
We first recall basic facts for the one-dimensional stochastic
process with such properties known as the bridge.

We start from a Brownian bridge dynamics for a single
variable [52] for which the SFP equation starting at x0, t = 0
and ending in x = x f , t = t f reads

∂t P(x, t ) = D∂x[∂xP − 2∂x ln Q(x, t )P],
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where Q is a solution to the inverse SFP equation
∂t Q = −D∂xxP with x = x f for t = t f and reads Q(x, t ) =
[4πD(t f − t )]−1/2e

− (x f −x)2

4D(t f −t ) . Therefore, the SFP equation for
the Brownian bridge reads

∂t P = D∂xxP − ∂x

(
x f − x

t f − t
P

)
.

Besides the usual diffusive term ∼∂xxP, there is a linear restor-
ing force vanishing at x = x f and singular at t = t f , ensuring
that the trajectory ends up at the prescribed final point of the
trajectory.

We move on to a multidimensional generalization of the
bridge process. We first decompose Hermitian matrix Ykl =
xkl + iykl for k �= l , Ykk = xkk and, from the above equation,
form a set of SFP formulas for each matrix element:

∂t P(xii, t ) = 1

2N
∂2

xii
P(xii, t ) − ∂xii

[
x f

ii − xii

t f − t
P(xii, t )

]
,

∂t P(vi j, t ) = 1

4N
∂2
vi j

P(vi j, t )

− ∂vi j

[
v

f
i j − vi j

t f − t
P(vi j, t )

]
, i �= j,

where v = x, y and v f denote final matrix elements. Joint PDF
P (Y, t ) = ∏

i P(xii, t )
∏

i< j P(xi j, t )P(yi j, t ) satisfies a joint
SFP equation ∂tP = AP , with

A =
N∑

k=1

[
1

2N
∂2

xkk
P(xkk, t ) − ∂xkk

x f
kk − xkk

t f − t

]

+ 1

4N

∑
i< j

(
∂2

xi j
+ ∂2

yi j

)

−
∑
i< j

(
∂xi j

x f
i j − xi j

t f − t
+ ∂yi j

y f
i j − yi j

t f − t

)
.

B. Hamiltonian for the Brownian bridge matrix dynamics

To find the Hamiltonian for the HJ equation of the matrix
bridge process, we first define a deformed characteristic poly-
nomial,

Û (z, α, t ) = 〈det(z − Yt + αB)〉.
Deformation consists of an arbitrary addition of auxiliary pa-
rameter α, which has a role in what follows. Using a standard
approach of [16,53], we derive an exact dynamical equation
for Û ,

∂tÛ = 1

t f − t
[z∂zÛ + (α − 1)∂αÛ − NÛ ] − 1

2N
∂zzÛ .

Parameter α is indispensable to close the above equation.
We transform it through half of the Cole-Hopf transform
φ̂ = 1

N ln Û and take the large-N limit,

∂t φ̂ = −1

2
(∂zφ̂)2 − 1

t f − t
[1 − z∂zφ̂ − (α − 1)∂αφ̂]. (26)

By the self-averaging property of the large-N limit, ln Û =
ln〈det(· · · )〉 ∼ 〈ln det(· · · )〉, and thus φ̂ becomes an effective

potential φ̂(z, α, t ) = 1
N 〈ln det(z − Yt + αB)〉. Equation (26)

is in the Hamilton-Jacobi form, from which we read the
Hamiltonian,

Hbridge = 1

2
p2 + 1

t f − t
[1 − zp − (α − 1)pα], (27)

where, besides the usual pair z, p = ∂zφ̂, an auxiliary coordi-
nate α and momentum pα = ∂αφ̂ are present.

Solving HJ equation. The Hamilton equations read

ż = p − z

t f − t
, α̇ = −α − 1

t f − t
,

ṗ = p

t f − t
, ṗα = pα

t f − t
.

To continue, we first set t f − t = e−τ so that (t f − t ) d
dt = d

dτ

and t = 0 corresponds to τ = − ln t f , while t = t f is trans-
formed to τ → ∞. The Hamilton equations are then

ż = e−τ p − z, α̇ = 1 − α, ṗ = p, ṗα = pα,

with the overdot now denoting d/dτ . In the newly introduced
time variable, the latter two equations for momenta are readily
solved,

p = t f eτ p0 = t f

t f − t
p0, pα = t f eτ pα,0 = t f

t f − t
pα,0,

where p0 = p(τ = − ln t f ) = p(t = 0), pα,0 = pα (τ =
− ln t f ) = pα (t = 0). We plug the above solutions into the
remaining Hamilton equations for z, α,

dz

t f p0 − z
= dτ,

dα

1 − α
= dτ, (28)

and find the remaining solutions,

z = p0(t f − e−τ ) + z0

t f
e−τ = p0t + z0

t f − t

t f
,

α = 1 − 1

t f
e−τ + α0

t f
e−τ = t

t f
+ α0

t f − t

t f
.

Next we introduce an initial condition p0(z0, α0) =
[∂zφ̂]α=α0,z=z0 = 1

N Tr 1
z0−A+α0B , which couples together

α0, p0, and z0. We invert p0 = p(t f − t )/t f and calculate
α0 = 1 + (α − 1)t f /(t f − t ), z0 = zt f /(t f − t ) − pt so that
the solution is given by

p = t f eτ p0

[
z0 = zt f

t f − t
− pt, α0 = 1 + (α − 1)t f

t f − t

]
,

or, with explicitly plugging the initial condition,

p = 1

N
Tr

1

z − pt (t f −t )
t f

− t f −t
t f

A + (
α − t

t f

)
B

.

In what follows, we set t f = 1, α = 0 and reintro-
duce Green’s function G = p. Define the bridge function
GBr(z, t ) = 1

N Tr 1
z−(1−t )A−tB and the resolvent is implicitly

given by

G = GBr[z − t (1 − t )G, t]. (29)

By construction, the limits t → 0, 1 recreate correct boundary
Green’s functions G(z, t = 0) = 1

N Tr(z − A)−1 and G(z, t =
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TABLE IV. Dictionary for optics, classical mechanics, and random matrices.

Optics Classical mechanics (Hermitian or non-Hermitian) random matrices

Real space Real space + time Complex or quaternionic space + time
Huygens principle Hamilton-Jacobi equation Hamilton-Jacobi equations (8)/(18)
Ray Trajectory Characteristic curve
Geodetic distance (Eikonal) Action Electrostatic potential (10)
Slowness vector of the wavefront Momentum Green’s function
Refractive index Hamiltonian Integral of R-transform (17)

1) = 1
N Tr(z − B)−1. At the same time, one can explicitly

check that G is itself not the sought solution to Burgers’
equation (25). This discrepancy can be understood by de-
composing G into real and imaginary parts, G = iπρ + Hρ,
related by the Hilbert transform and ultimately dependent on
the single function ρ. On the other hand, the complex h a
priori consists of two independent (i.e., not related through
any transform) functions ρ,μ. We therefore assume that the
densities ρ are calculated correctly, while the velocity profile
needs further specification. Hence, in the second step, we plug
the density found from (29) into the Euler equation (23) and
calculate a matching velocity profile μ. Once both ρ and μ

are identified, we evaluate the corresponding action (22) and
find the asymptotics of the HCIZ integral.

An example. As a demonstration of the method, we
calculate the simplest example of vanishing matrices
A = B = 0. The boundary resolvent reads GBr(z0) = 1/z0

and the density is simply a semicircle law, ρsem(x, t ) =
1

2πt (1−t )

√
4t (1 − t ) − x2, with the appropriately rescaled size

vanishing at both t = 0, 1. Plugging it into (23) results in

∂tμ + μ∂xμ = − x

4t2(1 − t )2
, (30)

since π2

2 ∂x(ρ2
sem) = − x

4t2(1−t )2 . We solve (30) using the
method of characteristics,

d

dβ
μ(α, β ) = − x

4t2(1 − t )2
,

d

dβ
x(α, β ) = μ,

d

dβ
t (α, β ) = 1,

with initial conditions t (α, 0) = 1/2, x(α, 0) = α, and
v(α, 0) = 0. We readily find t = β + 1/2, plug into the re-
maining equations, and combine them in matrix form,

d

dβ

(
μ

x

)
=

(
0 − 1

2(1−4β2 )2

1 0

)(
μ

x

)
.

Solution is found by diagonalization:

μ(x, t ) = 2t − 1

2t (1 − t )
x.

This example recreates the results of [51].
Although the above example only recreates the results of

[51], the approach by the HJ equation is general and does
not require any guesswork. It provides a principled way of
studying the asymptotics of the Berezin-Karpelevich integrals
where a similar hydrodynamic description was found [54]

as well as non-Hermitian analogues of (generally unknown)
HCIZ-type integrals.

V. SUMMARY

We have proposed to apply the Hamilton-Jacobi dualism
between the Lagrange-Euler description (based on trajecto-
ries) and the Hamilton description (based on wavefronts) in
the context of large-N dynamical random matrix models.
As shown in Table IV, we have successfully transferred the
optical analogy between the Fermat principle and the Huy-
gens principle to the realm of large random matrices. Such
a scheme offers an inspiring perspective for merging several
physical concepts from classical mechanics, optics, hydrody-
namics, statistical physics and even quantum mechanics with
advanced mathematical methods of random matrix theory.

As a result of this approach, we derive several formu-
las. First, we present HJ equations (8) and (18) for general
(i.e., Hermitian and non-Hermitian as well as non-Gaussian)
dynamics. Second, we deliver concrete Hamiltonians for
Ornstein-Uhlenbeck (9), elliptic (20), bi-unitary (20) matrix
processes, and several others, as summarized in Tables II and
III. Last, we enlarge the matrix HJ formalism to a matrix
bridge scenario (27) enabling recreation of the asymptotics of
the Harish-Chandra-Itzykson-Zuber integral.

We believe that since the most interesting phenomena in
random matrix models (e.g., new classes of universalities) oc-
cur mostly at places where wavefronts change their behavior
(boundaries of the spectral support, corresponding to gradient
catastrophes), the formalism which focuses on such objects is
indeed promising.

In particular, in future work, we plan to apply quantization
of the HJ equation [55] as a fresh approach to the univer-
sality achieved directly from large-N asymptotics. Another
advantage of this formulation is visible at the level of non-
normal models, where the proper identification of canonical
“coordinates” and “momenta” leads to complete treatment of
the evolution of both eigenvalues and the eigenvectors. The
resulting HJ equations represent a dimensional reduction of
large-N problems. The proposed formalism allows also for
rephrasing several open questions, such as the issue of large
deviations in non-normal matrix models, which we plan to
expose in the sequel to this work.
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APPENDIX A: FIGURE 1(B)—CHARACTERISTICS
AND WAVEFRONTS FOR GUE DYNAMICS

We find the potential function φ by solving HJ
equation (8),

∂tφ + H (p = ∂zφ) = 0, (A1)

for the simplest case of GUE dynamics, H (p) = p2/2. Next,
we use the obtained formulas to plot wavefronts alongside
characteristics as their natural counterparts and comment on
how Fig. 1(b) in the main text was obtained.

The Hamiltonian is not explicitly dependent on time so that
the solution is of the form

φ(z, α, c, t ) = W (z, α, c) − αt, (A2)

where α is the first conserved quantity and c is an overall
additive constant. HJ equation (8) reads

α = 1
2 (∂zW )2, (A3)

so that W = √
2αz + c and the full solution reads

φ(z, α, t, c) =
√

2αz(t ) − αt + c. (A4)

Canonical transformations give the transformed constant po-
sition β and “old” momentum p:

β = ∂αφ = z√
2α

− t, p = ∂zφ =
√

2α.

Position z and momenta p are given in terms of constants of
motion α, β as

z(t ) =
√

2α(β + t ), p(t ) =
√

2α.

Constants of motion are reformulated in terms of initial posi-
tion z(0) = z0 = β

√
2α and momentum p(0) = p0 = √

2α or
α = p2

0/2, β = z0/p0. We plug it back to the solution (A4):

φ = p0z0 + c + p2
0

2
t .

In terms of initial conditions, position and momentum de-
scribe a one-dimensional free particle,

z(t ) = z0 + p0t, p(t ) = p0.

In our case, the initial positions and momenta z0, p0 are re-
lated by the initial condition φ(z0, t = 0) = f (z0) and p0 =
∂zφ(t = 0)|z=z0 = f ′(z0). These relations between z0, p0 are

p0z0 + c = f (z0), p0 = f ′(z0),

which results in the final form of the potential function,

φ[z(t ), t] = f (z0) + [z(t ) − z0]2

2t
,

where z(t ) = z0 + f ′(z0)t . It gives only the holomorphic part
of the function, while the total potential reads

�[z(t ), t] = φ + φ̄ = 2Re f (z0) + 1

t
Re[z(t ) − z0]2. (A5)

Obtaining Fig. 1(b). The figure in the main text is found
by plotting wavefronts as equipotential surfaces �[z(t ), t] =
const, while complex characteristics form a family of curves
given by z(t ) = z0 + f ′(z0)t , where z0 is the parameter label-
ing the curves. Both were found for a special case, f (z) = ln z.

APPENDIX B: CHARACTERISTICS AND WAVEFRONTS
FOR GINIBRE DYNAMICS

In this section, we solve HJ equation,

∂t� + H[P = (DQ�)T ,Q] = 0, (B1)

for Ginibre dynamics with H = −|pw|2. We essentially fol-
low the same steps as in Appendix A on GUE dynamics. As
a result, in Fig. 2 we present both wavefronts and character-
istics in a restricted quaternionic space spanned by moduli
|z|, |w| = r and time t .

In polar coordinates w = reiα , the Ginibre Hamiltonian
reads H (r, pr, t ) = − 1

4 p2
r . Notice that despite the variable z

missing in the Hamiltonian, the dynamics still takes place in
both z and w.

Since the Hamiltonian does not depend on time, we start
off by setting

�(r, α, c, t ) = W (r, α, c) + αt,

where α is the first conserved quantity and c is an overall
additive constant. We plug in the ansatz to HJ equation and
find

α = 1
4 (∂rW )2

so that the solution reads W = √
4αr + c. Full potential �

reads

�(r, α, t ) =
√

4αr(t ) + αt + c, (B2)

where we explicitly write r’s relation on time. Canonical
transformations give the transformed constant position β and
“old” radial momentum pr ,

β = ∂α� = r√
α

+ t, pr = ∂r� =
√

4α. (B3)

What results are equations of motion,

r(t ) = √
α(β − t ), pr (t ) = 2

√
α,

given in terms of constants of motion α, β (or new position
and momenta). Next, we evaluate these constants in terms of
interpretable quantities such as initial position and momen-
tum, r(t = 0) = r0, pr (t = 0) = pr,0. We set t = 0 in both
equations and obtain

r0 = √
αβ, pr,0 = 2

√
α,
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FIG. 2. Construction of duality between wavefronts (black solid
lines) and rays (dotted gray arrows) in non-Hermitian dynamical
random matrices. Propagation takes place in restricted quaternionic
space spanned by modules |z| and |w| = r. Wavefronts are de-
fined by condition �(r(t ), t ) = const, with the potential given by
Eq. (B7) and characteristics z(t ) = z0, r(t ) = r0 − r0/(|z0|2 + r2

0 )t
by Eq. (B5). The z variable is trivially added despite the absence
of interesting dynamics. Similarly to Fig. 1, propagation is like-
wise anisotropic. The presented evolution happens for the Ginibre
dynamics

and solve for α, β to obtain α = 1
4 p2

r,0, β = 2r0
pr,0

. We plug
those back into (B3) and solve them to obtain

r(t ) = r0 − pr,0

2
t, pr (t ) = pr,0.

In this parametrization, the Hamilton principal function (or
potential) reads

� = pr,0r + 1
4 p2

r,0t + c. (B4)

Again, the problem we aim to solve couples the ini-
tial momentum and position through the initial value of
the potential t = 0�(r0, α, t = 0) = F (r0) and its derivative
∂r�(r0, α, t = 0) = F ′(r0). These two conditions translate to
the relation between initial r0, p0 and constant c:

�(t = 0) = F (r0) → r0 pr,0 + c = F (r0),

∂r�(t = 0) = F ′(r0) → pr,0 = F ′(r0).

This in turn renders the underlying r, p dynamics dependent
only on r0:

r(t ) = r0 − F ′(r0)

2
t, (B5)

p(t ) = F ′(r0), (B6)

and sets the constant c = F (r0) − F ′(r0)r0. Last, we plug all
newfound quantities into � given by (B4),

�[r(t ), t] = F (r0) − [r(t ) − r0]2

t
, (B7)

where r0 is expressed through r(t ) = r0 − F ′(r0 )
2 t .

We consider the simplest initial value F (r0) = ln(|z|2 +
r2

0 ). Both wavefronts and characteristics are plotted in Fig. 2.
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