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Confined systems are usually treated as integer dimensional systems, like two dimensional (2D), 1D, and
0D, by considering extreme confinement conditions in one or more directions. This approach costs piecewise
representations, some limitations in confinement interval, and the deviations from the true behaviors, especially
when the confinement is neither strong nor weak. In this study, fractional integral representation (FIR) is
proposed as a methodology to calculate the infinite summations in statistical thermodynamics for any dimension
and confinement values. FIR directly incorporates the dimension as a control variable into calculation procedures
and allows us to get solutions valid for the whole confinement and dimension scales, including the fractional
ones. We define the dimension of a summation and used it in the proposed FIR to calculate the partition function.
The first and the higher-order FIR are introduced and high accuracy results are achieved. FIR is then extended
for a generalized function to calculate thermodynamic properties directly from their fundamental expressions
based on infinite sums. By using the proposed FIR approach, the thermodynamic properties of a noninteracting
Maxwell-Boltzmann gas confined in an elongated rectangular domain are determined. The excess quantities
induced by confinement are examined for different confinement scenarios. FIR successfully predicts the true
behavior of thermodynamic properties for the whole range of confinement and dimension scales. Defining
and controlling the dimension allows designing new types of thermodynamic cycles. Besides the infinite-well
potential for the confinement of particles with quadratic and linear dispersion relations, quadratic and quartic
confining potentials are also considered to show the success of FIR. The proposed method not only incorporates
the dimension into the calculation procedures but also constitutes an application of fractional calculus in
statistical thermodynamics. FIR has many potential applications especially for Bose-Einstein condensation
phenomenon which inherently contains dimensional transitions.
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I. INTRODUCTION

Fundamental expressions of thermodynamic properties are
based on infinite summations, over either momentum or
energy eigenvalues of particles, and these summations are re-
placed by integrals in macroscopic thermodynamics. In recent
decades, however, the thermodynamics of confined systems
became one of the interesting topics in nanoscale physics
[1–21]. The main target of these studies is to predict the novel
thermodynamic behavior of confined and low dimensional
systems. In the literature, even for nanoconfined systems, inte-
gral approaches are still commonly used for the calculations of
summations just by implementing the proper density of state
(DOS) functions derived for integer dimensional momentum
spaces [22–27]. On the other hand, a confined system under-
goes a continuous dimensional transition in momentum space
during the continuous change of confinement and it eventually
evolves from three dimensional (3D) to 0D or vice versa,
including the fractional ones. Nevertheless, confined systems
with integer dimensions, 3D, 2D, 1D, or 0D (bulk, quantum
well, wire, and dot respectively), are usually considered at
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the cost of limiting the confinements [22–27]. In other words,
most of the studied systems are strongly confined in one or
more directions and assumed to be completely free in other
directions. Otherwise, under the conditions in which the sys-
tem sizes are neither much longer nor much shorter than the
mean de Broglie wavelength of particles, the predictions made
by integer dimensional approaches considerably deviate from
the true behavior of the system. A quantum wire, for example,
evolves fractional dimensional behaviors in between 1D and
0D as we change its length from a much longer to much
shorter sizes than the mean de Broglie wavelength of particles.
Besides not being able to represent the fractional dimensional
behaviors, the integer dimensional approaches give distinct
thermodynamic expressions for each integer dimension, in-
stead of a single monolithic expression for all dimensions and
confinement scales.

Some studies in literature, however, use either summa-
tion formulas (like Poisson, Euler-Maclaurin, and Abel-Plana)
or DOS formulas based on the Weyl conjecture to calcu-
late thermodynamic properties more precisely than that of
integral approach (or DOS for integer dimensions) [22,28–
32]. These formulas lead to more advanced expressions for
thermodynamic properties, which consider the confinement
effects [1–21]. These expressions are, to some extent, able
to predict the true behavior of bounded (confined) systems
even if the system deviates from an integer dimensional be-
havior due to changes of confinement in quasifree directions.
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The expressions contain not only the bulk term, which is
proportional to volume (V ) in the case of a 3D system, but
also the lower-dimensional terms of integer order, like the
ones proportional to surface area (A), peripheral length (P),
and the number of vertices (NV) [22,29–32]. Nevertheless,
none of these advanced expressions [19,22,28–32] includes
the dimension into both calculation procedures and the result-
ing expressions although the dimension of momentum space
continuously changes during the change of confinement, e.g.,
3D ↔ 0D. Consequently, the formulas in the literature are not
able to establish a connection between the dimension and ther-
modynamic properties. Also, they do not provide monolithic
thermodynamic expressions which are valid for the whole
confinement scale.

On the other hand, fractional calculus provides general-
izations of integrals and derivatives to arbitrary order and
offers many interesting and innovative approaches for differ-
ent problems of physics to generalize the solutions [33–35].
Although fractional calculus has been applied to various prob-
lems of physics [34], classical thermodynamics, and heat
transfer problems [36–39], there is no application yet for the
calculation of the partition function and other thermodynamic
properties in statistical thermodynamics. Here we show that
fractional integrals have great potential as a tool to calculate
infinite summations with high precision and establish a direct
connection between the calculation procedure of thermody-
namic properties and the dimension of momentum space. We
obtain the thermodynamic expressions representing the true
system behavior for the whole ranges of confinement and
dimension. While the known piecewise solutions contain in-
dividual expressions for each integer dimension and are valid
for certain confinement intervals, fractional integral represen-
tation (FIR) promises monolithic expressions to describe the
system even under a strong dimensional transition, from 3D
to 0D, due to the strong changes in confinement. In other
words, FIR can provide thermodynamic expressions valid for
an arbitrary dimension, including the fractional ones, instead
of the ones valid only for integer dimensions. Thus, FIR
allows us to examine even the thermodynamics of systems
having fractional dimensions in momentum space. When state
functions become dependent on the dimension, they can be
a powerful tool to analyze the changes in thermodynamic
behavior during a phase transition in momentum space like
the one in the Bose-Einstein condensation phenomena. There
is no study yet to utilize the fractional integrals to calculate
the thermodynamic properties for arbitrary dimension and
confinement. This study can also provide another application
possibility for fractional integrals in physics.

In this study, a noninteracting Maxwell-Boltzmann gas
confined in a rectangular domain is considered to keep the
primary study on FIR away from unnecessary complica-
tions. Furthermore, rectangular geometry is one of the most
common geometries in nanoscale manufacturing and nano-
materials. After a short discussion about the already known
methods for the partition function calculations, FIR for in-
finite summations is proposed and a definition of dimension
for an infinite summation over a scaled variable is also intro-
duced. It is shown that both the dimension of the partition
function and the one need for FIR almost perfectly match
each other. Thereby, by using the introduced dimension and

the proposed FIR, the expressions for both the partition func-
tion and thermodynamic properties are obtained for arbitrary
values of dimension and confinement and their variations are
analyzed for the full scale of dimension.

II. SHORT REVIEW OF THE PARTITION FUNCTION
CALCULATION METHODS

Before the derivation of FIR, the already known methods in
the literature for the partition function calculations are shortly
revisited and discussed in this section to reveal the advantages
and the differences of FIR. One of the most fundamental
and instructive problems in statistical thermodynamics is the
thermodynamics of noninteracting Maxwell-Boltzmann (MB)
gas confined in a rectangular domain. The energy eigenvalues
ε of these particles are trivial and simply obtained by solution
of the Schrödinger equation for infinite potential well as

ε = h2

8m

[(
k1

L1

)2

+
(

k2

L2

)2

+
(

k3

L3

)2]
,

{k1, k2, k3} = 1, 2, 3, ..., (1)

where h is Planck’s constant, m is the particle mass, L1, L2, L3

are the sizes of the domain in three independent directions,
and {k1, k2, k3} are the integer quantum state variables running
from one to infinity corresponding to the three-momentum
components of the particles. The single-particle partition
function of a noninteracting MB gas is then given by

ζt =
∑

ε

exp
(
− ε

kbT

)

=
∞∑

k1=1

exp[−(α1k1)2]

×
∞∑

k2=1

exp[−(α2k2)2]
∞∑

k3=1

exp[−(α3k3)2], (2)

where kb is Boltzmann’s constant, T is the temperature, and
{α1, α2, α3} are the confinement parameters defined as αi =
Lc/Li = h/(2

√
2mkbT Li ); here Lc is the half of the most prob-

able de Broglie wavelength of unbounded (unconfined, free)
particles [5]. Note that the energy eigenvalues do not depend
on the spin in the absence of a magnetic field. Therefore, the
summation over the spin states is not considered here since it
simply gives a constant factor, which does not play any role in
either the derivations or the results. Since all thermodynamic
properties can be expressed in terms of the partition function,
the main task is to calculate the following summation in a
precise way:

ζ (α) =
∞∑

k=1

exp[−(αk)2]. (3)

For macroscopic systems, confinement parameters are ex-
tremely small (α → 0) and changes of the scaled distribution
function in Eq. (3) are smooth although the changes in
quantum state variables are equal to unity, �k = 1. There-
fore, replacing a summation operation with an integral is a
very good approximation. For nanoscale systems, however,
confinement parameters are not too small and some other
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TABLE I. A comparison of the contributions from different terms of PSF and the first term of the partition function.

α
∑∞

k=1 exp[−(αk)2]
√

π

2α
− 1

2

√
π

α

∑∞
s=1 exp[−( π

α
s)2]

√
π

2α
− 1

2 exp(−α2)

0.1 8.362 8.862 −0.500 10−428 8.362 0.990
1.0 0.386 0.886 −0.500 9 × 10−5 0.386 0.368
2.0 0.018 0.443 −0.500 0.075 −0.057 0.018

methods need to be implemented to calculate the summations
in a more precise way. One of these methods is to use one of
the well-known summation formulas if the energy eigenvalues
are explicitly known, as in the case considered here. For any
even function, a summation from one to infinity can then be
calculated by using the Poisson summation formula (PSF) as
follows [5,28]:

∞∑
k=1

f (k) =
∫ ∞

0
f (k)dk − f (0)

2

+ 2
∞∑

s=1

∫ ∞

0
f (k) cos (2πsk)dk. (4)

Note that the function under the summation in Eq. (3) is
scaled by confinement parameter α and application of Eq. (4)
gives

ζ (α) =
∞∑

k=1

exp[−(αk)2]

=
√

π

2α
− 1

2
+

√
π

α

∞∑
s=1

exp

[
−

(
π

α
s

)2]
. (5)

It is seen that the summation formula, Eq. (4), consists
of three terms: integral, zero correction, and discrete cor-
rection terms, from left to right respectively. The integral
term is the term based on continuum approximation and it
approaches the correct result if the confinement parameter is
very small, α � 1 (macrosystems). The zero-correction term
constitutes some limited correction for the integral approach
and these two terms together provide the correct results as
long as α � α∗ ≈ 1. The discrete correction term contains
another infinite sum which represents the necessary correction
to the first two terms under strong confinement conditions,
α > α∗ ≈ 1, because of the discrete nature of the summation
process. Nevertheless, using only the first term (s = 1) of
this discrete correction is enough to get quite correct results
even in strongly confined conditions to a certain extent. Thus,
depending on the nature of the function, up to a limited value
of confinement, it is not usually necessary to calculate the
full summation in the discrete correction (over s here) which
prevents obtaining the analytical results. An even better way
to obtain the correct results in the case of strong confinement,
α > α∗ ≈ 1, is just to consider the first term of the original
summation in the left-hand side of Eq. (5). In other words,
it is not necessary even to calculate the summation at all for
strongly confined cases due to the strongly decaying nature
of the distribution function. Therefore, the first two terms of
PSF for the weak confinement regime, α � α∗ ≈ 1, and the
first term (or the first two terms for even better results) of the

original sum for the strong confinement regime, α > α∗ ≈ 1,
are used to represent the correct results of the summation. The
critical confinement value α∗, which represents the transition
point between weak and strong confinement representations,
can easily be determined by equalizing the absolute errors of
two different representations to each other [18]. Depending
on the consideration of the first term or first two terms of
the original sum for strongly confined conditions, the critical
confinement value is obtained as α∗ = 1.24 and α∗ = 1.01
respectively. Because of weak and strong confinement rep-
resentations, the summation formulas give only piecewise
analytical expressions since otherwise, the third term of the
formulas consists of also another summation that prevents ob-
taining analytical results. Table I clearly shows this behavior.
Besides only the piecewise analytical representation ability of
PSF, it does not establish any connection between the partition
function and the dimension of momentum space.

Another method for the partition function calculations is
to use the Weyl conjecture (Weyl’s law). It provides a very
precise formula for the asymptotic behavior of the number of
eigenvalues of the Laplace-Beltrami operator (including the
Helmholtz wave equation) for a domain of arbitrary shape
[22,29–32]. Although the Weyl conjecture is an asymptotic
formula, it leads to reasonably accurate results for the partition
function as long as the system boundaries are smooth and the
confinement is not too strong. Since the Schrödinger equa-
tion is reduced to the Helmholtz wave equation for particles
confined in an infinite well potential, the Weyl conjecture
allows us to calculate the partition function of noninteracting
particles confined in a domain with rigid boundaries of an
arbitrary shape. In other words, it is not even necessary to
solve the Schrödinger equation. Instead, the partition function
can be calculated by integrating over the particle energies if
the Weyl conjecture is used to obtain DOS function. It is called
the Weyl DOS function and, after some basic manipulations,
it can be given in a compact form for dimensionless energy
eigenvalues (ε̃ = ε/kbT ) with a quadratic dispersion relation
(ε = p2/2m) in the case of Dirichlet boundary condition as
[19]

DOSW (ε̃) = π

4

V

L3
c

√
ε̃ �(D − 2) + (−1)Dπ

4D−1

A

L2
c

�(D − 1)

+ (−1)D−12

4D

P

Lc

�(D)√
ε̃

+ (−1)D−22

4D+1
NV

δ(
√

ε̃)√
ε̃

,

(6)

where � is the left continuous Heaviside step function, δ

is the Dirac delta function, and D is the integer dimension
of the confinement domain. For a 3D system, the terms
in Eq. (6) are called volumetric, surface, peripheral, and
vertices terms, respectively, because of their proportionality
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with these geometric quantities. The high order terms, which
are proportional to {A, P, NV} for 3D, {P, NV} for 2D, and
{NV } for 1D systems, are low dimensional corrections that
allow calculating the partition function with very high pre-
cision for a domain of an arbitrary shape. In an infinitely
large system (thermodynamic limit), the particles occupy a 3D
momentum space and all the low dimensional terms become
negligible in comparison with the highest dimensional one,
the volumetric term. In this case, Eq. (6) consists of only the
first term and leads to the well-known bulk expressions of
classical thermodynamics. On the other hand, if the system is
finite and Lc is not negligible in comparison with the system
sizes, then the low dimensional terms make considerable con-
tributions allowing us to predict the true system behavior. In
this case, the system is called a bounded 3D system. Due to the
wave nature of particles, boundary modes are forbidden in a
finite system and the low dimensional terms basically exclude
the contributions of boundary modes which are incorrectly
considered by the 3D term, the first term. In other words,
the low dimensional terms are the corrections representing
the deviations from ideal 3D behavior due to confinement.
Nevertheless, the Weyl conjecture (or Weyl DOS) does not
establish a connection between these terms and the dimension
of momentum space, except the step functions which lead
to piecewise and integer dimensional representations. If the
system is strongly confined in one direction, then the correc-
tions of low dimensional terms are not sufficient to predict
the true system behavior anymore and it becomes necessary
to switch from 3D representation to the 2D one in Eq. (6).
This transition point corresponds to the condition of V ≈ ALc.
Beyond this point, V < ALc, the particles are free to occupy
2D momentum space while they stay at the ground state of
the momentum component in a strongly confined direction.
Therefore, the system is considered as a bounded 2D sys-
tem with corrections from lower dimensional contributions.
Similarly, this approach works well until the confinement in
the second direction becomes also strong, A ≈ P Lc. Beyond
that condition, A < P Lc, the 1D form of Eq. (6) has to be
used to predict the true system behavior. Finally, when the
confinement is strong in all directions, P ≈ NV Lc, then only
0D representation is applied. Note that the partition function
calculated from Eq. (6) can also be obtained if the first two
terms of PSF are used for each direction when the momen-
tum eigenvalues are explicitly known, like in the case of a
rectangular domain.

Consequently, the Weyl conjecture gives different thermo-
dynamic expressions for each integer dimension. It does not
establish a connection between the dimension of momentum
space, including the fractional ones, and a DOS function as
well as the resulting thermodynamic expressions. In other
words, neither the Weyl conjecture, Eq. (6), nor PSF, Eq. (4),
offer thermodynamic expressions as a continuous function of
dimension and they do not predict the true thermodynamic
behavior of a system for the whole confinement range. None
of them are able to represent thermodynamic behavior under
continuous dimensional transitions (3D ↔ 2D ↔ 1D) that
occurred during the continuous and strong changes in con-
finement.

For more general representations, which are valid for ar-
bitrary confinement and dimensions including the fractional

ones, a different approach is developed and proposed here by
implementing the fractional integrals for the calculation of
infinite summations of scaled functions. The dimensions of
fractional integrals are also defined by considering the infinite
summations. The following section gives the derivation of this
approach to calculate the infinite sums of scaled functions in
statistical physics.

Before we begin the derivations and calculations of FIR
for MB statistics, a short discussion about the applicability
limits of MB statistics is justified. The necessary and suf-
ficient condition to make use of Maxwell-Boltzmann (MB)
statistics is just to keep the occupation number of the ground
state, Ng, much smaller than unity, Ng � 1, to neglect the
nature of quantum statistics while keeping the total number
of particles in the opposite condition, N 	 1. Thus, Ng =
Nexp(−ε̃0)/ζt � 1 which leads to 1 � N � ζt exp(ε̃0). Here
ε̃0 = ε0/kbT is the dimensionless ground state energy which
is ε̃0 = α2

1 + α2
2 + α2

3 for quadratic dispersion relation and a
rectangular confinement domain considered here. If the sys-
tem is strongly confined in all directions (0D), then ζt →
exp(−ε̃0) and N = Ng. Therefore, it is not possible to ensure
both Ng � 1 and N 	 1 for a 0D MB system. To make
use of MB statistics, we have to consider very weakly con-
fined or even unconfined systems in at least one direction.
Thus, the minimum dimension of a finite size MB system is
one dimension. As long as one of the confinements is small
enough, α1 � 1, (here α1 is chosen), it is possible to keep both
Ng � 1 and N 	 1 independent of whether the confinements
in the other two directions are weak {α2, α3} � 1 or strong,
{α2, α3} > 1. Therefore, a rectangular domain elongated in
one direction (direction-1 here) is chosen and only the changes
of confinements in transverse directions (α2 and α3) are con-
sidered while the longitudinal one is kept very small, α1 � 1.
Note that, however, if the system is ergodic, the time averages
are equal to ensemble averages, then it is also possible to
consider even one-particle systems in MB statistics.

III. FRACTIONAL INTEGRAL REPRESENTATION
OF THE PARTITION FUNCTION

A. Derivation of the first order (ground state) FIR

The partition function in Eq. (3) can identically be ex-
pressed in terms of an integral by employing the Dirac delta
function δ as

ζ (α) =
∞∑

k=1

exp[−(αk)2]

=
∞∑

n=1

∫ ∞

0
δ(k − n) exp[−(αk)2]dk. (7)

We know that when α → 0 (deconfinement or infinitely
large system limit) the partition function converges into an
integral since the spectral space of the function, exp[−(αk)2],
becomes a 1D continuum space due to infinitely dense
sampling. On the other hand, when α → ∞ (complete con-
finement or infinitesimally small system limit) the partition
function consists of only the first term and the spectral space
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of the function becomes a 0D point space as a result of infinitely sparse sampling. In mathematical expression,

ζ (α) =
∞∑

n=1

∫ ∞

0
δ(k − n) exp[−(αk)2]dk =

⎧⎨
⎩

α →
(D→1)

0 ⇒ ∫ ∞
0 exp[−(αk)2]dk =

√
π

2α

α →
(D→0)

∞ ⇒ ∫ ∞
0 δ(k − 1) exp[−(αk)2]dk = exp (−α2)

. (8)

By considering the limit representation of the Dirac delta
function [40], Eq. (7) can be rewritten in the following form
as well:

ζ (α) = lim
D→0

∞∑
n=1

∫ ∞

0
D|2(k − n)|D−1 exp[−(αk)2]dk. (9)

Asymptotic results shown in Eq. (8) can directly be ob-
tained if the limit operation on D and summation over n in
Eq. (9) are changed from {D → 0 and n = 1, 2, 3, ...∞} to
{D = 0, ..., 1 and n = 1}. In other words, instead of fixing the
value of D as zero and letting n free to take the values in the
interval of {1, 2, 3...,∞}, we fix the value of n as n = 1 and
let D take the values in the interval of {0, ..., 1}. In that case,
the partition function can precisely be written, at least for the
asymptotic cases (D → 0 & D → 1), as{

first order
representation

}
: ζ (α) ≈ 1ζ (α)

=
∫ ∞

0
D|2(k − 1)|D−1 exp[−(αk)2]dk (10a)

=
∫ ∞

0
δD(k − 1) exp[−(αk)2]dk (10b)

where δD(x) = D|2x|D−1 is used here as a free form of the
Dirac delta function which goes to the known (true) Dirac
delta function when D → 0 while it becomes unity in the
opposite limit, D → 1 . When the confinement goes to infin-
ity (absolute confinement), α → ∞ (D → 0) , the partition
function consists of only the contribution of the ground state,
state 1 (k = 1), and the contributions from higher states be-
come completely negligible. In other words, the partition
function shrinks towards the ground state and this behavior
is performed by δD(k−1) in Eq. (10b) where state 1 stands
for the concentration point of the integration process in case
of absolute confinement (D → 0) . Therefore, Eq. (10) is
called here first order representation or ground state rep-
resentation. The subscript “1” on ζ indicates the order of
representation. This reduction of the integration process into
the contribution from state 1 is called here “condensation
of integration” by using the analogy between the processes
of Bose-Einstein condensation and integration. In the oppo-
site limit, α → 0 (D → 1) , the classical first order integral
approach is recovered as a result of the properties of δD.
At this point, the following question may arise: Is Eq. (10)
true only for the asymptotic cases, α → 0 and α → ∞ , or
also for any values of α as long as D(α) can be determined
in some way? The answer is yes, and the detailed recipe
for the determination of D(α) is proposed in the following
Sec. III B. Therefore, Eq. (10) constitutes the base of FIR for
the partition function and provides a representation in the full
range of confinement by a single expression. It gives the exact
results for the asymptotic cases and high accuracy results for
the intermediate values of the confinement. The maximum

error occurs only around α = 0.3 in the order of less than
2.5% for first order representation. Detailed analysis about the
success of Eq. (10) to represent the partition function is given
in Sec. III C.

Note that δD(x) is different from what it is called the
fractional Dirac delta function δF

D (x) with dimension D, which
is obtained by using the following the left-handed Liouville
fractional integral [41]:

δF
D (x) = D

	(1 + D)

∫ x

−∞
(x − s)D−1δ(s)ds = DxD−1

	(1 + D)
�(x),

(11)

where 	 represents the Gamma function. The differences be-
tween the behaviors of δD(x) and δF

D (x) are given as follows:

lim
D→0

∫ ∞

0
δD(x)dx = 1

2
, lim

D→1

∫ x

0
δD(x′)dx′ = x, (12a)

lim
D→0

∫ ∞

0
δF

D (x)dx = 1, lim
D→1

∫ x

0
δF

D (x′)dx′ = x�(x).

(12b)

Note that integral of δD(x) gives the correct result in the
case of D → 0 while δF

D (x) leads to a result twice as large.
In the opposite case (D → 1), the integral of δD(x) is correct
only for positive x values while δF

D (x) leads to the correct
results for any value of x. This is because of the fractional
integral form used in Eq. (11) where the integrand contains
the upper limit of the integral. Since the integration in Eq. (10)
takes only in the positive interval (0,∞), δD(x) represents
the correct form to calculate the partition function due to its
behaviors given in Eq. (12a). The integral in Eq. (10) is closely
related to the Riemann-Liouville fractional integrals. It can be
split into two parts:∫ ∞

0
δD(k − 1) exp[−(αk)2]dk

= 2D−1D

[ ∫ 1

0
(1 − k)D−1 exp[−(αk)2]dk

+
∫ ∞

1
(k − 1)D−1 exp[−(αk)2]dk

]
. (13)

The right-hand side of Eq. (13) can then be rewritten in
terms of Riemann-Liouville fractional integrals as follows:∫ ∞

0
δD(k − 1) exp[−(αk)2]dk

= 2D−1	(1 + D)
(

1
0ID + ∞

1 ID
)

exp[−(αk)2], (14)

where 1
0ID and ∞

1 ID are the left-handed Riemann and the right-
handed Liouville fractional integral operators respectively
[34]. In other words, δD allows expressing the right-hand side
of Eq. (14) by a single integral operator on the left-hand
side. Therefore, Eq. (10b) is the proposed FIR for the parti-
tion function. For simplicity, FIR of the partition function is
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symbolized here by FIR1(ζ ) if it is based on the first-order
approach. It can even analytically be solved as follows:

FIR1(ζ ) =
∫ ∞

0
δD(k − 1) exp[−(αk)2]dk (15a)

= 2D−1
2F2

[(
1

2
, 1

)
,

(
1 + D

2
,

2 + D

2

)
,−α2

]

+ exp (−α2)

2αD
	(1 + D)FU

(
D

2
,

1

2
, α2

)
, (15b)

where 2F2 and FU are the generalized hypergeometric func-
tion and the second kind of confluent hypergeometric function
respectively. For the asymptotic cases of D = 1 and D =
0, Eq. (15b) reduces to its simplest forms as

√
π/2α and

exp(−α2) respectively due to the behaviors of 2F2 and
FU for asymptotic values of D. Note that when D →
1, 2F2 → √

πErf(α)/2α and FU → exp(α2)
√

π [1 − Erf(α)]
while 2F2 → exp(−α2) and FU → 1 in the case of D → 0.

B. Definition of dimension for the first order FIR

In order to calculate the partition function by FIR, given
in Eqs. (10b) and (15b), the relation between the dimension
and confinement, D(α), has to be known. A conjecture for the
dimension of the partition function can be made as follows.
The length (magnitude) of the partition function, L(α), is
defined as follows by choosing the first term of the partition
function as a measure, m(α):

L(α) = ζ (α)

m(α)
=

∑∞
k=1 exp[−(αk)2]

exp (−α2)
. (16)

Similarly, the length of the classical partition function,
represented by the first-order integral approach, can also be
defined by using the same measure of m(α) as

Lcl (α) = ζcl (α)

m(α)
=

∫ ∞
0 exp[−(αk)2]dk

exp (−α2)
. (17)

The dimension D(α) can then simply be conjectured as a
relation between L(α) and Lcl (α) in the following form:

L(α) = Lcl (α)D(α). (18)

It is easily seen that ζ (α) → ζcl (α) when D → 1, while
ζ (α) → exp(−α2) in the case of D → 0. Equations (16) and
(17) are essentially the inverse of the occupation probabilities
of the ground state in the true (discrete) and classical repre-
sentations respectively. In other words, the dimension can be
expressed in a more refined form in terms of probabilities as

p1(α) = p1,cl (α)
ζ
1 D(α) ⇒ ζ

1D(α) = ln [p1(α)]

ln [p1,cl (α)]

=
ln

[ exp (−α2 )
ζ (α)

]
ln

[ exp (−α2 )
ζcl (α)

] (19)

Equation (19) gives the definition of the dimension for the
partition function. The subscript “1” on D indicates that the
dimension is gauged to the state 1. Therefore, D = 0 if the
partition function consists of only the contribution from state
1, (ground state). When D = 1, then all states contribute to
the partition function with equal probability. In this sense,

FIG. 1. A comparison between the dimension of the partition
function ζ

1D, Eq. (19), and the dimension of FIR for the partition
function, ζ

1DFIR, which is obtained from the equality of Eqs. (15b)
and (3).

dimension is related to the form of the occupation probability
distribution; 1D and 0D correspond to flat and infinitely sharp
distributions respectively. Note that ln p1 is the Shannon infor-
mation of ground state [42]. In other words, dimension in Eq.
(19) is just the ratio of ground state contributions to Shannon
information in discrete and classical representations. Because
of the power-law relation considered in between p1 and p1,cl ,
the dimension given by Eq. (19) is also equivalent to Higuchi
dimension [43] given by

ζ
1D(α) = d ln [p1(p1,cl )]

d ln (p1,cl )
. (20)

To check the accuracy of ζ
1D given by Eq. (19), it is

compared with ζ
1DFIR, the one needed for Eq. (15b). ζ

1DFIR

is obtained by making Eq. (3) equal to Eq. (15b) and using
a numerical iterative inverse solution while the true partition
function, Eq. (3), is calculated by numerical summation. In
this way, the predictions of Eq. (19) are compared with ζ

1DFIR.
Figure 1 shows that although these dimensions are obtained
in totally different ways they are remarkably in very good
agreement. The maximum difference between these dimen-
sion functions is just 0.02. These functions cross each other
around α ≈ 0.76. Except at the crossing point, ζ

1DFIR either
slightly over- or underestimates the dimension. This is be-
cause FIR is an approach for integral representation, but not
the exact solution. In other words, Eqs. (15a) and (15b) are
simply approximations, however, providing the high precision
results given in Sec. III C. Note that for a sum starting from 0
instead of 1, the first term, used as a measure m(α), may not
depend on the scale parameter α and this causes ill predictions
for dimension. In such a case, we can simply separate the first
term and consider the rest of the sum to define the dimension
for and apply FIR without any problem. This way can also be
preferred just to obtain better FIR results, as it is chosen in
Appendix B.

To get a fully analytical representation, we also need to
know the dimension analytically to use it in the analyti-
cal results of FIR, like Eq. (15b), as a control variable.
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FIG. 2. Variations of the partition function (solid curve) ζ , FIR1(ζ ) (dashed curve), 1D (dot-dashed) and 0D (dotted) representations of
partition functions, ζ1D = √

π/2α and ζ0D = exp(−α2), with confinement α (a) and dependencies of the same quantities on dimension ζ

1D (b).
Inset figures show the variations of accuracy, FIR1(ζ )/ζ , with confinement and dimension respectively.

Fortunately, it is possible to express the dimension in an
analytical form quite successfully even if the term ζ (α) in Eq.
(19) is approximated by the first two terms of PSF, Eq. (4), for
small values of α and by the first two terms of the partition

function itself for large values of α. In other words, despite
ζ (α) being represented by a continuous function given by
FIR1(ζ ), Eq. (15b), we can use the following piecewise func-
tion for ζ (α) in Eq. (19) to calculate the dimension, ζ

1D(α):

ζ (α) =
∞∑

k=1

exp[−(αk)2] ≈
{

ζL(α) = ∫ ∞
0 exp[−(αk)2]dk − 1

2 =
√

π

2α
− 1

2 , α � α∗
ζH (α) = exp (−α2) + exp (−4α2), α � α∗

. (21)

The value of α∗ can easily be found by the numerical
solution of ζH (α) = ζL(α) as α∗ = 1.008, or more generally
by |ζ (α) − ζL(α)| = |ζH (α) − ζ (α)| if there is no intersect.
Therefore, Eq. (19) can be simplified and even analytically be
expressed as

ζ
1aD(α) ≈

⎧⎪⎨
⎪⎩

1 − ln (1− α√
π )

ln ( 2α√
π )−α2 , α � α∗ = 1.008

ln [1+exp (−3α2 )]
α2−ln ( 2α√

π ) , α > α∗ = 1.008
. (22)

The maximum relative error of Eq. (22) occurs at α = α∗ as
0.6%. Thus, it provides a very good analytical representation
of dimension ζ

1D(α) for FIR1(ζ ).
Instead of using Eq. (21) for direct representation of ζ (α),

we use it only for the calculation of dimension, ζ
1D(α), and

then use the dimension in FIR1(ζ ), Eq. (15b), to represent
ζ (α). It may seem to be an indirect way for the calculation of
ζ (α), however, in this way, dimension is inherently incorpo-
rated into the calculation procedure of the partition function
and so are the other thermodynamic properties. This makes
the dimension a control parameter on the calculation process
which allows using the integral representation for the whole
confinement and dimension scales including fractional ones.
Another advantage of FIR is providing information about the
dimension and to use it as a control variable also on thermo-
dynamic state functions.

C. Accuracy of first order FIR for the partition function

If the dimension given in Eq. (22) is used in FIR1(ζ ),
Eq. (15b), we get a continuous representation of the parti-
tion function for the whole confinement scale, 0 < α < ∞.
This allows us to represent thermodynamic properties by
a single and unified expression instead of using different
expressions valid only for discrete integer dimensions of 1
and 0 (unconfined and completely confined). The plots in
Fig. 2(a) demonstrate that while the 0D and 1D results deviate
considerably from the exact solutions for weak and strong
confinement conditions respectively, the FIR1(ζ ) result agrees
very well with the exact ones for the whole interval of con-
finement. Particularly, the gray zone on Fig. 2(a) indicates
the region where neither 1D nor 0D approaches are able to
represent the true behavior. The maximum error of FIR1(ζ )
appears around α = 0.3 as 2.5%. Furthermore, FIR1(ζ ) is
also calculated by using the exact expression of dimension,
Eq. (19), and compared with the one using Eq. (22). It is
seen that the analytical approach for dimension causes only
0.03% maximum relative difference in FIR1(ζ ) around α =
0.3, which is totally negligible and shows the success of Eq.
(22). Variations of the same quantities with dimension are
given in Fig. 2(b). In dimension space, it is explicitly seen that
1D and 0D approaches are able to represent the true behaviors
only for the asymptotic cases of confinement, α → 0 and
α → ∞, respectively.

Since we are now able to express the partition function as
a function of dimension for the whole range of confinement
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FIG. 3. A schematic comparison of FIR with already known methods for the calculation of thermodynamic properties.

by FIR, it is possible to obtain the total partition function just
by multiplication of its FIR expression in each direction; see
Eq. (2). After the total partition function is determined, it is
possible to obtain the unified expressions of thermodynamic
state functions, which are valid for the whole confinement
range. It should be noted that similar to other summation for-
mulas, FIR works when the energy eigenvalues are explicitly
known, e.g., like the ones for a rectangular domain.

Despite its success for the partition function, the first order
FIR may not be sufficient for the summations consisting of
high order moments of energy multiplied by the distribution
function, like

∑
(αk)4 exp[−(αk)2]. Depending on the order

of the moment and the value of confinement, the dimension
may take even the unphysical negative values and it happens
when simply the order of FIR is insufficient to represent the
considered sum. This situation can easily be overcome just
by selecting higher n values, going to higher-order represen-
tations. Therefore, there is a need to consider the second or
higher-order (excited state) FIR to directly calculate this kind
of summations which appear in statistical thermodynamics
as fundamental expressions of some quantities like internal
energy, heat capacity, etc. Derivation of high order FIR for
common summations in statistical thermodynamics is given in
Appendix A. It is found that the second order is the minimum
order to calculate the quantities consisting of the second order
moment of energy, like heat capacity. Thus, the second order
FIR is chosen here to calculate all thermodynamic properties
directly from their fundamental expressions.

On the other hand, it is clear that thermodynamic quantities
can indirectly be determined by using the partition function,
instead of using their expressions based on infinite sum-
mations. Therefore, once FIR1(ζ ) is determined, the other
thermodynamic properties can be derived from FIR1(ζ ). In

that case, however, derivations and expressions of thermody-
namic properties become unnecessarily complicated due to
the dimensional dependence of FIR1(ζ ). Note that dimension
also depends on confinement and so the temperature and sizes
of the system. Because of this reason, it is always much
easier to calculate the properties by using their fundamental
expressions. This is why the high order FIR in Appendix A
is needed. Similarly, we derive and examine the higher-order
FIR particularly for the partition function in the following
Sec. III D, not only for a better representation (higher accu-
racy) of ζ but also for a complete and generalized recipe.
Furthermore, to show its consistent agreement with the exact
results, FIR of partition functions for quadratic and quar-
tic confining potentials are also considered and examined in
Appendix B.

A schematic comparison of both FIR and the known meth-
ods for the calculation of thermodynamic properties is given
in Fig. 3. The main advantage of FIR is that it incorporates
the dimension into calculation steps and therefore allows us
to obtain unified expressions valid for the whole confinement
and dimension scales, including the fractional ones, besides
raising awareness about the dimension. In its present form,
the only disadvantage of FIR is its limited applicability only
for some particular domains for which energy eigenvalues are
explicitly known. On the other hand, one of the most common
manufactured structures in nanoscale is already rectangular
ones, where FIR can easily be applied.

D. Extension of FIR to high order (excited state)
representations: FIRn(ζ) and ζ

nD

To obtain more precise forms of FIRn(ζ ), an excited
state (state n) has to be chosen as a condensation point of
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integration. Therefore, for extension of FIRn(ζ ) to any order
of n, ζ (α) has to split into two parts,

ζ (α) =
∞∑

k=1

exp[−(αk)2] =
n−1∑
k=1

exp[−(αk)2]

+
∞∑

k=n

exp[−(αk)2], n � 1. (23)

Then FIR is applied just for the second summation and the
following expression is obtained for FIR(ζ ) by extending the
idea in Eq. (10b):{

nth order
representation

}
: FIRn(ζ )

=
n−1∑
k=1

exp[−(αk)2]

+
∫ ∞

n−1
exp[−(αk)2]δD(k − n)dk, n � 1, (24)

where n is a positive integer number referring to the order of
representation and it also refers to the chosen state on which
condensation of the integration process is tuned. Note that the
summation term in Eq. (24) vanishes for the first-order case,
n = 1. Similar to Eq. (14), the integral term in Eq. (24) has the
following relation with fractional integral operators:∫ ∞

n−1
exp[−(αk)2]δD(k − n)dk

= 2D−1	(1 + D)
(

n
n−1ID + ∞

n ID
)

exp[−(αk)2], (25)

where n
n−1ID and ∞

n−1ID are the right-handed Riemann and the
left-handed Liouville fractional integral operators respectively
[34]. Therefore, Eq. (24) is the general form of FIR for the
partition function and it has a semianalytical solution given
by

FIRn(ζ ) =
n−1∑
k=1

exp[−(αk)2] +
∫ ∞

0
exp[−(αk)2]δD(k − n)dk

−
∫ n−1

0
exp[−(αk)2]δD(k − n)dk (26a)

=
n−1∑
k=1

exp[−(αk)2] + ∞
0 �D

n exp[−(αk)2]

− n−1
0 �D

n exp[−(αk)2] (26b)

=
n−1∑
k=1

exp[−(αk)2] + 2D−1nD
2F2

[(
1

2
, 1

)
,

×
(

1 + D

2
,

2 + D

2

)
,−(αn)2

]

+exp[−(αn)2]

2αD
	(1 + D)FU

[
D

2
,

1

2
, (αn)2

]

− n−1
0 �D

n exp[−(αk)2]; (26c)

here FIR operators ∞
0 �D

n and n−1
0 �D

n are introduced for brevity.
The last term in Eq. (26c), the one containing the operator
n−1
0 �D

n , should be calculated numerically and it becomes zero
only for “the first order representation,” n = 1, for which Eq.
(26c) reduces to Eq. (15b).

The dimension for this nth order representation is defined
by considering the summation from n to infinity in Eq. (23) as

ζ
nD(α) = ln[pn(α)]

ln[pn,cl (α)]
=

ln
[ exp[−(αn)2]∑∞

k=n exp[−(αk)2]

]
ln

[ exp[−(αn)2]∫ ∞
n−1 exp[−(αk)2]dk

] . (27)

The classical representation of the sum in Eq. (27) is
clearly equal to the integral in Eq. (24) for D = 1. Note that
pn represents the occupation probability of state n within the
available states from n to infinity but not within all available
states, from 1 to infinity. This is because the summation in
Eq. (27) starts from n, not from unity and it is the same for
the integral term at the denominator: it starts from n − 1, not
from 0. Therefore, ζ

nD reflects the contributions of states from
n to infinity to the partition function. If ζ

nD = 0, then only
the state n contributes while all the states equal to or higher
than n contribute with equal probability in the case of ζ

nD = 1.
By following the similar way given in Eqs. (21) and (22), the
summation in Eq. (27) can be approximated as

ζ ′ =
∞∑

k=n

exp[−(αk)2] ≈
⎧⎨
⎩ζ ′

L =
√

π

2α
{1 − Erf[α(n − 1)]} − exp [−α2(n−1)2]

2 , α � α∗

ζ ′
H = exp[−(αn)2] + exp[−α2(n + 1)2], α > α∗

, (28)

where α∗ can be determined by the simple numerical solution
of ζ ′

H = ζ ′
L or |ζ ′ − ζ ′

L| = |ζ ′ − ζ ′
H |. Therefore, the analytical

approach for the dimension of the nth order representation,
Eq. (27), is given as

ζ
naD(α) =

⎧⎪⎪⎨
⎪⎪⎩

1 − ln[1− α√
π

exp [−α2 (n−1)2]
1−Erf[α(n−1)] ]

ln [ α√
π

2
1−Erf[α(n−1)] ]−(αn)2 , α � α∗

ln {1+exp [−α2(2n+1)]}
(αn)2−ln [ α√

π

2
1−Erf[α(n−1)] ]

, α > α∗

. (29)

The accuracies of different orders FIR are compared in
Fig. 4(a) for the partition function. It is clearly seen that the
maximum error decreases and the error distribution becomes
narrower when a higher-order representation is chosen. It
seems that the maximum error of second order representation
is even less than 2%. Similarly, in Fig. 4(b), variations of
ζ
nD are shown for the different order of representations. The
characteristic confinement value αc, which corresponds to the
dimension of 1/2 (D = 1/2), shifts to the lower confinement
values with increasing order. This is an expected result since
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FIG. 4. Accuracies of different orders FIR for the partition function FIRn(ζ )/ζ (a). Variations of dimension for different FIR orders ζ
nD

with confinement (b). The thickness of curves decreases with increasing order of FIR for grayscale prints.

the contributions from higher states decay more rapidly when
confinement increases.

Consequently, by choosing the higher-order representa-
tions (n � 2), the more accurate results can be obtained while
the more individual state terms appear in the resulting expres-
sion due to the summation term in Eq. (24). These individual
contributions may reduce the compactness of FIR(ζ ). More-
over, FIRn(ζ ) has semianalytical solutions, Eq. (26c), for n �
2 while it has fully analytical and also sufficiently accurate
results for n = 1. However, as mentioned in Sec. III C, the
second order representation is the minimum order to calculate
all thermodynamic properties directly from their fundamental
expressions. Therefore, the second-order FIR is chosen also
for the partition function here, FIR2(ζ ), to keep the con-
sistency of the representation orders for direct and indirect
calculations of thermodynamic properties. The second order
FIR for the partition function is obtained as

FIR2(ζ ) = exp(−α2) +
∫ ∞

1
exp[−(αk)2]δD(k − 2)dk.

(30)

Here the integral term represents the contribution of ex-
cited states. When confinement goes to higher values, only
the excited states near the first excited state (state 2) con-
tribute to the integral. In the case of ζ

2D → 0, the only state
2 contributes to the integral since δD(k−2) → δ(k−2) and the
partition function consists of just the contributions of ground
and the first excited states. By use of Eq. (26c), the following
semianalytical expression is obtained for Eq. (30):

FIR2(ζ ) = exp(−α2) + 22D−1
2F2

[(
1

2
, 1

)
,

×
(

1 + D

2
,

2 + D

2

)
,−(2α)2

]

+ exp[−(2α)2]

2αD
	(1 + D)FU

[
D

2
,

1

2
, (2α)2

]

− 1
0�D

2 exp[−(αk)2]. (31)

An analytical expression of the dimension for second order
representation is easily obtained from Eqs. (28) and (29) in the

following form:

ζ
2aD(α) =

⎧⎪⎪⎨
⎪⎪⎩

1 − ln[1− α√
π

exp (−α2 )
1−Erf(α) ]

ln [ α√
π

2
1−Erf(α) ]−(2α)2 , α � α∗ = 0.475

ln [1+exp (−5α2 )]
(2α)2−ln [ α√

π

2
1−Erf(α) ]

, α > α∗ = 0.475

.

(32)

The maximum difference between the analytical expres-
sion, Eq. (32), and its exact form, Eq. (27), for n = 2 occurs at
α = α∗ = 0.475 as 0.06 which causes around 2% maximum
relative difference in Eq. (31).

IV. FIR OF THERMODYNAMIC PROPERTIES

A. FIR2 based expressions for the whole range
of confinement and dimension

FIR based expressions can be used to characterize the
thermodynamic behavior continuously in the full range of
confinement, in which the system undergoes a strong di-
mensional transition, such as from three dimensions to one
dimension. The fundamental expressions of thermodynamic
properties are considered in their dimensionless forms and
FIR2 is used for the calculations of infinite summations
in these expressions. By using the generalized function in
Eq. (A3) together with Eqs. (A4) and (A5) for n = 2, it is
possible to represent the dimensionless thermodynamic prop-
erties quite easily and successfully. The generalized notation
of FIR2(α, n1, n2) is used for the simplicity of representa-
tions. In this notation, FIR2(ζ ) in Eq. (31) is represented
by FIR2(α, 0, 2). The dimension is calculated by Eq. (A8)
for a given set of {n1, n2, n = 2}. Equations (A5) and (A8)
reduce to Eqs. (31) and (32) respectively in the case of
{n1 = 0, n2 = 2}.

FIR expressions of the chemical potential, internal energy,
entropy, and heat capacity at constant volume are obtained for
both linear and quadratic dispersion relations while their vari-
ations due to changes in the confinement are examined only
for the quadratic case since there is no qualitative difference
between the cases. The only exception is the heat capacity and
its different behavior for different dispersions is discussed.
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The dimensionless chemical potential can easily be split
into two parts:


 = μ

kbT
= ln

(
N

ζt

)
= ln

(
N

ζt,cl

)
+

(
ζt,cl

ζt

)
= 
cl + 
e,

(33)

where 
cl = ln(N/ζt,cl ) is the classical chemical potential,
ζt,cl is the classical total partition function given by ζt,cl =
π3/2/(8α1α2α3), and 
e is the excess chemical potential due
to the confinement. Note that 
e goes to zero in the limit
of unconfined, i.e., infinitely large, systems in all directions.
During the calculations and examinations of FIR for thermo-
dynamic properties, only the excess quantities are considered
since the classical terms are trivial and already well known,
even in analytical forms. Furthermore, the classical terms are
not affected by the changes of confinement or dimension since
they are just functions of temperature and density. Therefore,
it is always possible to keep the classical terms constant during
a change of confinement or dimension. Note that we consider
an elongated rectangular box as a confinement domain in
which the confinement in the longitudinal direction is negli-
gible (α1 � 1) since we use MB statistics, as explained at the
end of Sec. II. Therefore, by considering Eq. (33) as well as
the condition α1 � 1, which means ζ1 = ζ1,cl = √

π/(2α1),
the excess chemical potential is written as


e =
(

ζt,cl

ζt

)

= ln

[
ζ2,cl

FIR(α2, 0, n2)

]
+ ln

[
ζ3,cl

FIR(α3, 0, n2)

]

= 
2,e + 
3,e, (34)

where ζ2,cl = √
π/(2α2) and ζ3,cl = √

π/(2α3) are the com-
ponents of the classical partition function in directions 2 and
3, respectively. Equation (34) represents the correction for

cl because of the confinement. This correction is not valid
only for the limited values of confinements,{α2, α3} � 1 or
{α2, α3} 	 1, but for their whole range, 0 < {α2, α3} < ∞.
In other words, we do not need two different or piecewise ex-
pressions, one for weak and one for strong confinements, but
instead, we have a unified representation due to the dimension
controlled nature of FIR2(α, 0, n2). When Eq. (34) is added to

cl , ζ2,cl and ζ3,cl terms in Eq. (34) cancel the same terms in

cl and FIR2 terms represent the true behavior of ζ2 and ζ3 in
the full range of confinement.

The dimensionless internal energy, ũ = U/NkbT , can also
be decomposed for each direction and expressed as

ũ = 1

n2
+

∑∞
k2=1 (α2k2)n2 exp [−(α2k2)n2 ]∑∞

k2=1 exp [−(α2k2)n2 ]

+
∑∞

k3=1 (α3k3)n2 exp [−(α3k3)n2 ]∑∞
k3=1 exp [−(α3k3)n2 ]

. (35)

The first term, 1/n2, is a result of the first order integral
approaches for the summations over k1 due to α1 � 1 which
allows a continuum approach in that direction. In a similar

way to Eq. (34), the excess internal energy is expressed by

ũe = ũ − 3

n2
= FIR2(α2, n2, n2)

FIR2(α2, 0, n2)
+ FIR2(α3, n2, n2)

FIR2(α3, 0, n2)
− 2

n2
.

(36)

Note that since ũ is a quantity per particle, ũ and ũe consist
of the ratios of two summations with different order of mo-
ments in Eq. (35) and similarly two different FIR2 functions
in Eq. (36) respectively. The terms in the numerator and de-
nominator have different dimensions. In Appendix A, these
dimensions can clearly be seen in Fig. 9 for the curves of
n1 = n2 and n1 = 0 respectively. Therefore, unlike the chem-
ical potential, the dimension of ũe is a combination of these
dimensions. On the other hand, the dimension of the partition
function is the essential one for all thermodynamic quantities
since the partition function is a fundamental quantity from
which all thermodynamic properties can be derived. Thus, its
dimension is chosen here as a reference dimension for the
system during the examinations of thermodynamic quantities.

Dimensionless entropy is simply expressed by s̃ =
S/Nkb = ũ − 
 + 1 in MB statistics. By subtracting the
classical part s̃cl = ũcl − 
cl + 1, the dimensionless excess
entropy, s̃e = ũe − 
e, can easily be written by Eqs. (34) and
(36) as

s̃e = FIR2(α2, n2, n2)

FIR2(α2, 0, n2)
− ln

[
ζ2,cl

FIR(α2, 0, n2)

]

+ FIR2(α3, n2, n2)

FIR2(α3, 0, n2)
− ln

[
ζ3,cl

FIR(α3, 0, n2)

]
− 2

n2
. (37)

Finally, the dimensionless specific heat capacity at constant
volume, c̃V = CV /Nkb, is

c̃V =
3∑

r=1

{∑∞
kr=1 (αrkr )2n2 exp [−(αrkr )n2 ]∑∞

kr=1 exp [−(αrkr )n2 ]

−
[∑∞

kr=1 (αrkr )n2 exp [−(αrkr )n2 ]∑∞
kr=1 exp [−(αrkr )n2 ]

]2}
. (38)

Because of the condition α1 � 1, the term for r = 1 be-
comes simply 1/n2 like in Eq. (35) and the excess c̃V is given
by

c̃e
V = c̃V − 3

n2
= FIR2(α2, 2n2, n2)

FIR2(α2, 0, n2)
−

[
FIR2(α2, n2, n2)

FIR2(α2, 0, n2)

]2

+ FIR2(α3, 2n2, n2)

FIR2(α3, 0, n2)
−

[
FIR2(α3, n2, n2)

FIR2(α3, 0, n2)

]2

− 2

n2
.

(39)

Entropy and heat capacity are based on summations
containing different orders of moments of energy. Entropy
contains the zeroth and first order of moments since it is
related to both chemical potential and internal energy. Heat
capacity contains the first and second order of moments of
energy. Therefore, there is no single and unique dimension to
represent their dimensional behaviors; it is a combination of
different dimensions for different orders, like in the case of
internal energy.

Since the dimension of the partition function is chosen as
an essential and reference dimension for the system, the total
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FIG. 5. Variations of dimension for quadratic dispersion relation,
n2 = 2, during different peripheral deformation scenarios. Note that
L2 + L3 is half of the periphery in the transverse direction of the
confinement domain. The black curve (marked with dots) stands for
the isometric changes of confinements in both directions simulta-
neously, α2 = α3 = {0.1, ..., 2}. The blue curve (marked with down
triangles) represents the weak anisometric confinement scenario in
which the only one of the confinements changes α3 = {0.1, ..., 2}
while the other one is kept constant at its lowest value, α2 = 0.1. The
red curve (marked with up triangles) is for the opposite case: one of
the confinements takes its highest value α3 = 2 while the other one
changes, α2 = {0.1, ..., 2}. The dotted lines show the best possible
representations when only integer dimensional approaches are used.
Squares and rectangle boxes represent the shape of the cross section
of the confinement domain in the transverse direction.

dimension is given in second order representation by

Dt = 1 + ζ
2D(α2) + ζ

2D(α3). (40)

Note that the dimension for direction 1 is always equal to
unity due to the condition of α1 � 1.

B. Behaviors of excess thermodynamic properties
during the dimensional transitions

For the examinations here, only the quadratic dispersion
relation, n2 = 2, is considered since the results for linear and
quadratic dispersion relations are qualitatively very similar
to each other as mentioned before. Changes in excess ther-
modynamic properties are analyzed for different deformation
scenarios of confinements in transverse directions. Variations
of dimension for these scenarios are given in Fig. 5. There are
two anisometric confinement scenarios: weak and strong. The
weak one is performed by keeping one of the transverse sizes
in its longest value (lowest confinement), L2 = 10Lc while the
other size changes in between its longest and shortest values,
L3 = (10, ..., 0.5)Lc. The strong one is the opposite scenario,
L3 = 0.5Lc and L2 = (10, ..., 0.5)Lc, subsequently following
the weak confinement scenario. During the isometric defor-
mation of confinement, both L2 and L3 simultaneously change
in the same interval. In other words, the shape of the domain
remains always as a square in isometric deformation. For
anisometric scenarios, it is seen that variations of dimension
are sharper and stepwise in comparison with that of isometric
one. The midpoints of transitions from 3D to 2D and from

2D to 1D approximately correspond to the lengths L3 ≈ 2.5Lc

and L2 ≈ 2.5Lc respectively. This is why the total dimension
of the system becomes 2.5 and 1.5 around L2 + L3 ≈ 12.5Lc

and L2 + L3 ≈ 2.5Lc correspondingly. In an isometric case,
there is a single transition from 3D to 1D nearby L2 + L3 ≈
5Lc where D = 2. Isometric dimensional variation crosses the
anisometric one close to L2 + L3 ≈ 4Lc. The same scenarios
can also roughly be represented by integer dimensional ap-
proaches, seen as dotted lines in Fig. 5.

Excess thermodynamic properties are analyzed for these
three scenarios. In Fig. 6, variations of excess chemical poten-
tial and internal energy are shown. The solid curves represent
the true predictions based on direct calculations of infinite
summations for the related quantities while the dashed curves
(almost match the solid ones) represent the predictions of FIR.
It is seen that they are in quite good agreement and the dashed
and solid curves almost perfectly match each other. There-
fore, FIR of thermodynamic properties provides the unified
expressions valid for both weakly and strongly confined cases.
On the other hand, the integer dimensional approaches can
make only rough predictions, indicated by arrows in Fig. 6,
and considerably deviates from the true behaviors especially
around the transition regions from one integer representation
to another, namely 3D ↔ 2D, 2D ↔ 1D, and 3D ↔ 1D. Be-
sides its continuous representation success, FIR also allows
establishing dimensional relations between the behavior of
a property and the dimension of the partition function un-
der different confinement scenarios. As expected, the excess
chemical potential and internal energy increase with reduc-
ing sizes (or dimension Fig. 5) due to growing confinement
energy. The isometric path gives smooth changes whereas
anisometric paths exhibit stepwise behavior both in proper-
ties and dimension because of the sequential confinement
procedures in different directions of the rectangular domain.
Note that in a circular domain, for example, an anisometric
path is clearly not possible and only the isometric change of
dimension, from three dimensions to one dimension, can be
realized. Therefore, different shapes allow different scenarios
for dimensional transitions.

The regions in between the black curve and the blue and
red curves represent all available thermodynamic states for
the considered interval of confinement parameters, (0.1–2).
Therefore, these figures also show the possibility of novel
thermodynamic cycles based on dimensional changes in mo-
mentum space. If we consider internal energy as an example,
we can change the confinement by following the black path
from 3D to 1D and then turned back to the initial state by
following the red and blue curves respectively. In this way,
we can generate energy from this cycle. Note that change of
confinements, α2, α3, can be realized either by an isothermal
change in sizes or isometric changes in temperature. There-
fore, not only work exchange but also heat exchange processes
can be performed through this cycle.

In Fig. 7, it is seen that excess entropy takes negative
values with increasing confinement up to a critical value and
then becomes positive while the excess heat capacity exhibits
the opposite behavior. Note that the arrows here indicate the
curves based on integer dimensional approaches, which match
the true behavior only in a very limited interval of confinement
(peripheral length) and cannot predict the negative values of
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FIG. 6. Excess chemical potential (a) and excess internal energy (b) vs different peripheral deformation scenarios. Dashed curves (almost
match on the solid ones) represent FIR results while the solid ones are the exact ones. The dispersion relation is quadratic, n2 = 2. The
dotted curves show the best possible representations when only integer dimensional approaches are used. Arrows show the dimension of the
approaches for the best match.

excess entropy. This behavior in entropy can be explained by
its mathematical relations with the internal and chemical po-
tential energies, s̃e = ũe − 
e. If we look at the behaviors of
ũe and 
e in Fig. 6, both of them monotonically increase with
increasing confinement (decreasing periphery). However, the
increment in ũe becomes slightly sharper and dominant in
comparison with that of 
e if the confinement goes beyond
a certain point. This results in positive excess entropy. If we
calculate the excess entropy when {α3 > 1, α2 � 1} which
corresponds to the conditions where the blue curve of excess
entropy crosses the zero axes, we get s̃e → − 1

2 − ln(
√

π

2α3
).

It turns into a positive sign when α3 > 1.46 which cor-
responds to L3/Lc = 1/1.46 ≈ 0.7. Since through the blue
curve L2/Lc = 10, (L2 + L3)/Lc = 10.7 which is the zero-
crossing point of the blue curve. Similar calculations can be
done for {α3 > 1, α2 > 1} and we get α2α3 = 2.1 . When
the confinements are equal to each other, it corresponds to
(L2 + L3)/Lc = 1.4 which is the zero-crossing point for the

black curve of excess entropy. These simple mathematical
explanations show that the positive excess entropy occurs to
eliminate the incorrect contributions of the classical parti-
tion function in the classical entropy expression. The terms
− ln(ζ2,cl ) and − ln(ζ3,cl ) in Eq. (37) are eliminated by the
same terms with opposite sign in the classical entropy ex-
pression. Therefore, when we examine the entropy, instead of
the excess one, we see that it always decreases with growing
confinement, never increases, in an agreement with our expec-
tations.

Excess heat capacity has positive contributions if the con-
finement is weak enough for at least one direction. Positive
contribution causes overheat capacity, which cannot be pre-
dicted by integer dimensional representations. For strong
confinement conditions, the degree of freedom for transla-
tional motion is lost and heat capacity decreases the amount of
1/2 for each confined direction. As it is well known and seen
in Eq. (38), the heat capacity is the variance of the energy,

FIG. 7. Excess entropy (a) and excess heat capacity (b) vs different peripheral deformation scenarios. Dashed curves (almost match on the
solid ones) represent FIR results while the solid ones are the exact ones. The dispersion relation is quadratic here, n2 = 2. The dotted curves
show the best possible representations when only integer dimensional approaches are used. Arrows show the dimension of the approaches for
the best match.
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c̃V = ε̃2 − ε̃
2
. In the case of quadratic dispersion, n2 = 2, ε̃2

and ε̃
2

approach 3/4 and 1/4, respectively, as the confine-
ment tends to zero, which leads to the classical 1/2 value
of heat capacity for each free direction. Therefore, when
(L2 + L3)/Lc 	 1, the excess heat capacity goes to zero. In
the strongly confined limit, both of them go to α4 and it
gives zero value for each confined direction. This causes
the value of −1 for the excess heat capacity in the limit of
(L2 + L3)/Lc → 0 to cancel the classical 1/2 + 1/2 terms for
the directions of 2 and 3. On the other hand, when confinement
increases, ε̃2 goes to α4 faster than ε̃

2
and this behavior causes

positive values in excess heat capacity. When the second
one catches the first one, their difference becomes zero and
c̃e

V equals minus unity. Although the results of linear and
quadratic cases are very similar for most of the thermody-
namic quantities considered here, the situation is different for
heat capacity. In the case of the linear dispersion relation, the
positive contribution of confinement disappears and c̃e

V takes
always negative values, c̃e

V < 0. In other words, there is no
overheat capacity in the case of linear dispersion.

V. CONCLUSION

The FIR is proposed for calculations of the partition func-
tion as well as for the common infinite sums appearing in
statistical thermodynamics. The dimension of an infinite sum
for a scaled function is introduced as a control parameter of
the FIR. By using the proposed method, it is seen that we
are able to express the thermodynamic properties of confined
systems directly as a function of the dimension of momentum
space. Because of the FIR and the dimension defined in this
study, thermodynamic quantities can be examined not only
for integer dimensions but also for fractional ones. These
expressions are unified expressions valid for the full range of
confinement and dimension, instead of their limited ranges.
The proposed method can be used when the momentum eigen-
values of particles are explicitly known. FIR is applied for a
generic function representing the most common functions in
statistical thermodynamics and excess thermodynamic quan-
tities are analyzed during the continuous change in the wide
range of confinement. It seems that the FIR can successfully
predict the true behavior of thermodynamic quantities. Appli-
cation of FIR is also extended to the widely used quadratic
and quartic confinement potentials besides the infinite well,
and the success of FIR is shown for these potentials in Ap-
pendix B. FIR seems to be a powerful method to calculate the
various infinite sums in statistical physics. This opens up some
applications of fractional integrals in statistical physics as
well. The applications can be extended to the thermodynamics
of Fermi and Bose gases. Especially, it may be interesting to
consider Bose-Einstein condensation by the proposed method,
FIR, since it directly relates the thermodynamic behaviors
with dimension and allows us to examine quantities during
dimensional transitions. Not only thermodynamic properties
but also transport properties can be calculated by the FIR
since their fundamental expressions are also based on infinite
sums. Thus, many interesting phenomena based on confine-
ment effects can be investigated by the FIR. Furthermore,
it constitutes a base for the derivation of DOS for arbitrary

dimensions, including fractional ones. Moreover, it seems that
dimension can serve as a state function in thermodynamics
and results in numerous new processes and thermodynamic
cycles, especially at the nanoscale. These topics are now under
consideration as extensions of the study by the same group.
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APPENDIX A: FIR FOR WIDELY USED SUMMATIONS
IN STATISTICAL THERMODYNAMICS

During the calculations of thermodynamic and transport
properties, not only the partition function but also the summa-
tions consisting of the distribution function multiplied by the
powers of momentum, energy, and even some other functions
need to be calculated. For example, calculation of the ensem-
ble sum of energy,

∑
ε̃ exp(−ε̃) = ∑

(αk)2 exp[−(αk)2],
is necessary to directly calculate the internal en-
ergy. Similarly, the ensemble sum of energy square,∑

ε̃2 exp(−ε̃) = ∑
(αk)4 exp[−(αk)2], is needed for the

direct calculation of heat capacity. Besides, the dispersion
relation may not always be quadratic but it may be linear.
Therefore, instead of considering only the partition function
and only the quadratic energy-momentum relation, there is a
need to generalize FIR for a generic function representing the
most common functions in statistical thermodynamics.
Equation (26a) can be conjectured to be valid for a
convergent infinite sum over k from one to infinity, A(α), of a
non-negative function scaled by α, f (αk), as

A(α) =
∞∑

k=1

f (αk) ⇒ FIRn(A)

=
n−1∑
k=1

f (αk) +
∫ ∞

0
f (αk)δD(k − n)dk

−
∫ n−1

0
f (αk)δD(k − n)dk (A1a)

=
n−1∑
k=1

f (αk) + ∞
0 �D

n f (αk) − n−1
0 �D

n f (αk). (A1b)

Dimension is defined by considering Eq. (27) and f (αk) as

A
n D(α) = ln [wn(α)]

ln [wn,cl (α)]
=

ln
[ f (αn)∑∞

k=n f (αn)

]
ln

[ f (αn)∫ ∞
n−1 f (αn)dk

] . (A2)

Note that wn is not the probability anymore but the weight
factor of state n. When f (αk) becomes a distribution function,
then wn becomes the probability of state n. Depending on both
the nature of f (αk) and the value of α, there is a possibility
that wn,cl (α) > 1 while wn(α) < 1. In this case, dimension
takes the unphysical negative values and this situation shows
that the selected order of FIR is not sufficient to represent the
sum. This can easily be overcome just by selecting the higher
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n values, going to higher-order representations. The second
order is the minimum order to calculate the ensemble sum of
energy square for example.

For the most common calculations in statistical thermody-
namics, a quite useful and generic function can be defined as
follows:

f (αk) = (αk)n1 exp [−(αk)n2 ], (A3)

where n1 � 0 and n2 = 2 or 1 depending on if the dispersion
relation is quadratic or linear respectively. Note that Fermi
and Bose distribution functions can be expended in terms of
the Maxwell-Boltzmann distribution function. Therefore, the
calculations and the results here constitute a base for FIR in
statistical thermodynamics in general. For the generic func-
tion in Eq. (A3), the term ∞

0 �D
n f (αk) in Eq. (A1b) can even be

analytically calculated. For linear dispersion relation, n2 = 1,
it is obtained as

∞
0 �D

n f (αk) = 2−1+Dα−D D

D + n1
	(1 + D + n1)1F1(1 − D, 1 − D − n1,−nα) + 2−1+Dαn1 nn1+D

1F1(1 + n1, 1 + D + n1,−nα)

×
[
	(1 + D)	(1 + n1)

	(1 + D + n1)
− 	(1 + D)

	(−n1)

	(1 − D − n1)

D + n1

]
, (A4)

where pFq(z) = F [(a1, ..., ap), (b1, ..., bq ), z] is the generalized hypergeometric function. For a quadratic dispersion relation,
n2 = 2, ∞

0 �D
n f (αk) is solved as

∞
0 �D

n f (αk) = 2−1+Dα−D D

D + n1
	

(
2 + D + n1

2

)
2F2

[(
1 − D

2
,

2 − D

2

)
,

(
1

2
,

2 − D − n1

2

)
,−(nα)2

]

+ 2−1+Dα1−D nD(1 − D)

D + n1 − 1
	

(
1 + D + n1

2

)
2F2

[(
2 − D

2
,

3 − D

2

)
,

(
3

2
,

3 − D − n1

2

)
,−(nα)2

]

+ 2−1+Dαn1 nn1+D	(1 + D)

[
1

	(1 + D + n1)
− 	(1 − D − n1)

	(−n1)(D + n1)

]
2F2

×
[(

1 + n1

2
,

2 + n1

2

)
,

(
1 + D + n1

2
,

2 + D + n1

2

)
,−(nα)2

]
. (A5)

Note that since the Gamma function goes to infinity for negative integer numbers, the last terms in Eqs. (A4) and (A5) vanish
for the integer number of moment exponent, n1. In the case of n1 = 0, Eq. (A5) simply reduces to Eq. (15b) for n = 1 and to the
summation of the second and third terms in Eq. (31) for n = 2.

Although we get fully analytical results for the first integral in Eq. (A1a), the second integral n−1
0 �D

n f (αk) should be calculated
numerically. Nevertheless, this numerical integration is an easy process since the singularity in the integrand, as a result of
δD(k−n) when D → 0, remains out of the integration region. Therefore, the difficult part is already solved out by the analytical
integration of the first one, ∞

0 �D
n f (αk).

The analytical form of the dimension for Eq. (A2) is obtained by following the same recipe as in Eq. (29). For this purpose,
the following quantities are defined:

A′ =
∞∑

k=n

f (αk) ≈
{

A′
L = ∫ ∞

n−1 f (αk)dk − f [α(n−1)]
2 , α � α∗

A′
H = f (αn) + f [α(n + 1)], α > α∗

, (A6)

where α∗ is obtained by the numerical solution of |A′ − A′
L| = |A′ − A′

H |. By use of Eq. (A3) in Eq. (A6), we obtain

A′ ≈
⎧⎨
⎩A′

L = 	[ 1+n1
n2

,αn2 (n−1)n2 ]
αn2

− αn1 (n−1)n1 exp [−αn2 (n−1)n2 ]
2 , α � α∗

A′
H = (αn)n1 exp [−(αn)n2 ] + αn1 (n + 1)n1 exp [−αn2 (n + 1)n2 ], α > α∗

. (A7)

Therefore, the dimension of the generic function in Eq. (A3) is analytically expressed as

A
naD = n1,n2

na D = ln
[ (αn)n1 exp [−(αn)n2 ]

A′
]

ln
[

αn2(αn)n1 exp [−(αn)n2 ]

	[ 1+n1
n2

,αn2 (n−1)n2 ]

] . (A8)

Equations (A4) and (A5) together with Eqs. (A7) and (A8) provide a generic formulation of FIR for the wide range of
summations in statistical thermodynamics. Figures 8(a) and Fig. 8(b) show the accuracy of FIR2 for the summations of the most
common functions in statistical thermodynamics for quadratic (n2 = 2) and linear (n2 = 1) dispersion relations respectively. The
functions are chosen as the summations of distribution function (n1 = 0), energy (n1 = n2), and square of energy (n1 = 2n2). It
is seen that the errors of FIR2(A) are around 2%.

Comparisons of the true dimensions A
n D, Eq. (A2), with the analytical ones A

naD, Eq. (A8), are also given in Figs. 9(a) and
9(b) for quadratic and linear dispersion relations respectively. Maximum differences in between A

2 D and A
2aD are around 0.07,

0.08, and 0.08 for n1 = {0, n2, 2n2} respectively in the case of n2 = 2 while they are 0.15, 0.10, and 0.05 for n2 = 1. It is always
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FIG. 8. For quadratic, n2 = 2, (a) and linear, n2 = 1, (b) dispersion relations, FIR2(A)/A vs confinement for different moment exponent
values which correspond to the partition function (n1 = 0), energy (n1 = n2), and square of energy (n1 = 2n2).

possible to decrease these errors by considering the first term (s = 1) in the third term of PSF, Eq. (4), to calculate the sum in
Eq. (A2) more precisely.

APPENDIX B: FIR OF PARTITION FUNCTIONS FOR QUADRATIC AND QUARTIC CONFINEMENT POTENTIALS

Besides the infinite-well potentials, quadratic and quartic potentials are also widely used for confinement. Therefore, FIR
is applied also for the partition functions of particles confined by these potentials. By considering the quadratic and quartic
potentials with energy constant γ , U2q = γ x2 and U4q = γ x4 respectively, energy eigenvalues of particles can simply be
expressed for each degree of freedom (direction) as follows respectively:

εq2 = h̄ω0,q2

(
n + 1

2

)
, ω0,q2 =

√
2γ

m
, (B1)

εq4 =
[

h̄ω0,q4

(
n + 1

2

)]4/3

, ω0,q4 =
√

π

2

	
(

7
4

)
	

(
5
4

) γ 1/4

√
m

= C
γ 1/4

√
m

, (B2)

where n = 0, 1, 2, ... is a quantum state variable, m is particle mass, C ≈ 1.2708, and subscripts of q2 and q4 indicate the
quadratic and quartic cases respectively. For the calculations of partition functions, we need to express the quantity of ε/kbT
which can be written in the following forms for quadratic and quartic potentials respectively:

ε̃q2 = εq2

kbT
= α2

q2

(
n + 1

2

)
, αq2 = Lth

L0,q2
, (B3)

ε̃q4 = εq4

kbT
= α2

q4

(
n + 1

2

)4/3

, αq4 = Lth

L0,q4

C

21/3
, (B4)

FIG. 9. For quadratic n2 = 2 (a) and linear n2 = 1 (b) dispersion relations, variations of dimension A
2 D and its approximate analytical form

A
2aD with confinement for different moment exponents which correspond to the partition function (n1 = 0), energy (n1 = n2), and square of
energy (n1 = 2n2). Black (solid) curves represent the true dimension, A

2 D, while the red (dashed) ones stand for analytical ones, A
2aD.
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FIG. 10. FIR for partition functions in cases of quadratic (a) and quartic confinement potentials (b). Inset figures show the accuracy
distributions of FIR in confinement space when the true and approximate dimension functions are used.

where αq2 and αq4 are the confinement parameters, L0,q2 = (h̄/m ω0,q2)1/2 and L0,q4 = (h̄/m3/2ω2
0,q4)1/3(C/21/3) are the minimum

displacements corresponding to the zero-point energies (n = 0), note that C/21/3 ≈ 1.008 65, and Lth = h̄/
√

mkbT is a length
scale in the order of the thermal de Broglie wavelength of particles. Therefore, depending on the level of temperature T , αq2 and
αq4 can be smaller or bigger than unity. Partition functions can then be expressed for each degree of freedom as

ζq2 =
∞∑

n=0

exp

[
−α2

q2

(
n + 1

2

)]
= exp

(
−

α2
q2

2

)
+

∞∑
n=1

exp

[
−α2

q2

(
n + 1

2

)]
, (B5)

ζq4 =
∞∑

n=0

exp

[
−α2

q4

(
n + 1

2

)4/3]
= exp

(
−

α2
q4

24/3

)
+

∞∑
n=1

exp

[
−α2

q4

(
n + 1

2

)4/3]
. (B6)

Note that as it is explained in Sec. III B, the first (zero) term is separated and FIR is applied for the rest of the sum. FIR of ζ2q

gives even the analytical result as follows:

FIR1(ζq2) = exp

(
−

α2
q2

2

)
+

∫ ∞

0
exp

[
−α2

q2

(
n + 1

2

)]
δD(n − 1)dn, (B7)

FIR1(ζq2) = exp

(
−

α2
q2

2

)
+ 2D−1 α−2D

q2 	(1 + D)

{
1 + exp (−IπD)

[
1 − 	

(
D,−α2

q2

)
	(D)

]}
exp

(
−3

2
α2

q2

)
. (B8)

The imaginary components appearing in Eq. (B8) due to exp(−IπD) and incomplete Gamma function 	(D,−α2
q2) cancel

each other and Eq. (B8) always results in a real number. FIR of ζ4q can be calculated numerically by

FIR1(ζq4) = exp

(
−

α2
q4

24/3

)
+

∫ ∞

0
α2

q4

(
n + 1

2

)4/3

δD(n − 1)dn. (B9)

By using a similar way for Eq. (22), approximate analytical expressions for dimensions of ζ2q and ζ4q can be obtained as
follows, respectively:

ζ2q

1 D(α) ≈
⎧⎨
⎩1 − ln(1− α2

2 )
2 ln (α)−α2 , α � α∗ = 0.996

ln [1+exp (−α2 )]
α2−2 ln (α) , α > α∗ = 0.996

, (B10)

ζ4q

1 D(α) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
ln(1− 2 α3/2 exp (−α2/24/3 )

3 	[3/4,α2/24/3]
)

ln [ 4
3 α3/2 exp (−α2( 3

2 )4/3 )
/
	[3/4,α2/24/3]]

, α � α∗ = 0.799

− ln {1+exp
[−α2(( 5

2 )4/3−( 3
2 )4/3 )

]}
ln [ 4

3 α3/2 exp (−α2( 3
2 )4/3 )

/
	[3/4,α2/24/3]]

, α > α∗ = 0.799

. (B11)

Figures 10(a) and Fig. 10(b) explicitly show the successes of FIR for the calculations of partition functions also in cases of
quadratic and quartic confinement potentials. Maximum errors are in the order of 2.5% when the true dimension functions are
used and the errors become 5% and 3% for quadratic and quartic potentials respectively if the approximate analytical expressions
given by Eqs. (B10) and (B11) are used. FIR seems to be a powerful method to calculate the various infinite sums in statistical
physics.
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