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We perform a detailed study of heat transport in one-dimensional long-ranged anharmonic oscillator systems,
such as the long-ranged Fermi-Pasta-Ulam-Tsingou model. For these systems, the long-ranged anharmonic
potential decays with distance as a power law, controlled by an exponent δ � 0. For such a nonintegrable model,
one of the recent results that has captured quite some attention is the puzzling ballisticlike transport observed for
δ = 2, reminiscent of integrable systems. Here, we first employ the reverse nonequilibrium molecular dynamics
simulations to look closely at the δ = 2 transport in three long-ranged models and point out a few problematic
issues with this simulation method. Next, we examine the process of energy relaxation, and find that relaxation
can be appreciably slow for δ = 2 in some situations. We invoke the concept of nonlinear localized modes
of excitation, also known as discrete breathers, and demonstrate that the slow relaxation and the ballisticlike
transport properties can be consistently explained in terms of a novel depinning of the discrete breathers
that makes them highly mobile at δ = 2. Finally, in the presence of quartic pinning potentials we find that
the long-ranged model exhibits Fourier (diffusive) transport at δ = 2, as one would expect from short-ranged
interacting systems with broken momentum conservation. Such a diffusive regime is not observed for harmonic
pinning.
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I. INTRODUCTION

Heat transport is an unsolved paradigmatic problem in
nonequilibrium statistical physics that has been actively in-
vestigated in the past few decades, both from theoretical and
experimental perspectives [1–5]. Arguably, the most surpris-
ing result that has been obtained from these studies is that
many one-dimensional (1D) systems do not obey the cele-
brated Fourier’s law of heat conduction, j = −κ dT

dx , where
j is the thermal flux and dT/dx is the thermal gradient.
This implies that thermal conductivity κ is ill-defined in
the thermodynamic limit N → ∞, and κ for finite systems
scales algebraically with the system size N as κ ∼ Nα , where
0 < α � 1. Apart from a few exceptions, thermal transport
is generally found to be anomalous (i.e., non-Fourier, α > 0)
for momentum conserving 1D systems, and diffusive (i.e.,
Fourier, α = 0) in the presence of external forces (momentum
nonconservation). For integrable systems, thermal transport
is known to be ballistic in nature—thermal current j is in-
dependent of N , implying α = 1, and temperature profiles
are flat. Although a lot still remains to be proven rigorously,
nonetheless we have already gathered a comprehensive gen-
eral understanding of heat transport in 1D systems, most
particularly for models with nearest-neighbor interactions.

Quite recently the problem of heat transport has been ex-
tended to lattice models with long-ranged interactions (LRIs)
[6–14]. In this work, LRIs are defined in terms of the pair
potential V (di j ) that decays with the distance di j , between
the ith and the jth particle, as V (di j ) ∼ d−δ

i j , where δ � 0.
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The parameter δ can be tuned to manipulate the range of
the long-ranged interactions: thus δ → ∞ corresponds to
nearest-neighbor interactions, whereas δ = 0 is the mean field
scenario. These 1D long-ranged systems are nonadditive for
0 � δ � 1, and additive for δ > 1. For extensive reviews on
LRIs, see Refs. [15–18]. LRIs are ubiquitous at all length-
scales in nature, from gravitation between celestial objects
[19] to Coulomb interaction between charged particles in
nanosystems [20], but their properties are not well understood
yet. Systems with LRIs often exhibit dynamic and thermo-
dynamic properties that are drastically different from that in
the conventional well-behaved short-ranged systems—a few
such properties are breakdown of ergodicity, inequivalence
of statistical ensembles, negative specific heat, violation of
zeroth law of thermodynamics, and extremely long-lived qua-
sistationary states. In the following, we highlight some recent
works concerning heat transport in 1D long-ranged models
that are relevant for this study.

In one of the works, heat transport in the long-ranged
version of the planar rotor model was investigated using
nonequilibrium molecular dynamics (NEMD) simulations,
and it was found that there are two distinct transport regimes
[8]. In the thermodynamics limit, for 0 � δ � 1, the long-
ranged rotor model is a thermal insulator (κ → 0 as N →
∞), whereas, for δ � 1, one finds a thermal conductor obey-
ing Fourier’s law (κ ∼ N0). In another work, using NEMD
and equilibrium simulations, the long-ranged Fermi-Pasta-
Ulam-Tsingou (LR-FPUT) model was studied and a strikingly
different transport behavior has been observed [9]. For the
LR-FPUT model, κ is nonmonotonic with the range parameter
δ and has a maximum at δ = 2. Thus, very long-ranged and
very short-ranged systems have a low conductivity, whereas,
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for an optimum value δ = 2 one obtains maximum thermal
conductivity. Moreover, it is found that for all δ �= 2 thermal
transport is anomalous (superdiffusive), but at the “special
point” δ = 2 thermal transport seems to have a ballisticlike
nature (κ ∼ N and almost flat temperature profiles). Similar
δ = 2 transport properties have also been reported for a few
other variations of the LR-FPUT model [11], indicating that
the observed properties are quite general and robust, although
doubts were raised about finite-size effects and on the possi-
bility of quasi-integrability.

Recently, this problem has been studied again for a similar
1D long-ranged anharmonic oscillator model using the reverse
nonequilibrium molecular dynamics (RNEMD) simulations,
and contrary to previous results, it was suggested that trans-
port for δ = 2 is not ballisticlike (α ≈ 1) but superdiffusive in
nature with an exponent α ≈ 0.71 [12]. Note that this is not
only a significant quantitative discrepancy but a puzzling qual-
itative contradiction as well. In Ref. [13], another long-ranged
lattice model was analytical studied and one of the main
results reported in this work is that anomalous (non-Fourier)
heat transport is possible even in the presence of momentum
nonconservation.

In this article, we revisit some of these issues, with the
intention of resolving the contradiction related to the δ = 2
transport, and to better understand the heat transport prop-
erties in a general class of 1D anharmonic oscillator models
with long-ranged interactions. The remainder of the paper
is organized as follows. In Sec II, we specify the LR-FPUT
model, which is the main focus of this work, along with
another related model, and some details of the numerical tech-
niques that have been used. In Sec. III, we perform RNEMD
simulations to understand why one gets qualitatively different
transport behavior from NEMD and RNEMD simulations.
Next, in Sec. IV, we look at the process of energy relaxation in
the LR-FPUT model to highlight the uniqueness of the δ = 2
point. In Sec. V, we investigate the origin of the intriguing
heat transport properties of the LR-FPUT model by examining
the dynamics of discrete breathers in a few different long-
ranged models, using boundary cooling experiments. Finally,
in Sec. VI, we study heat transport with the inclusion of exter-
nal pinning potentials, to find out if one can observe Fourier
behavior in the LR-FPUT system at δ = 2. We conclude this
work in Sec. VII with a short summary and a discussion.

II. MODELS AND METHODS

In its most general form, the Hamiltonian H for this
class of long-ranged anharmonic oscillator models can be
expressed as

H =
∑

i

{1

2
p2

i +VSR(xi+1−xi ) +
∑

j

VLR(x j − xi ) + U (xi )
}
,

(1)

where all the N particles have mass mi = 1 (1 � i, j �
N). Here {pi, xi} represent the momentum and the displace-
ment (from mean position) of the ith particle on the 1D
lattice. VSR(x) and VLR(x) represent the short-ranged (nearest-
neighbor) and the long-ranged part of the pairwise interaction
potential respectively. One can also include an external onsite

(pinning) potential denoted by U (x). Following our previous
work [9], a majority of the results that we present here are
for the LR-FPUT model that was introduced first in Ref. [21],
described by the following Hamiltonian:

H1 =
∑

i

1

2
p2

i +
∑

i

k

2
(xi+1 − xi )

2 + β

4Ñ

∑
i, j>i

(x j − xi )4

dδ
i j

.

(2)

We always set the spring constant k = 1, and also β = 1,
without loss of generality. Here di j = |i − j| is taken as the
shortest distance between the mean positions of the oscillators
i and j. The scaling factor Ñ = 1

N

∑
i

∑
j |i − j|−δ makes the

total energy extensive for all values of δ, and U (x) = 0.
A variant of the LR-FPUT model that we have also studied

in this work is what we refer to as the long-ranged quartic
Fermi-Pasta-Ulam-Tsingou (LR-QFPUT) model, obtained by
setting k = 0 in Eq. (2). Written explicitly, the Hamiltonian
for LR-QFPUT is

H2 =
∑

i

1

2
p2

i + β

4Ñ

∑
i, j>i

(x j − xi )4

dδ
i j

. (3)

This model does not have a short-ranged nearest-neighbor
interaction term unlike the LR-FPUT model, and is therefore
similar in this regard to the model discussed in Ref. [11]. A
few other variants of the LR-FPUT model will be mentioned
at appropriate places in the following sections.

We have probed the transport properties of these models
using a variety of equilibrium and nonequilibrium techniques.
This requires us to study both isolated closed rings and open
chains with boundary heat baths (denoted by temperatures
T1 and T2 for the left and the right end respectively, and
T1 > T2). For closed rings, the conventional periodic boundary
conditions are used, while for open chains we have imple-
mented the fixed boundary conditions, i.e., x0 = xN+1 = 0,
for computing the short-ranged (nearest-neighbor) part of the
interactions of the two boundary particles; for the long-ranged
part, each oscillator interacts with all the other oscillators. For
simulations with heat baths, the standard Langevin thermostat
is used to maintain the desired temperature. For integrating
the equations of motion, we have employed the velocity-Verlet
algorithm with small time-step, typically in the range 0.005 �
�t � 0.10, depending on the accuracy of energy conservation
desired, and other system parameters. For the initial con-
ditions, the particle positions are chosen randomly from a
uniform distribution, whereas the velocities are drawn ran-
domly from a Gaussian distribution, both with zero mean. For
microcanonical simulations in periodic systems, the center-
of-mass velocity is set to zero, and the initial velocities are
rescaled to obtain the desired total energy. Further technical
details about some of the simulation techniques used in this
work can be found in Refs. [9,10].

III. RNEMD SIMULATIONS

As mentioned earlier, in Ref. [12] the RNEMD simulation
technique has been employed for studying heat transport.
There it has been suggested that the ballisticlike transport,
obtained for the LR-FPUT model at δ = 2 using NEMD
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simulations, appears because of strong finite-size effects aris-
ing due to the use of boundary heat baths and the Ñ scaling of
VLR(x) in Eq. (2). The exponent reported in Ref. [12], obtained
by removing the Ñ scaling and using RNEMD simulations, is
α ≈ 0.71 at δ = 2. Thus, it seems to be in direct contradiction
with the NEMD results (α ≈ 1) that have been found con-
sistently for a few different variants of the LR-FPUT model
[9,11]. In this section, we perform RNEMD simulations for
LR-FPUT (and some related models) to find out the reasons
for this discrepancy. It is important to understand the origin of
this discrepancy to help us reconcile the results that have been
previously reported with the results obtained in this work.

The RNEMD method is a relatively new simulation tech-
nique that was proposed by Müller-Plathe in 1997 [22] as
an alternative method for investigating transport phenom-
ena. Originally, it was implemented for transport studies of
Lennard-Jones fluids, but later on, it has been applied to more
complex systems, such as carbon and graphene nanosystems
[23–28]. The RNEMD method has been found to be quite
robust for studying thermal transport properties, but also has
some issues that have been pointed out in recent works, and
improvements have been suggested in some cases [29–32].

Unlike the usual NEMD simulations where one imposes
a thermal gradient and measures the thermal current, in
RNEMD simulations the relation between cause and effect
is “reversed.” In its simplest version, to perform RNEMD
simulations, a microcanonical system (an isolated ring in our
case) is subdivided into w slabs (or bins) such that each slab
contains a macroscopic number of particles n, but still smaller
than the total number of particles N in the system. One of
these slabs, say the w = 1 slab, is labeled as the cold slab and
another slab, the w/2 slab, is labeled as the hot slab.

Starting from an equilibrated system, the particles are
evolved in time obeying the usual Hamiltonian dynamics.
However, every once in a while, the hottest particle (with
velocity vh) in the cold slab is swapped with the coldest
particle (with velocity vc) in the hot slab, provided v2

h > v2
c .

The time interval for performing this velocity swap is denoted
by τs. If one keeps on repeating these two operations—
Hamiltonian dynamics and velocity swapping—the system
eventually reaches a nonequilibrium steady state (NESS). At
NESS, a steady backward current flows through the lattice
from the hot bath to the cold bath, as a consequence of the
“artificial” velocity swapping. The forward and the backward
currents at NESS will be (statistically) equal and opposite to
each other, and a temperature gradient will develop in both
halves of the ring.

For RNEMD, the steady state heat current j is precisely
known and is computed as the net kinetic energy transported
from the cold slab to the hot slab over all the velocity swap

events: j =
∑

swaps v2
h−v2

c

2 #swaps . From the current j, the thermal con-
ductivity can be obtained using Fourier’s law (considering
only the magnitudes of j and dT/dx): κ = j

dT/dx , where dT
dx is

computed numerically from the linear part of the temperature
profile between the hot and the cold slab.

For our RNEMD simulations, we adopt a gentler approach.
First, instead of exchanging the hottest and the coldest par-
ticles, we swap a moderately hot particle with a moderately
cold particle (also suggested in Ref. [22]), and second, we do
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FIG. 1. Results from RNEMD simulations: (a) Steady-state total
current obtained for the LR-FPUT model, the LR-QFPUT model,
and the LR-FPUT model without Ñ scaling. For all the three cases,
the total current J = jN scales linearly with N at δ = 2. The error
bars here are smaller than the symbols used. (b) Temperature profiles
for the three models with N = 4096. (c) The slope dT/dx as a
function of system size N . Here, the simulation parameters used are
τs = 50, n = 40, ns = 2.

it much less frequently, τ−1
s = 0.02, compared to τ−1

s = 0.1
in Ref. [12]. This is because when the velocities of the hottest
and the coldest particles are swapped, the temperature of the
cold slab becomes very close to zero, and the temperature
difference between the hot and cold slabs becomes very large,
both of which we prefer to avoid in our simulations. More-
over, the aggressive swapping of velocities between particles
of extreme energies may cause large thermal shocks in the
system, leading to unwanted numerical artifacts. These issues
can be avoided by making the swaps rare and only between
moderately energetic particles.

To perform the velocity swaps, we first sort (from hottest
to the coldest) the n particles in the hot and the cold slabs, and
then swap the (n/2 − ns + 1)th particle of the cold slab with
the (n/2 + ns)th particle of the hot slab. Here ns is an integer
and for most of our simulations, we set ns = 2. (For ns = n/2,
we have velocity swaps between the hottest and the coldest
particles.) These modifications allow us to tune the tempera-
tures of the two slabs, for δ = 2, to be approximately the same
as the heat bath temperatures used for NEMD simulations
in Refs. [9,11], T1 = 1.1 and T2 = 0.9 (see Fig. S1(a) in the
Supplemental Material [33]). Note that the slab temperatures
change as we alter δ and the parameters need to be recalibrated
to obtain the same hot and cold slab temperatures (see Fig.
S1(b) in the Supplemental Material [33]).

Since the thermal flux is accurately known in RNEMD, we
first look at its scaling in the steady state. The result for differ-
ent system sizes, 128 � N � 16 384, is shown in Fig. 1(a).
In this figure we have included the data for three models:
LR-FPUT, LR-QFPUT, and LR-FPUT without the Ñ scaling
(as in Ref. [12]). For all these models, we find the same linear
scaling for the steady state total current J = jN ∼ N . The
temperature profiles for these three models are very similar
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and the slopes of the temperature profile dT
dx also have similar

N dependence (for large N); see Figs. 1(b) and 1(c). These
results suggest that these three, apparently different, models
have very similar scaling properties at δ = 2. Therefore, the
suggestion in Ref. [12] that there are strong finite-size effects
due to the Ñ scaling of the long-range potential and the use
of boundary heat baths, leading to the large discrepancy in α

values, seems very unlikely. We will provide more evidence
in favor of this equivalence in Sec. V.

However, apart from the above-mentioned equivalence
among the three models, we are not in a position to infer
conclusively anything quantitative about the linear divergence
of J with size N in Fig. 1(a). This is primarily because, for
the same simulation parameters and with a large value of
δ = 10, we do not recover the expected short-ranged scal-
ing relations, namely, J = jN ∼ Nα with α = 1/3 [1]. Using
RNEMD simulations, the scaling exponent that we obtain for
J at δ = 10 is much higher (by a factor of ∼2 − 3) than what
is expected. Moreover, there is also a significant dependence
of the scaling exponent α on the simulation parameters, such
as τs, number of particles in each slab n, and the particles that
are swapped ns (see Fig. S2(a) in the Supplemental Material
[33]). Surprisingly, we do not find such parameter dependence
for δ = 2 (see Fig. S2(b) in the Supplemental Material [33]).
Why we get such conflicting results with very reasonable
parameter choices is beyond our present understanding. This
makes us less confident about the reliability of the RNEMD
method to compute transport properties in these anomalous
systems.

We now discuss the issues related to the computation of
the thermal conductivity κ using the RNEMD simulations.
One significant conceptual difference between the NEMD
and the RNEMD methods lies in the manner in which κ is
computed. For NEMD, conductivity is usually computed as
κ = jN

T1−T2
, whereas for RNEMD, the conductivity κ = j

dT/dx
has to be computed using the slope dT/dx of the “linear
region” of the temperature profile between the cold and the
hot slab. It is easy to see that these two approaches lead
to the same result for systems that obey Fourier’s law and
have a linear temperature profile. However, even with a small
temperature difference between the hot and cold slabs (as in
our case), the linear region is not straight-forward to ascertain
for anomalous systems which typically have nonlinear tem-
perature profiles. This, in our opinion, could be a possible
source of discrepancy in the thermal conductivity calcula-
tions. Indeed, when there is a larger temperature difference
between the hot and the cold slabs, the temperature profiles
are extremely nonlinear (see Fig. S2(c) in the Supplemental
Material [33]), and thus there is an inherent ambiguity in
the computation of the slope, since dT

dx changes continuously
along such nonlinear temperature profiles. In fact, significant
mismatches (by a factor of ∼5–10) between RNEMD and
NEMD slopes dT/dx have been observed previously; see,
for example, Supplemental Material Fig. 4 in Ref. [26]. Also,
for RNEMD simulations, problems of nonlinear profiles and
underprediction of transport coefficients have been reported
in the context of other transport coefficients, such as the
shear viscosity, even for a simple 3D Lennard-Jones fluid
[30]. Under these circumstances, RNEMD yields unreliable
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t)

107 t
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δ = 3

δ = 4
δ = 5

FIG. 2. Energy density e(t ) with time t in the LR-FPUT model
for different values of δ, with N = 512, initial temperature T = 1,
and boundary friction ζ = 0.1. Here, δ = 2 shows relatively slower
energy relaxation compared to other values of δ �= 2.

measurements, and NEMD is known to be much more robust
without any noticeable efficiency cost.

We believe that similar problematic issues are present in
the RNEMD study reported in Ref. [12], and the underpredic-
tion of the exponent α ≈ 0.71 reported therein has seemingly
very little to do with Ñ scaling of the long-ranged potential
or the use of heat reservoirs in NEMD simulations. The three
models discussed above are equivalent with regards to their
δ = 2 transport behavior, and this is also consistent with what
we find from NEMD simulations (the same equivalence can
be seen in Figs. S3 and S4 in the Supplemental Material [33]).
Thus, given these conceptual and technical concerns, our
general suggestion will be to exercise caution in comparing
results from RNEMD with NEMD simulations for 1D models
with non-Fourier transport properties.

IV. ENERGY RELAXATION

To better appreciate the unique transport behavior at δ = 2,
we now look at the process of energy relaxation in an open
LR-FPUT chain. For a system size of N = 512 particles, we
first thermalize our LR-FPUT chain by attaching a Langevin
heat bath at temperature T = 1 to each of the oscillators. After
thermalization has been achieved, we remove all the heat
baths except at the two ends, for which we set T = 0, with
friction coefficient ζ = 0.1 (same as in Ref. [34]), to allow
energy leakage through the boundaries. Thus, the average
temperature (and the total energy) of the system is expected to
decrease as time progresses, and ideally should become zero
at large times.

We monitor the decay of the energy density (average
energy per oscillator) of the system e(t ) with time t , and
the data is shown in Fig. 2 for different values of δ. Even
for a modest system size N = 512, we find that the energy
density of the system at late times does not decay to zero
for δ = 2 [e(t ) > 10−2 at t = 107], whereas for all other δ

the energy density decays comparatively faster to relatively
smaller values [e(t ) < 10−3 for t = 107]. Thus, under these
simulation conditions, the δ = 2 system remains trapped in
a long-lived quasistationary residual state [34] and exhibits
nonexponential energy relaxation, similar to what is observed
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FIG. 3. Heat maps of the LR-FPUT model for different values of δ for N = 128: (a) δ = 0, (b) δ = 1, (c) δ = 2, (d) δ = 3, (e) δ = 4,
and (f) δ = 5. The color bar represents the value of temperature Ti. Initial temperature is T = 3 and boundary friction is set to ζ = 1. Highly
mobile TDBs can be seen in panel (c) for δ = 2.

in glassy systems [35]. While e(t ) for all δ �= 2 values show
a decaying trend at large times, the energy decay profile for
δ = 2 is comparatively very flat, and the system seems to
be frozen in the residual state. This result demonstrates that
under the above-mentioned simulation conditions δ = 2 again
stands out as a special point for its exceedingly slow energy
relaxation, as compared to all other δ values.

V. BREATHER DYNAMICS

To probe the slow energy relaxation at the single oscilla-
tor level in the LR-FPUT model, we anticipate the presence
of energy localization by spontaneously generated discrete
breathers (DBs) [34–38] that can prevent rapid relaxation.
Discrete breathers are defined as intrinsic nonlinear localized
modes of excitation with a time periodic structure, and have
been observed in nonlinear discrete lattices under very generic
conditions. Here, we examine DB dynamics following the
boundary cooling experiment protocol adopted in Ref. [10].
As before, we first thermalize the open chain to a relatively
high temperature, T = 3, by attaching Langevin heat baths
to all the oscillators on the chain. After thermalization, we
remove the heat baths from all the bulk sites and set the bound-
ary heat baths to T1 = T2 = 0 (with friction set to ζ = 1). For
a relatively small system, N = 128, we monitor the kinetic
temperature, Ti = v2

i , of each oscillator on the chain as a
function of time.

The local temperature Ti(t ) for different δ values is shown
in the heat maps of Figs. 3(a)–3(f). From Fig. 3(c) for δ = 2,
we find that there are many bright lines crisscrossing the heat
map until very late times. These zigzag lines are hot spots of
trapped (localized) energy that can travel from one end of the
lattice to the other with seemingly negligible dissipation (en-
ergy loss). Careful visual inspection reveals that when the DBs
reach near the boundaries, they get reflected back toward the
bulk of the lattice and continue their motion unhindered along

the reflected trajectory. In Fig. 3, we find such highly mobile
traveling discrete breathers (TDBs) only for δ = 2, whereas
for all other values of δ �= 2 the DBs seem to be almost pinned
with very low mobility at late times. This unique behavior of
the DBs at δ = 2 leads us to believe that it is this virtually
unhindered motion of the long-lived localized excitations that
is responsible for the slow energy relaxation (in Fig. 2) and
the ballisticlike thermal transport in the LR-FPUT model at
δ = 2.

As a further check of this TDB hypothesis, we perform
the same numerical experiment with the LR-QFPUT model
[Eq. (3)]. The transport properties of LR-QFPUT are very
similar to the LR-FPUT model: one obtains a nonmonotonic
κ versus δ with maximum at δ = 2, linear κ ∼ N dependence,
and an almost flat temperature profile at δ = 2 (see Figs.
S4(a)– S4(c) in the Supplemental Material [33]). For this case
too, inspection of its heat map, Fig. 4(a), reveals that the DBs
are highly mobile at δ = 2. Since there is very little impedance
to the motion of these TDBs (negligible scattering), this could
be a plausible explanation for the almost flat temperature
profiles observed at δ = 2 [9]. This also goes to prove that the
short-ranged harmonic term in the LR-FPUT model [Eq. (2)]
has no role to play in the ballisticlike heat transport observed
at δ = 2.

Thus, considering results from all the variant models from
this work and previous works [9,11,12], we infer that the
ballisticlike transport is a robust property of these long-ranged
models, and owes its origin to the highly mobile TDBs that
emerge at the special point δ = 2. It is relevant to men-
tion here that TDBs have also been observed and studied
previously, even for the nearest-neighbor Fermi-Pasta-Ulam-
Tsingou model [39–41].

We can make the TDB argument even stronger by asking
if the opposite scenario is possible, i.e., can we obtain nonbal-
listic transport at δ = 2 by “killing off” the TDBs? To check
if this is true, we consider another long-ranged model with
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FIG. 4. Prevalence of highly mobile TDBs in (a) the LR-QFPUT
model and its absence in (b) the LR-FPUT-αβ model, at large times,
for δ = 2. All the simulation parameters are the same as in Fig. 3.

additional nearest-neighbor cubic interactions, which, we sus-
pect, will create dissipation of the TDBs and make them
sufficiently immobile at long times. Following the standard
nomenclature, we refer to this model as the long-ranged
Fermi-Pasta-Ulam-Tsingou-αβ (LR-FPUT-αβ) model; the
coefficient α here is set to unity in our simulations and should
not be confused with the exponent α in κ ∼ Nα . The full
Hamiltonian for this case is

H3 =
∑

i

1

2
p2

i +
∑

i

k

2
(xi+1 − xi )

2 + α

3

∑
i

(xi+1 − xi )
3

+ β

4Ñ

∑
i, j>i

(x j − xi )4

dδ
i j

. (4)

The result for the LR-FPUT-αβ model is shown in Fig. 4(b)
and it is evident that the DBs are much more immobile in
this case, compared to the LR-FPUT [Fig. 3(c)] and the
LR-QFPUT [Fig. 4(a)] models for δ = 2. We have checked
that ballisticlike transport properties are not observed for the
LR-FPUT-αβ case (see Figs. S5(a) and S5(b) in the Sup-
plemental Material [33]), as anticipated. All these results
strongly suggest that TDBs are responsible for the emergence
of the ballisticlike transport seen for δ = 2 in the LR-FPUT
model (and also in LR-QFPUT). Note that a similar ar-
gument has been suggested in Ref. [12] for the LR-FPUT
model without Ñ scaling. Thus, we again find that these three
models—LR-FPUT model with and without Ñ scaling and
the LR-QFPUT model—are equivalent, and exhibit the same
TDB phenomenon.

Why we observe high breather mobility at δ = 2 in the
LR-FPUT model is an interesting question that needs fur-
ther investigation. Incidentally, a similar question has been
recently addressed using a long-ranged model that the authors
refer to as the pairwise interaction symmetric lattice (PISL)
model [42,43]. It has been shown that a PISL system can

support smooth propagation of discrete breathers at constant
velocity, and this depends crucially on the symmetry proper-
ties of the potential function. It seems plausible that such a
reasoning could also be true for the LR-FPUT model.

Thus, to reiterate, from Fig. 3 we find that as one increases
δ from zero, the DBs transform from being predominantly
immobile to highly mobile at the special point δ = 2, and for
δ > 2 they become immobile again. This interesting “pinning
→ depinning → pinning” phenomenon exhibited by the DBs,
as we increase δ from zero, seems to be responsible for the
puzzling transport properties observed in the LR-FPUT model
reported in Ref. [9].

Note that the exact evolution of the DB dynamics at large
times will depend on several factors, such as fixed or free
boundaries, the friction coefficient ζ , the initial energy density
of the thermalized state [34], and so on. In this section, we
have used the simulation conditions similar to that used for
the NEMD simulations in Ref. [9] with ζ = 1. For bound-
aries with a lower friction ζ = 0.1, as used in the previous
section Sec. IV, long-lived immobile DBs are not generated
for any δ, but TDBs are present for δ = 2 at late times (see
Figs. S6(a)– S6(f) in the Supplemental Material [33]) causing
an appreciable slowdown of energy relaxation, as shown in
Fig. 2. Thus, the TDBs seem to be quite robust with respect
to the choice of simulation parameters. A detailed study of
the DB properties in the LR-FPUT model, such as their pro-
files, lifetime, frequencies, stability, mobility, and dependence
on the system parameters, such as system size, temperature,
interaction strengths, and boundary conditions, should be of
interest in their own right.

VI. FOURIER BEHAVIOR

From Sec. V, we find that the ballisticlike heat trans-
port at δ = 2 can be attributed to the highly mobile TDBs,
and by adding a short-ranged anharmonic interaction term in
the Hamiltonian one obtains superdiffusive transport. In this
section, we want to investigate the possibility of observing dif-
fusive transport (Fourier behavior) in the LR-FPUT at δ = 2.
From our general understanding of heat transport in short-
ranged interacting systems, one definitive way of obtaining
diffusive transport is by breaking total momentum conserva-
tion. However, in Ref. [13], it has been suggested that for
long-ranged systems, even momentum nonconservation may
lead to anomalous (non-Fourier) behavior, contrary to what
is typically observed in short-ranged systems. Note that this
prediction is obtained from the analytical study of a quadratic
long-ranged model with harmonic pinning.

To explore the effect of pinning potentials in the LR-FPUT
model, we augment the LR-FPUT Hamiltonian [Eq. (2)] by
adding a pinning potential of the form U (x) = u

pxp. Here, the
constant u > 0 is the strength of the pinning potential, and
the exponent p > 0. Explicitly written, the Hamiltonian for
the pinned case is given as

H4 =
∑

i

1

2
p2

i +
∑

i

k

2
(xi+1 − xi )

2 + u

p

∑
i

xp
i

+ β

4Ñ

∑
i, j>i

(x j − xi )4

dδ
i j

. (5)
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FIG. 5. Equilibrium simulation results for the LR-FPUT model
with quartic pinning potential: (a) excess energy correlation function
ρE (r, t ) at different times t = 1500, 2500, 3500; (b) scaling collapse
of the data in panel (a) for γ = 1/2, plotted alongside a Gaussian
distribution (continuous line in black); (c) log–log plot of the peak
height and the MSD of ρE (r, t ) with t . The MSD is scaled by the
system size (N = 4096) to display both sets of data in the same plot.

A reliable and computationally economical method for
ascertaining the nature of energy transport is by computing
equilibrium spatiotemporal excess energy correlation function
ρE (r, t ), defined as

ρE (r, t ) = 〈�Ej (t )�Ei(0)〉
〈�Ei(0)�Ei(0)〉 + 1

Nb − 1
, (6)

for a microcanonical system. Here, the lattice is coarse-
grained into Nb = N/b bins, each with b particles, and r =
(i − j)b; see Refs. [9,10] and references therein for more
details. For Fourier (diffusive) transport, it is well known
that ρE (r, t ) has to be a Gaussian distribution, and therefore
ρE (r, t ) at different times can be collapsed by scaling as
tγ ρE (r/tγ , t ), with γ = 1/2.

The results for the pinned LR-FPUT model, Eq. (6),
with a quartic pinning potential U (x) = u

4 x4 are presented
in Fig. 5. The function ρE (r, t ) at different times t is shown
in Fig. 5(a), and at least numerically looks very similar to
a Gaussian distribution. The data points at different times t
can be collapsed onto a single curve using the scaling men-
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FIG. 6. DBs in the LR-FPUT model with quartic pinning for
different pinning strengths: (a) u = 0.5, (b) u = 1, and (c) u = 2,
all with δ = 2 and N = 128. The DBs lose their mobility as u is
increased.

tioned above [Fig. 5(b)] and the agreement with a Gaussian
distribution is excellent. Consistently, the distribution peak
height ρE (0, t ) decays with time as ρE (0, t ) ∼ t−1/2 and the
mean-square deviation (MSD) of the distribution scales as
σ 2

E (t ) = ∑
r2ρE (r, t ) ∼ t , as shown in Fig. 5(c). We have

obtained strong indications of diffusive transport from NEMD
simulations as well, such as κ ∼ N0 for large N and linear
temperature profiles (see Figs. S7(a) and S7(b) in the Supple-
mental Material [33]). It is also found that, as we increase
u, δ = 2 gradually ceases to become a special point with
maximum κ and for larger values of u conductivity κ increases
monotonically with δ (see Fig. S7(c) in the Supplemental Ma-
terial [33]). These results strongly indicate toward diffusive
propagation of energy in the LR-FPUT model with quartic
pinning potential, as one would expect also for short-ranged
interacting systems with broken momentum conservation.

To understand the emergence of Fourier behavior, we again
look at the dynamics of the discrete breathers, as shown in
Figs. 6(a)–6(c) for u = 0.5, 1, and 2. From Fig. 6, first, it can
be clearly seen that the TDBs progressively lose their mobility
as u is increased: there are more straight horizontal lines that
emerge and the zigzag lines start to disappear in the heat maps
[compare this with Fig. 3(c) where u = 0]. Second, as u is
increased, DBs become comparatively more pronounced: the
heat map becomes brighter in color at larger t , implying higher
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energy localization in the bulk of the system. This increased
energy trapping leads to the slow-down of energy propagation,
from ballisticlike to normal diffusion when u �= 0.

Note that with harmonic pinning potential (p = 2) Fourier
behavior is not observed, at least for the system parameters
that we have studied. Our simulations suggest ballisticlike
transport even with a moderately strong harmonic pinning
strength u (see Fig. S8 in the Supplemental Material [33]). In
general, harmonic pinning is often known to produce subtle
features, even in short-ranged systems, such as the integrable
1D Toda lattice [44–46]. For the Toda lattice, it has been
recently shown that the effect of harmonic pinning is “dras-
tically smaller” than quartic pinning potential. A crossover
from ballistic to diffusive transport is also reported for the
Toda lattice at very large N . Although, we cannot entirely
rule out the possibility of a crossover to a diffusive regime
for extremely large system sizes (and possibly well beyond
our present computational capability), it is important to note
from Ref. [42] that the nature of the TDBs seems to remain
unaffected in the presence of harmonic pinning; see also
Ref. [47] where ballistic heat transport has been reported
with harmonic pinning for much larger system sizes using
GPU driven NEMD simulations. In this context, an important
1D long-ranged system that should also be mentioned is the
integrable Calogero model which is known to preserve its
integrability even in the presence of a harmonic trap, and
supports solitons in the N → ∞ limit [48].

VII. SUMMARY AND FINAL REMARKS

In summary, we have studied in detail the heat transport
problem in a few 1D anharmonic oscillator models with
long-ranged interactions, such as the LR-FPUT model. We
have looked at different scenarios, namely, with and without
the Ñ scaling, without the short-ranged harmonic potential,
with additional short-ranged anharmonic potentials, and in the
presence of pinning potentials. Our simulations show that the
transport properties of the LR-FPUT model, with and without
the Ñ scaling, are essentially equivalent to each other. We have
also pointed out a few conceptual and technical issues with the
RNEMD method that warrant more careful scrutiny regarding
its applicability in these anomalous systems.

To emphasize the uniqueness of the δ = 2 transport, we
look at the energy relaxation process in the LR-FPUT model,
and find that under certain conditions energy relaxation can be
much slower for δ = 2 compared to other δ values. Next, we
demonstrate that the δ = 2 LR-FPUT model supports travel-
ing discrete breathers that can propagate through the system
with negligible energy loss until very late times. By compar-
ing the DBs for different values of δ, we attribute the unique
transport property at δ = 2 to the depinning phenomenon of
the DBs that makes them highly mobile. This certainly seems
to be the case for the LR-FPUT model (with and without Ñ
scaling) as well as for the LR-QFPUT model. As a further vin-
dication of this argument, we show that these highly mobile
TDBs are absent in the LR-FPUT-αβ model which does not
exhibit the peculiar ballisticlike transport at δ = 2. From all
these consistent results, the ballisticlike behavior at δ = 2 for
the LR-FPUT model seems to be a real physical property and

not merely a finite-size effect, although the latter possibility
cannot be completely ruled out.

Finally, we study the emergence of Fourier behavior in
the LR-FPUT model at δ = 2. We break total momentum
conservation by adding a quartic pinning potential and find
that heat transport becomes diffusive. The emergence of this
diffusive regime is attributed to the immobilization to the
TDBs, and these immobile DBs are also more pronounced
for strong quartic pinning potentials. This creates substantial
impedance to the propagation of the DBs and slows down
energy transport from a ballisticlike to a diffusive regime.
However, with harmonic pinning we have not observed such
a diffusive regime in our simulations.

Thus, by studying the properties of the discrete breathers
for δ = 2, we can consistently explain the emergence of bal-
listiclike transport in the LR-FPUT and LR-QFPUT models,
the superdiffusion observed in the LR-FPUT-αβ model, and
the diffusion in the quartic pinned case.

To make our understanding more quantitative about the
origin of the highly mobile TDBs at δ = 2, it might be in-
structive to study the depinning phenomenon in terms of the
Peierls-Nabarro (PN) potential barrier. The PN barrier can be
thought of as the minimum energy required to translate a DB
by one lattice site. The PN barrier has been studied earlier
for traveling DBs in the short-ranged FPUT model and other
nonlinear lattices [49–53]. We suspect that the PN potential
barrier will perhaps be a nonmonotonic function of δ, with its
minimum at δ = 2, resulting in the enhanced mobility of the
DBs.

Based on all these results, one can also speculate about a
few plausible features of the LR-FPUT model, and attempt
to establish possible connections with some related recent
works. The yet unsettled question of quasi-integrable dynam-
ics [9] or weaker nonintegrability [12], at δ = 2, might have
an answer in terms of quasiconservation law and adiabatic
invariant (AI) [54] that have been proposed recently to ex-
plain slow energy relaxation (thermalization) in the discrete
nonlinear Schrodinger (DNLS) equation [55]. Similar to our
case, the slow relaxation in the DNLS model has also been
attributed to discrete breather dynamics. The presence of
AI is thought to be responsible for the existence of small
yet nonzero Lyapunov exponents [56], although the largest
Lyanpunov exponent λmax is found to remain insensitive to
the DB solutions [57]. For the LR-FPUT model, λmax is
known to exhibit a minimum value at δ = 2, implying reduced
chaoticity; see the measurement of λmax as a function of δ in
Refs. [9,12,58]. Thus, although AIs are not exact conservation
laws, in some cases they may have effects similar to quasi-
integrable dynamics, e.g., when there are long-lived traveling
discrete breathers in nonintegrable systems. Also, the phase
space dynamics for the LR-FPUT could be an interplay of
chaotic trajectories and regular orbits, and their relative pro-
portions depend, possibly in a complicated way, on the range
parameter δ; see Ref. [59] for a similar description of regu-
lar orbits in the paradigmatic Hamiltonian mean-field model.
However, it is also possible for a system to remain well be-
yond the Kolmogorov–Arnold–Moser/Nekhoroshev regime
and yet behave as a weakly chaotic system; see discussions
on stochastically perturbed integrable systems in Ref. [60].
Whether these arguments are at all true for the LR-FPUT
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model is not known yet, but it seems worthwhile to examine
these aspects for a better understanding of many key concepts,
such as ergodicity, equipartition, thermalization, localization,
and transport properties in the LR-FPUT and related long-
ranged models.

To conclude, we have used various simulation techniques
(RNEMD, NEMD, equilibrium methods) and different prob-
ing methods (energy relaxation, scaling of current and con-
ductivity, temperature profiles, energy correlations, discrete
breather dynamics) to unravel the heat transport properties
of a class of 1D anharmonic oscillators with long-ranged
interactions. The results presented here demonstrate the rich

transport behavior observed in these systems. This is a rela-
tively new area of inquiry, and a lot remains to be explored
and understood properly. Hopefully, our results will motivate
further research in this direction, both from the standpoint of
fundamental science and potential technological applications.
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