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Diffusion spreadability as a probe of the microstructure of complex media across length scales
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Understanding time-dependent diffusion processes in multiphase media is of great importance in physics,
chemistry, materials science, petroleum engineering, and biology. Consider the time-dependent problem of mass
transfer of a solute between two phases and assume that the solute is initially distributed in one phase (phase
2) and absent from the other (phase 1). We desire the fraction of total solute present in phase 1 as a function of
time, S(t ), which we call the spreadability, since it is a measure of the spreadability of diffusion information
as a function of time. We derive exact direct-space formulas for S(t ) in any Euclidean space dimension d
in terms of the autocovariance function as well as corresponding Fourier representations of S(t ) in terms of
the spectral density, which are especially useful when scattering information is available experimentally or
theoretically. These are singular results because they are rare examples of mass transport problems where exact
solutions are possible. We derive closed-form general formulas for the short- and long-time behaviors of the
spreadability in terms of crucial small- and large-scale microstructural information, respectively. The long-time
behavior of S(t ) enables one to distinguish the entire spectrum of microstructures that span from hyperuniform
to nonhyperuniform media. For hyperuniform media, disordered or not, we show that the “excess” spreadability,
S(∞) − S(t ), decays to its long-time behavior exponentially faster than that of any nonhyperuniform two-phase
medium, the “slowest” being antihyperuniform media. The stealthy hyperuniform class is characterized by an
excess spreadability with the fastest decay rate among all translationally invariant microstructures. We obtain
exact results for S(t ) for a variety of specific ordered and disordered model microstructures across dimensions
that span from hyperuniform to antihyperuniform media. Moreover, we establish a remarkable connection
between the spreadability and an outstanding problem in discrete geometry, namely, microstructures with
“fast” spreadabilities are also those that can be derived from efficient “coverings” of space. We also identify
heretofore unnoticed, to our best knowledge, remarkable links between the spreadability S(t ) and NMR pulsed
field gradient spin-echo amplitude as well as diffusion MRI measurements. This investigation reveals that the
time-dependent spreadability is a powerful, dynamic-based figure of merit to probe and classify the spectrum of
possible microstructures of two-phase media across length scales.
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I. INTRODUCTION

Interphase diffusion processes in heterogeneous media are
ubiquitous in a variety of contexts and applications, including
magnetic resonance imaging (MRI) [1], geological and porous
media [2–6], biological cells [7,8], and controlled drug de-
livery [9]. In an unheralded paper published in 1963, Prager
considered the time-dependent problem of mass transfer of
solute between two phases of a heterogeneous medium in
three-dimensional (3D) Euclidean space R3, as governed by
the standard diffusion equation (parabolic partial differential
equation) [10]. Phases 1 and 2 occupy volume fractions φ1

and φ2, respectively. He assumed that a solute that is being
transferred from one phase to the other has the same diffusion
coefficient D in each phase at any time t . At t = 0, the solute
is uniformly distributed throughout phase 2, and completely
absent from phase 1. Prager desired to calculate the fraction
of the total amount of solute present that has diffused into
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phase 1 at time t , which we denote by S (t ); see Fig. 1 for
a schematic illustrating the spreadability phenomena for a
special microstructure. For two different microstructures at a
given time t , the one with the larger value of S (t ) spreads
diffusion information more rapidly. For this reason, we hence-
forth call the time-dependent function S (t ) the spreadability.
Prager recognized that this problem can be solved exactly
and found the following exact direct-space solution in three
dimensions:

S (t ) = 1

(4πDt )3/2 φ2

∫
R3

[φ2 − S2(r)] exp[−r2/(4Dt )] dr,

(1)
where S2(r) is the two-point probability function of phase 2
(defined in Sec. II). This is a singular result because it repre-
sents one of the rare examples of interphase mass transfer in
two-phase random media where an exact solution is possible
only in terms of φ2 and S2. Generally, the effective proper-
ties of heterogeneous media are determined not only by φ2

and S2(r) but all of the corresponding high-order correlation
functions, which constitutes a countably infinite set [2].
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(a) (b) (c)

FIG. 1. For purposes of illustration, this schematic shows diffusion spreadability at different times for the special case in which phase 2 is
comprised of a spatial distribution of particles. The left panel (a) depicts the uniform concentration of the solute species within phase 2 (dark
blue regions) at time t = 0. The middle panel (b) depicts the spreading of diffusion information at short times. The right panel (c) depicts
the uniform concentration of the solute species throughout both phases (light blue region) in the infinite-time limit. The behavior of the
spreadability S(t ) as a function of time is intimately related to the underlying microstructure. Section V B describes remarkable links between
the spreadability S(t ), covering problem of discrete geometry, and nuclear magnetic resonance (NMR) measurements.

Remarkably, the consequences of Prager’s result are un-
known because it has yet to be understood fundamentally or
applied in any meaningful way. The purpose of this investi-
gation is to explore the fundamental theoretical and practical
implications of the spreadability S (t ). We begin by generaliz-
ing Prager’s formula (1) to all space dimensions (Sec. III A).
We then obtain a Fourier representation of the spreadability
S (t ) (Sec. III B) in terms of the spectral density χ̃V (k) (defined
in Sec. II), which is obtainable from scattering experiments.
There are many fundamental questions that we will explore.
For example, what microstructural information is reflected
by the spreadability S (t )? What microstructures maximize
spreadability up to time t? We determine microstructures for
which the “spreadability” is “fast” or “slow,” thereby gaining
an understanding of how the microstructure affects such time-
dependent diffusion processes.

Using the exact direct- and Fourier-space representations
of the spreadability (Sec. III), we derive closed-form general
asymptotic expansions of the spreadability for any d that
apply at short times and long times in terms of crucial small-
and large-scale microstructural information, respectively. We
show that the small-time behavior of S (t ) is determined by
the derivatives of S2(r) at the origin, the leading order term of
order t1/2 being proportional to the specific surface s (interface
area per unit volume). By contrast, the corresponding long-
time behavior is determined by the form of the spectral density
χ̃V (k) at small wave numbers.

We obtain exact results for S (t ) for a variety of spe-
cific ordered and disordered model microstructures across
dimensions that span from hyperuniform to antihyperuniform
media (Secs. IV and V). Hyperuniform two-phase media
are characterized by an anomalous suppression of volume-
fraction fluctuations relative to garden-variety disordered
media [11,12] and can be endowed with novel proper-
ties [12–23]; see Sec. II for precise mathematical definitions.
For hyperuniform media, disordered or not, we show that the
excess spreadability, S (∞) − S (t ), decays to its long-time be-
havior exponentially faster than that of any nonhyperuniform
two-phase medium, the “slowest” being antihyperuniform
media (Sec. III D). The stealthy hyperuniform class (see

Sec. II) is characterized by an excess spreadability with the
fastest decay rate among all hyperuniform media and hence
all translationally invariant microstructures. Specifically, S (t )
for stealthy hyperuniform media decays faster than any in-
verse power law (Sec. V), the latter of which applies to any
nonstealthy disordered hyperuniform medium (Sec. III D).
Thus, the spreadability provides a unique dynamic-based fig-
ure of merit to probe and classify the spectrum of possible
microstructures that span between hyperuniform and nonhy-
peruniform media.

We establish that the microstructures with “fast” spread-
abilities are also those that can be derived from efficient
“coverings” of Euclidean space Rd (Sec. V C). Moreover,
in Sec. VI, we identify a heretofore unnoticed fascinating
connection between the spreadability S (t ) and noninvasive
nuclear magnetic resonance (NMR) relaxation measurements
in physical and biological porous media [1,7,24–29]. We
close with concluding remarks (Sec. VII), including a “phase
diagram” that schematically shows the spectrum of spread-
ability regimes and its relationship to the spectrum of
microstructures.

II. BACKGROUND

A. Correlation functions

A two-phase medium is fully statistically characterized by
the n-point correlation functions [2], defined by

S(i)
n (x1, . . . , xn) ≡ 〈I (i)(x1) . . . I (i)(xn)〉, (2)

where I (i)(x) is the indicator function for phase i = 1, 2,
n = 1, 2, 3, . . ., and angular brackets denote an ensemble av-
erage. The function S(i)

n (x1, . . . , xn) also has a probabilistic
interpretation, namely, it is the probability that the vertices of
a polyhedron located at x1, . . . , xn all lie in phase i. For statis-
tically homogeneous media, S(i)

n (x1, . . . , xn) is translationally
invariant and hence depends only on the relative displace-
ments of the points.

The autocovariance function χV (r), which is directly re-
lated to the two-point function S(i)

2 (r) and plays a central role
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in this paper, is defined by

χV (r) ≡ S(1)
2 (r) − φ2

1 = S(2)
2 (r) − φ2

2 . (3)

Here we have assumed statistical homogeneity. At the extreme
limits of its argument, χV (r) has the following asymptotic
behavior: χV (r = 0) = φ1φ2 and lim|r|→∞ χV (r) = 0 if the
medium possesses no long-range order. If the medium is sta-
tistically homogeneous and isotropic, then the autocovariance
function χV (r) depends only on the magnitude of its argument
r = |r|, and hence is a radial function. In such instances, its
slope at the origin is directly related to the specific surface
s, which is the interface area per unit volume. In particular,
the well-known 3D asymptotic result [30] is easily obtained
in any space dimension d:

χV (r) = φ1φ2 − κ (d )s |r| + O(|r|2), (4)

where

κ (d ) = �(d/2)

2
√

π�[(d + 1)/2]
. (5)

The nonnegative spectral density χ̃V (k), which can be
obtained from scattering experiments [30,31], is the Fourier
transform of χV (r) at wave vector k:

χ̃V (k) =
∫
Rd

χV (r)e−ik·r dr � 0, for all k. (6)

For isotropic media, the spectral density depends only on the
wave number k = |k| and, as a consequence of (4), its decay
in the large-k limit is controlled by the exact following power-
law form:

χ̃V (k) ∼ γ (d ) s

kd+1
, k → ∞, (7)

where

γ (d ) = 2d π (d−1)/2 �[(d + 1)/2]. (8)

B. Hyperuniformity

The hyperuniformity concept generalizes the traditional
notion of long-range order in many-particle systems to not
only include all perfect crystals and perfect quasicrystals, but
also exotic amorphous states of matter according to [12,32].
For two-phase heterogeneous media in d-dimensional Eu-
clidean space Rd , which include cellular solids, composites,
and porous media, hyperuniformity is defined by the fol-
lowing infinite-wavelength condition on the spectral density
χ̃V (k)[11,12]:

lim
|k|→0

χ̃V (k) = 0. (9)

An equivalent definition of hyperuniformity is based on the
local volume-fraction variance σ 2

V
(R) associated with a d-

dimensional spherical observation window of radius R. A
two-phase medium in Rd is hyperuniform if its variance grows
in the large-R limit faster than Rd . This behavior is to be
contrasted with those of typical disordered two-phase media
for which the variance decays like the inverse of the volume
v1(R) of the spherical observation window, which is given by

v1(R) = πd/2Rd

�(1 + d/2)
. (10)

The hyperuniformity condition (9) dictates that the direct-
space autocovariance function χV (r) exhibits both positive
and negative correlations such that its volume integral over
all space is exactly zero [33],∫

Rd

χV (r) dr = 0, (11)

which is a direct-space sum rule for hyperuniformity.

C. Classification of hyperuniform and nonhyperuniform media

The hyperuniformity concept has led to a unified means
to classify equilibrium and nonequilibrium states of matter,
whether hyperuniform or not, according to their large-scale
fluctuation characteristics. In the case of hyperuniform two-
phase media [11,12], there are three different scaling regimes
(classes) that describe the associated large-R behaviors of the
volume-fraction variance when the spectral density goes to
zero as a power-law scaling χ̃V (k) ∼ |k|α as |k| tends to zero:

σ 2
V

(R) ∼
⎧⎨
⎩

R−(d+1), α > 1 (Class I)
R−(d+1) ln R, α = 1 (Class II)
R−(d+α), 0 < α < 1 (Class III).

(12)

Classes I and III are the strongest and weakest forms of hy-
peruniformity, respectively. Class I media include all crystal
structures, many quasicrystal structures and exotic disordered
media [11,12]. Stealthy hyperuniform media are also of class
I and are defined to be those that possess zero-scattering
intensity for a set of wave vectors around the origin [33]:

χ̃V (k) = 0 for 0 � |k| � K. (13)

Examples of such media are periodic packings of spheres
as well as unusual disordered sphere packings derived from
stealthy point patterns [33,34].

By contrast, for any nonhyperuniform two-phase system, it
is straightforward to show, using a similar analysis as for point
configurations [35], that the local variance has the following
large-R scaling behaviors:

σ 2
V

(R) ∼
{

R−d , α = 0 (typical nonhyperuniform)
R−(d+α), −d < α < 0 (antihyperuniform).

(14)

For a “typical” nonhyperuniform system, χ̃V (0) is
bounded [12]. In antihyperuniform systems, χ̃V (0) is
unbounded,

lim
|k|→0

χ̃V (k) = +∞, (15)

and hence are diametrically opposite to hyperuniform sys-
tems. Antihyperuniform systems include systems at ther-
mal critical points (e.g., liquid-vapor and magnetic critical
points) [36,37], fractals [38], disordered nonfractals [39], and
certain substitution tilings [40].

III. THEORY

A. Generalization of Prager’s formula for all dimensions

Using the d-dimensional Green’s function for the time-
dependent diffusion equation, it is straightforward to general-
ize Prager’s 3D result for the spreadability S (t ), given by (1),
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to any Euclidean space dimension d . After rearranging terms,
we find that

S (t ) = 1

(4πDt )d/2 φ2

∫
Rd

[φ2 − S2(r)] exp[−r2/(4Dt )] dr,

(16)
where it is to be noted that S (∞) = φ1, i.e., the infinite-time
value of S (t ). We note the identities

1

(4πDt )d/2

∫
Rd

exp[−r2/(4Dt )] dr = 1 (17)

and
1

(4πDt )d/2

∫
Rd

r2 exp[−r2/(4Dt )] dr = 2 dD t . (18)

The second identity is nothing more than the mean-square
displacement of a freely diffusing particle in a medium of
diffusion coefficient D in the long-time limit. Use of the first
identity in (16) yields the difference S (∞) − S (t ), which we
call the excess spreadability, to be given by

S (∞) − S (t ) = 1

(4πDt )d/2 φ2

∫
Rd

χV (r) exp[−r2/(4Dt )] dr

= d ωd

(4πDt )d/2 φ2

∫ ∞

0
rd−1χV (r)

× exp[−r2/(4Dt )] dr, (19)

where

ωd = πd/2

�(1 + d/2)
(20)

is the volume of a d-dimensional sphere of unit radius and
χV (r) is the autocovariance function, defined by (3). In the
second line of (19), the autocovariance χV (r) is the radial
function that depends on the distance r ≡ |r|, which results
from averaging the vector-dependent quantity χV (r) over all
angles,

χV (r) = 1

�

∫
�

χV (r) d�, (21)

where d� is the differential solid angle and

� = dπd/2

�(1 + d/2)
(22)

is the total solid angle contained in a d-dimensional sphere. It
is important to stress that relation (19) applies to all transla-
tionally invariant two-media, including periodic media.

Figure 2 shows examples of 3D nonhyperuniform and
hyperuniform media with different symmetries for which
formula (19) for the spreadability rigorously applies. It is
noteworthy that the formula (19), as well as formula (23)
below, for one-dimensional (1D) cases (i.e., d = 1) are also
rigorously exact for the idealized three-dimensional (3D) sta-
tistically anisotropic stratified two-phase media of parallel
slabs of phases 1 and 2, as illustrated in the top row of
Fig. 2. This fact is easily proved by employing the first line
of formula (19), for example, with d = 3 using Cartesian
coordinates, and then recognizing that the vector-dependent
quantity χV (r) is independent of the components of r in the
directions orthogonal to the slab normal. Similarly, formu-
las (19) and (23) for two-dimensional (2D) cases (i.e., d = 2)

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Models of nonhyperuniform and hyperuniform two-
phase media with different symmetries are shown in blue (left) and
green (right) colors, respectively. In each row, the spreadability is
larger for the hyperuniform medium than that of the corresponding
nonhyperuniform medium, as proved in Sec. III D. Top row: 3D
anisotropic stratified media consisting of infinite parallel slabs of
phases 1 and 2 (φ2 = 0.5) whose thicknesses are derived from nonhy-
peruniform overlapping rods [2] (a) and hyperuniform perturbed 1D
integer lattice point patterns [41] (b). Formulas (19) and (23) with
d = 1 for S(t ) apply rigorously for these 3D anisotropic structures.
Middle row: 3D anisotropic media (φ2 = 0.5) with cylindrical sym-
metry derived from nonhyperuniform oriented overlapping circular
cylinders [2] (c) and stealthy and hyperuniform oriented nonoverlap-
ping circular cylinders [21,34] (d). Formulas (19) and (23) with d =
2 for S(t ) apply rigorously for these 3D anisotropic structures. Bot-
tom row: 3D isotropic media (φ2 = 0.636) of overlapping spheres [2]
(e) and hyperuniform maximally random jammed spheres [42,43] (f).

are rigorously exact for the idealized 3D anisotropic media
that possess transverse isotropy with respect to an axis of sym-
metry, as illustrated in the middle row of Fig. 2. The bottom
row of Fig. 2 shows examples of 3D statistically isotropic
disordered nonhyperuniform and hyperuniform media.

B. Fourier representation of the spreadability

Here we obtain a Fourier representation of the spreadabil-
ity, which is useful when scattering information is available.
By Parseval’s theorem, the direct-space relation (19) for the
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spreadability can be reexpressed in Fourier space as

S (∞) − S (t ) = 1

(2π )d φ2

∫
Rd

χ̃V (k) exp[−k2Dt] dk

= d ωd

(2π )d φ2

∫ ∞

0
kd−1χ̃V (k)

× exp[−k2Dt] dk, (23)

where χ̃V (k) is the spectral density, which is the Fourier trans-
form of χV (r), k is the wave vector, and ωd is given by (20). In
the second line of (23), the spectral density χ̃V (k) is the radial
function that depends on the wave number k ≡ |k|, which
results from averaging the vector-dependent quantity χ̃V (k)
over all angles,

χ̃V (k) = 1

�

∫
�

χ̃V (k) d�, (24)

d� is the differential solid angle. Now, since χ̃V (k) is non-
negative for all k, the integrand of (23) is nonnegative and
decreases with increasing t . Thus, the excess spreadability
is a monotonically decreasing function of time and is itself
nonnegative,

S (∞) − S (t ) � 0 for all t (25)

or, equivalently,

S (t ) � φ1 for all t . (26)

In summary, we can ascertain the spreadability exactly for
any microstructure across spatial dimensions using knowledge
of the corresponding autocovariance via relation (19) or the
spectral density via (23).

C. Small-scale structure via short-time behavior of S(t )

To obtain the short-time asymptotic behavior of S (t ) for
statistically homogeneous media, we recognize that the Gaus-
sian term exp[−r2/(4Dt )] in the direct-space representation
of the spreadability (19) is nonnegligibly small for short times
for distances only near the spatial origin (r = 0). Therefore,
the short-time behavior of the integral in (19) is determined
by the small-r expansion of χV (r) about r = 0:

χV (r) = φ1φ2 − ωd−1

ωd d
sr +

N∑
n=2

snrn, (27)

where s is the specific surface and the coefficient sn =
(dnχV (r)/drn)r=0 is the nth-order derivative at the origin.
Substitution of (27) into (19) yields the following exact
asymptotic expansion of S (t ) for any d:

S (t ) = s

φ2

(Dt

π

)1/2

+ d ωd

πd/2φ2

N∑
n=2

2n−1 sn �[(n + d )/2] (Dt )n/2 (t → 0), (28)

where we have employed the integral identity

1

(4πDt )d/2

∫ ∞

0
rm exp[−r2/(4Dt )] dr

= 2m−d π−d/2�[(m + 1)/2] (Dt )(m+1−d )/2, (29)

and m is a nonnegative integer. It is noteworthy that if the
upper limit N in the sum (28) is infinite, i.e., the sn exist for
all n � 2, formula (28) is an exact convergent series represen-
tation of the spreadability for all times. The first two terms of
the short-time asymptotic expansion (28) are explicitly given
by

S (t ) = s

φ2

(Dt

π

)1/2

− 2 d s2

φ2
(Dt ) + O(Dt/a2)3/2, (30)

where a is some characteristic heterogeneity length scale.
Note that the leading term is of order t1/2, independent of
the space dimension, and proportional to the specific surface
s, which is intuitively clear, since the solute species is only
just emerging from phase 2 in the immediate vicinity of
the two-phase interface. The term of order t is determined
by the curvature of χV (r) at the origin due to the presence
of the coefficient s2.

D. Large-scale structure via long-time behavior of S(t )

The long-time behavior of the spreadability S (t ) is de-
termined by the large-scale structural characteristics of the
two-phase medium. Specifically, we see that the integrand of
the Fourier representation (23) of the spreadability is nonneg-
ligibly small at long times for wave numbers in the vicinity
of the origin, i.e., the behavior of the spectral density χ̃V (k)
in the infinite-wavelength limit. In the special situation in
which χ̃V (k) is an analytic function at the origin, the spectral
density admits a Taylor series expansion in only even powers
of k and whose coefficients depend on certain moments of
the autocovariance function χV (r), all of which must exist.
Specifically, using (23), we find the following exact series
representation of the excess spreadability S (∞) − S (t ):

S (∞) − S (t ) = d ωd

(4πDt )d/2 φ2

∞∑
n=0

(−1)nM2n+d−1(χV )

n!(4Dt )n
,

(31)

where

Mn(χV ) =
∫ ∞

0
rnχV (r) dr (32)

is the nth moment of χV (r). Observe now that truncation of
the infinite series (31) yields the long-time asymptotic expan-
sion of the excess spreadability. The first few terms of this
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asymptotic expansion are explicitly given by

S (∞) − S (t ) = d ωd

(4πDt )d/2 φ2

[
Md−1(χV ) − Md+1(χV )

4Dt
+ Md+3(χV )

32(Dt )2
− · · ·

]
(t → ∞). (33)

Note that since the moment Md−1(χV ) is nonnegative, then the leading-order term of the sum is of order t−d/2 whenever the
system is nonhyperuniform, i.e., Md−1(χV ) does not vanish, and all moments exist.

Now we recognize that if this type of two-phase media is hyperuniform, then Md−1(χV ) in (33) vanishes, implying that the
leading-order term of the sum that involves the moment Md+1(χV ) is of order t−(d+2)/2:

S (∞) − S (t ) = d ωd

4(4π )d/2(Dt )d/2+1 φ2

[
−Md+1(χV ) + Md+3(χV )

8Dt
+ · · ·

]
(t → ∞). (34)

In light of the nonnegativity condition (25), the moment Md+1(χV ) must be negative for a hyperuniform medium. Moreover,
since the spectral density χ̃V (k) is analytic at k = 0 [i.e, all moments of χV (r) exist], then it follows that χ̃V (k) ∝ −Md+1(χV )k2

in the limit k → 0, and hence the two-phase medium is hyperuniform of class I. Thus, we see that for such hyperuniform
media, disordered or not, S (∞) − S (t ) decays to its long-time behavior exponentially faster than that of any nonhyperuniform
two-phase medium.

Now we consider the more general class of two-phase media in which the spectral density may be a nonanalytic function at
the origin such that it obeys the following power-law scaling in the infinite-wavelength limit:

lim
|k|→0

χ̃V (k) = B|ka|α, (35)

where B is a positive dimensionless constant, α is an exponent that lies in the interval (−d,∞), and a represents some
characteristic heterogeneity length scale. Antihyperuniform media constitute cases in which −d < α < 0. The case α = 0
corresponds to nonhyperuniform media, while the cases α > 0 correspond to hyperuniform media that may belong to class
I, II, or III (see Sec. II C). This small-wave-number behavior enables us to determine the more general long-time asymptotic
behavior of S (t ) using the Fourier representation (23). Specifically, we find the following general asymptotic expansion:

S (∞) − S (t ) = B �((d + α)/2) φ2

2d πd/2 �(d/2) (Dt/a2)(d+α)/2
+ o[(Dt/a2)−(d+α)/2] (Dt/a2 
 1), (36)

where o(x) signifies all terms of order less than x. Thus, we see
that the long-time asymptotic behavior of S (t ) is determined
by the exponent α and the space dimension d , i.e., at long
times, S (t ) approaches the value φ1 with a power-law decay
1/t (d+α)/2, implying a faster decay as α increases for some
dimension d . When α is bounded and positive, this result
means that class I hyperuniform media has the fastest decay,
followed by class II and then class III, which has the slowest
decay among hyperuniform media. Of course, antihyperuni-
form media with α → −d has the slowest decay among all
translationally invariant media. In the stealthy limit in which
α → ∞, the predicted infinitely fast inverse-power decay rate
implies that the infinite-time asymptote is approached expo-
nentially fast. This result will be demonstrated explicitly in
the case of periodic media, which are stealthy, as well as
disordered stealthy hyperuniform media.

IV. APPLICATIONS TO NONHYPERUNIFORM,
HYPERUNIFORM AND ANTIHYPERUNIFORM MEDIA

A. Standard nonhyperuniform media

It is instructive to first consider the spreadability S (t ) for
models of typical nonhyperuniform two-phase media. Proto-
typical examples are Debye random media [44], which are
defined entirely by the following monotonic radial autocovari-
ance function:

χV (r) = φ1φ2 exp(−r/a). (37)

Such media can never be hyperuniform because the sum
rule (11) requires both positive and negative correlations [33].
Debye et al. [30] hypothesized the simple exponential
form (37) to model 3D media with phases of “fully random
shape, size, and distribution.” It was many years after their
1957 study that such autocovariance functions were shown to
be realizable in two [44–46] and three [47,48] dimensions.
The corresponding spectral density is given by

χ̃V (k) = φ1φ2 2d πd−1 ad

ωd−1 [1 + (ka)2](d+1)/2
. (38)

Therefore, for small wave numbers,

χ̃V (k) = φ1φ2
2dπd−1 ad

ωd−1

{
1 − (d + 1)

2
(ka)2 + O((ka)4)

}

(39)
so that χ̃V (0) = φ1φ22dπd−1 ad/ωd−1. The spectral density is
plotted in Fig. 3 for the first three space dimensions. We ob-
serve that Debye random media departs from hyperuniformity
superexponentially fast as the space dimension increases;
specifically, χ̃V (0)/(φ1φ2ad ) ∼ √

2[2πd/ exp(1)]d/2 for
large d .

It is convenient to rewrite the direct-space representation
of the spreadability S (t ), given by (19), as follows:

S (∞) − S (t ) = dωdφ1

(4πDt/a2)d/2
Id (t ), (40)
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FIG. 3. The scaled spectral density χ̃V (k)/(φ1φ2) vs dimension-
less wave number ka for Debye random media for d = 1 (bottom
curve), d = 2 (middle curve), and d = 3 (top curve), as obtained
from (38).

where

Id (t ) = 1

ad

∫ ∞

0
rd−1 exp(−r/a) exp[−r2/(4Dt )] dr. (41)

We can obtain a closed-form exact expression for S (t ) for
Debye random media for any d using the recurrence relation

Id+2(t ) = 2Dt

a2
[d Id − Id+1]. (42)

Specifically, the explicit expressions

I1(t ) = exp(Dt/a2)
√

πDt/a2 [1 − erf(
√

Dt/a2)] (43)

and

I2(t ) = 2Dt

a2
{1 − exp(Dt/a2)

√
πDt/a2 [1 − erf(

√
Dt/a2)]},

(44)
for the first two dimensions combined with the recurrence
relation (42), enable one to obtain Id for any d � 3. For
example, for d = 3, we have

I3(t ) = 2Dt

a2
{exp(Dt/a2)

√
πDt/a2 [1 − erf(

√
Dt/a2)][1 + 2Dt/a2] − 2Dt/a2}. (45)

We also note that the nth moment of the autocovariance of Debye random media for any d is given by

Mn(χV ) = φ1φ2 n! an+1. (46)

This result enables us to obtain another exact representation of the spreadability via the infinite series (31).
For any space dimension d , the short-time behavior of the S (t ) is given by

S (t ) = s

φ2

(
Dt/a2

π

)1/2

− d

φ2

(Dt

a2

)
+ O((Dt/a2)3/2), (47)

where

s = φ1φ2ωd d

ωd−1 a
(48)

is the specific surface for a Debye random medium and we have used (30). Employing (31) and (46), we see that the first two
terms of the long-time asymptotic expansion of the spreadability are given by

S (∞) − S (t ) = (d − 1)! dωdφ2

(4πDt/a2)d/2
− (d + 1)! dωdφ2

(4πDt/a2)(d+2)/2
+ O

(
(Dt/a2)−(d+4)/2

)
. (49)

Figure 4 shows the small- and intermediate-time behav-
iors of the spreadability for Debye random media in the first
three space dimensions, as obtained from (40). It is seen
that the effect of increasing dimensionality is to increase the
spreadability for a fixed time for almost all times, namely, for
dimensionless times Dt/a2 > 1.

B. Disordered hyperuniform media

To model hyperuniform two-phase media in Rd ,
Torquato [33] considered the following family of
autocovariance functions:

χV (r)

φ1φ2
= c e−r/a cos(qr + θ ), (50)

where the parameters q and θ are the wave number and phase
associated with the oscillations of χV (r), respectively, a is
a correlation length and c is a normalization constant to be
chosen so that the right-hand side of (50) is unity for r = 0. In
the special case in which θ = 0 and c = 1, Torquato showed
that the corresponding autocovariance function satisfies all
of the necessary realizability conditions and hyperuniformity
constraint (11) for d = 2 if (qa)2 = 1 and for d = 3 if (qa)2 =
1/3. Thus, the spectral densities for d = 2 and d = 3 are
respectively given by

χ̃V (k)

φ1φ2
= 2π (ka)2[A(k) + B(k)] + 4π [A(k) − B(k)] a2

[(ka)4 + 4][A2(k) + B2(k)]
(51)
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FIG. 4. The spreadability S(t ) vs dimensionless time Dt/a2 for
small to intermediate times for Debye random media for d = 1 (bot-
tom curve), d = 2 (middle curve), and d = 3 (top curve), as obtained
from (40).

and

χ̃V (k)

φ1φ2

= 216π [3(ka)2 + 8](ka)2 a3

81(ka)8 + 216(ka)6 + 432(ka)4 + 384(ka)2 + 256
,

(52)

where

A(k) =
√

(ka)2/2 +
√

(ka)4 + 4/2, B(k) = A−1(k).
(53)

It was shown that for the special case θ = 0 and d =
1, the function (50) does not satisfy the hyperunifor-
mity constraint for any values of the parameters q and
θ . However, we note here that (50) meets all of the
known realizability conditions and the hyperuniformity con-
straint for d = 1, provided that the phase is given by θ =
tan−1(1/(qa)), implying that the normalization constant is
c = [1 + (qa)2]1/2/(qa). For concreteness, we set qa = 1,
and hence c = 2 and θ = π/4. Taking the Fourier transform
of (50) with these parameters yields the spectral density to be
given by

χ̃V (k)

φ1φ2
= 4 (ka)2 a

(ka)4 + 4
. (54)

Substitution of this expression into (23) yields the following
exact formula for the spreadability for all t :

S (∞) − S (t ) = 4φ1
√

t√
π

[s1,1/2(2t ) − 1], (55)

where sμ,ν (x) is the Lommel function of the second kind [49].
Figure 5 depicts the scaled spectral densities for the afore-

mentioned disordered hyperuniform models in the first three
space dimensions. It is seen that the peak values increase
substantially with increasing dimension.
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Disordered hyperuniform media

FIG. 5. The scaled spectral density χ̃V (k)/(φ1φ2) vs dimension-
less wave number ka for disordered hyperuniform media for d = 1
(bottom curve), d = 2 (middle curve), and d = 3 (top curve), as
obtained from relations (54), (51), and (52), respectively.

The nth moment Mn(χV ) of the autocovariance func-
tion (50) for any n is given exactly by

Mn(χV )

= cφ1φ2
n!an+1

[1 + (qa)2]n+1
[cos(β ) cos(θ ) − sin(β ) sin(θ )],

(56)

where β = (n + 1) arctan(qa). The specific expressions for
the moments for the parameters used above for the first three
space dimensions are given in Appendix A, which yield cor-
responding exact representations of the spreadability S (t ) via
the infinite series (31). Using these results and (34) yields the
corresponding long-time asymptotic expansions of S (t ) for
the first three space dimensions:

S (∞) − S (t )

= φ1

4
√

π (Dt/a)3/2
+ O((Dt/a)−5/2) (d = 1), (57)

S (∞) − S (t ) = 3φ1

16 (Dt/a)2
+ O((Dt/a)−3) (d = 2),

(58)

and

S (∞) − S (t )

= 81φ1

64
√

π (Dt/a)5/2
+ O((Dt/a)−7/2) (d = 3). (59)

For fixed dimension, we have already noted that the
spreadability for disordered hyperuniform media will be sub-
stantially larger than that of nonhyperuniform media. Figure 6
specifically demonstrates this distinction in one dimension by
comparing the spreadabilities for Debye random media and
disordered hyperuniform media.

C. Antihyperuniform media

As a model of antihyperuniform media in three di-
mensions, we consider here the following autocovariance
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FIG. 6. Comparison of the spreadabilities for Debye random me-
dia (top curve) and disordered hyperuniform media (bottom curve)
for d = 1 and φ2 = 0.5.

function:
χV (r)

φ1φ2
= 1

1 + 2(r/a) + (r/a)2
. (60)

This monotonic functional form meets all of the known
necessary realizability conditions on a valid autocovariance
function [33]. It is clear that any nth-order moment Mn(χV )
for n � 1 is unbounded. The corresponding spectral density is
given by

χ̃V (k) = 4πa2

ka

{
Ci(ka)[ka cos(ka) + sin(ka)]

+ Ssi(ka)[ka sin(ka) − cos(ka)
}
, (61)

where Ci(x) ≡ ∫ x
0 dt cos(t )/t is the cosine integral, Ssi(x) ≡

Si(x) − π/2 is the shifted sine integral and Si(x) ≡∫ x
0 dt sin(t )/t is the sine integral. We see that χ̃V (k) ∼ 2π2/k

in the limit k → 0, which is consistent with the power-law
decay 1/r2 of the χV (r) in the limit r → ∞. The spectral
density is plotted in Fig. 7.
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FIG. 7. The scaled spectral density χ̃V (k)/(φ1φ2) vs dimen-
sionless wave number ka for antihyperuniform media in three
dimensions, as obtained from (61).
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FIG. 8. Comparison of the excess spreadabilities for antihype-
runiform media (top curve), Debye random media (middle curve),
and disordered hyperuniform media (bottom curve) for d = 3 and
φ2 = 0.5. The long-time inverse power-law scalings of S(∞) − S(t )
for each of these models is indicated.

We have already observed that the excess spreadability for
antihyperuniform media will have the slowest decay to its
infinite-time behavior relative to that of disordered hyperuni-
form media or even to nonhyperuniform media in which the
spectral density is bounded at the origin. These distinguished
behaviors are clearly exhibited in Fig. 8 where the excess
spreadabilities are compared for these three different cases in
three dimensions. The long-time inverse power-law scalings
of S (∞) − S (t ) for the hyperuniform, nonhyperuniform and
antihyperuniform 3D models are 1/t5/2, 1/t3/2 and 1/t , re-
spectively, as obtained from (36).

V. APPLICATIONS TO STEALTHY HYPERUNIFORM
MEDIA

In Sec. III D we indicated that that the infinite-time asymp-
totes of the spreadability of stealthy hyperuniform media
are approached exponentially fast and hence faster than
any inverse power law, which applies to nonhyperuniform
and nonstealthy hyperuniform media. In this section, we
explicitly demonstrate such long-time behaviors of both
stealthy disordered and ordered media. We also describe how
the speadability of stealthy hyperuniform media is linked to
the covering problem of discrete geometry [50,51].

A. Disordered stealthy hyperuniform sphere packings

Consider a packing of identical spheres of radius a, which
we take to be phase 2. The packing fraction is φ2 = ρv1(a),
where ρ is the number density and v1(a) is the volume of
a sphere [cf. (10)]. The spectral density of such a packing,
hyperuniform or not, can be expressed in terms of the structure
factor S(k) according to [2,33,52]

χ̃V (k) = ρ m̃2(k; a)S(k)

= φ2 α̃2(k a)S(k), (62)
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where m̃(k; a) is the Fourier transform of the sphere indicator
function,

α̃2(ka) = 1

v1(a)
m̃2(k; a)

= 1

v1(a)

(
2πa

k

)d

J2
d/2(ka)

= 2dπd/2�(d/2 + 1)
J2

d/2(ka)

kd
, (63)

is the Fourier transform of the scaled intersection volume of
two spherical windows [32]. The zero-k and large-k of this
function are given respectively by

α̃2(0) = v1(a) (64)

and

α̃2(ka) ∼ 2d+1πd/2−1�(1 + d/2)
cos2[ka − (d + 1)/4]

akd+1

(ka → ∞). (65)

Moreover, we have the following integral condition:

1

(2π )d

∫
Rd

α̃2(ka) dk = 1. (66)

If the point configuration specified by the sphere centers is
hyperuniform, then lim|k|→0 S(k) = 0, and hence the disper-
sion or packing is hyperuniform, since it immediately follows
from (62) that the stealthy hyperuniformity condition (9) on

the spectral density is obeyed. Moreover, if the sphere centers
constitute a stealthy and hyperuniform point configuration,
S(k) = 0 for 0 � |k| � K , and hence it follows that the spec-
tral density is also identically zero up to the cutoff value K ,
i.e., it obeys relation (13).

Disordered stealthy hyperuniform packings have been
generated using the collective-coordinate optimization pro-
cedure [53] by decorating the resulting ground-state point
configurations by nonoverlapping spheres [15,34]. The degree
of order of such ground states depends on a tuning parameter
χ , which measures the extent to which the ground states are
constrained by the size of the cutoff value K relative to the
number of degrees of freedom. For χ < 1/2, the ground states
are typically disordered and uncountably infinitely degenerate
in the infinite-volume limit [53]. Using the fact that ρχ =
v1(K )/[2d (2π )d ] [53], it immediately follows that for identi-
cal nonoverlapping spheres of radius a that the dimensionless
stealthy cutoff value Ka in terms of the packing fraction φ2

for any space dimension d is given by

(Ka)d = d2d+1�2(1 + d/2)φ2χ. (67)

Given the specific stealthy form obtained from (62), one
can compute the spreadability from formula (23). Our main
interest here is to determine from this formula the exact long-
time asymptotic form for disordered stealthy packings. Noting
that at long times, the spectral density can be replaced with its
constant value at k = K , we find

S (∞) − S (t ) ∼ dωd

(2π )d
α̃2(Ka)S(K )

∫ ∞

K
kd−1 exp(−k2Dt ) dk = dωd

2(2π )d
α̃2(Ka)S(K )

exp(−K2Dt )

K2Dt
(Dt/a2 
 1). (68)

We see that the decay of the excess spreadability of a
disordered stealthy hyperuniform two-phase medium is expo-
nentially faster than that of any class I hyperuniform system
in which the exponent α > 1, specified by (35), is bounded.

B. Ordered stealthy hyperuniform sphere packings

It is useful to compare and contrast the spreadability of
disordered stealthy hyperuniform packings to that of their
ordered stealthy hyperuniform counterparts. For this purpose,
we consider identical nonverlapping spheres of radius a cen-
tered on the sites of a periodic lattice, which are stealthy and
hyperuniform up to the first Bragg peak [53]. We begin by
noting that the structure factor of the sites of a Bravais lattice
in Rd , excluding forward scattering, is given by

S(k) = (2π )d

vc

∑
Q �=0

δ(k − Q), (69)

where vc is the volume of a fundamental cell in direct space
and Q denotes a reciprocal lattice (Bragg) vector. Substitution
of (62) and (69) into (23) yields

S (∞) − S (t ) = φ2

∑
Q �=0

α̃2(|Q|a)

v1(a)
exp[−|Q|2Dt]. (70)

Alternatively, we can recast this equation by employing the
angular-averaged structure factor S(k), which is given by

S(k) = (2π )d

vc

∑
n=1

Z (Qn)

s1(Qn)
δ(k − Qn), (71)

where Z (Qn) is the coordination number at radial distance
Qn, s1(R) = dπd/2Rd−1/�(1 + d/2) is the surface area of d-
dimensional sphere of radius R, and δ(k) is a radial Dirac delta
function.

Now we recognize that expression (71) for S(k) applies
more generally to periodic packings in which there are N
particles per fundamental cell, provided that Z (Qn) is in-
terpreted to be the expected coordination number at radial
distance Qn. Thus, for periodic packings, we have

S (∞) − S (t ) = φ2

∑
n=1

Z (Qn)
α̃2(Qn a)

v1(a)
exp

[ − Q2
nDt

]
,

(72)
where the packing fraction is given by

φ2 = Nv1(a)

vc
. (73)
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TABLE I. The scaled first Bragg peak Q1a for 1D periodic pack-
ings of spheres (rods) of radius a derived from common crystal
structures in terms of the packing fraction φ2. The corresponding
maximal packing fraction φmax

2 for each structure is also listed. In
the case of a periodic packing with a an n-particle basis, η is the
dimensionless length of the fundamental cell in terms of the minimal
nearest-neighbor distance and hence the maximal packing fraction
n/η is always less than or equal to unity. The packing with the largest
value of Q1a is the one derived from the integer lattice Z.

Crystal structure Q1a φmax
2

Integer lattice (Z) πφ2 1
Periodic with n-particle basis πφ2/n n/η

At large times, the first term in the sum of (72) is the dominant
contribution and so

S (∞) − S (t ) ∼ φ2Z (Q1) α̃2(Q1 a)

v1(a)

× exp[−Q2
1Dt] (Dt/a2 
 1), (74)

where Q1 is the first (smallest positive) Bragg wave number.
Result (74), which is also a lower bound for all times, means
that among all periodic packings of identical spheres in Rd at
a fixed packing fraction φ2, the one with the largest first Bragg
peak will have the fastest approach to the infinite-time behav-
ior in space dimension d . In dimensions one, two, three and
four, these optimal packings for the spreadability correspond
to the integer lattice Z, triangular lattice A2, body-centered
cubic (BCC) lattice D∗

3 (dual to the face-centered cubic (FCC)
or checkerboard lattice D3), and the 4D checkerboard lat-
tice D4 [53], respectively. Tables I, II, III and IV list the
scaled first Bragg peak Q1a raised to the power d for some
periodic sphere packings derived from commonly known pe-
riodic (crystal) point patterns in one, two, three, and four
dimensions, respectively; see Appendix B for mathematical
definitions. An exact expression for the spreadability for all
times for 1D integer lattice packings is given in Appendix C
and compared to spreadabilities of 1D models of disordered
media.

We see that both long-time relations (68) and (74) for
disordered and ordered stealthy packings, respectively, in-
volve exponential decay rates that are determined by the size
of the stealthy cutoff value Ka, which equals Q1a in the
ordered case. Now, since stealthy disordered ground states
must have values of χ less than 1/2, any periodic packing
with χ > 1/2 (see Ref. [53]) will have a larger cutoff value
Ka = Q1a, according to (67) and hence faster spreadabilities.

By the same token, the spreadability is slower for any periodic
packing with a value of χ smaller than that of a disordered
stealthy packing. For example, the pyrochlore crystal in three
dimensions has a maximum χ value of χ = π/(4/

√
12) =

0.2267 . . . [53] and hence any disordered stealthy packing
with χ greater than the pyrochlore value has a faster spread-
ability. This is to be contrasted with the optimal BCC structure
with a maximal value of χ = 2

√
2π/9 = 0.9873 . . . [53].

C. Link to covering problem of discrete geometry

It should not go unnoticed that the point configurations
corresponding to the optimal sphere packings for the spread-
ability are also the best coverings in the first four space
dimensions [51]. The covering problem asks for the point
configuration that minimizes the radius of overlapping spheres
circumscribed around each of the points required to cover d-
dimensional Euclidean space Rd [50]. While the spreadability
involves the “covering” of space by nonuniform concentration
fields (as illustrated schematically in Fig. 1), it is intuitively
reasonable to conclude that decorations of the points of good
coverings by identical nonoverlapping spheres correspond to
media with large spreadabilities. Furthermore, it is interest-
ing to note that the best coverings in the first four space
dimensions are also the best quantizers and minimizers of
large-scale density fluctuations [51].

D. Optimal particle shape for spreadability

Would a decoration of a stealthy and hyperuniform point
configuration in Rd by nonoverlapping identical nonspherical
particles with random orientations yield spreadabilities that
are larger than that of their spherical counterparts? We conjec-
ture that the decoration of such an infinite point configuration
by identical spheres possesses the largest spreadability among
all identical randomly oriented convex particles with the same
volume as the sphere and hence the same packing fraction
φ2. While proving this conjecture is beyond the scope of
the present paper, we provide theoretical arguments in Ap-
pendix D to strongly support it. In short, the key arguments
for the conjecture are related to the fact that the d-dimensional
sphere is perfectly isotropic (i.e., possesses infinite-fold ro-
tational symmetry) and is the closed set with the minimal
surface area to volume ratio for a given volume, a conse-
quence of the isoperimetric inequality.

TABLE II. The scaled first Bragg peak Q1a (raised to the power 2) for 2D periodic packings of spheres (circular disks) of radius a derived
from common crystal structures in terms of the packing fraction φ2. The corresponding maximal packing fraction φmax

2 for each structure is
also listed. The packing with the largest value of Q1a is the one derived from the triangular lattice A2 ≡ A∗

2.

Crystal structure (Q1a)2 φmax
2

Triangular lattice (A2 ≡ A∗
2) (8π/

√
3)φ2 = (14.5103 . . .)φ2 π/

√
12 = 0.9068 . . .

Square lattice (Z2 = Z2
∗) (4π )φ2 = (12.5663 . . .)φ2 π/4 = 0.7853 . . .

Honeycomb crystal (Dia2) (4π/
√

3)φ2 = (7.2551 . . .)φ2 π/(3
√

3) = 0.6045 . . .

Kagomé crystal (Kag2) [8π/(3
√

3)]φ2 = 4.8367 . . .)φ2 3π/(8
√

3) = 0.6801 . . .
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TABLE III. The scaled first Bragg peak Q1a (raised to the power 3) for 3D periodic packings of spheres of radius a derived from common
crystal structures in terms of the packing fraction φ2. The corresponding maximal packing fraction φmax

2 for each structure is also listed. The
packing with the largest value of Q1a is the one derived from the BCC lattice D∗

3.

Crystal structure (Q1a)3 φmax
2

BCC lattice (D∗
3) (6

√
2π 2)φ2 = (83.7463 . . .)φ2

√
3π/8 = 0.6801 . . .

FCC lattice (D3 ≡ A3) (9
√

3π 2/2)φ2 = (76.9259 . . .)φ2 π/
√

18 = 0.7408 . . .

HCP crystal (8
√

6π 2/3)φ2 = (64.4679 . . .)φ2 π/
√

18 = 0.7408 . . .

SC lattice (Z3 ≡ Z∗
3 ) 6π 2φ2 = (59.2176 . . .)φ2 π/6 = 0.5235 . . .

Simple hexagonal lattice 3
√

3π 2φ2 = (51.2839 . . .)φ2 π/(3
√

3) = 0.6045 . . .

Diamond crystal (Dia3) (9
√

3π 2/4)φ2 = (38.4629 . . .)φ2

√
3π/16 = 0.3400 . . .

Pyrochlore crystal (Kag3) (9
√

3π 2/8)φ2 = (19.2314 . . .)φ2

√
2π/12 = 0.3702 . . .

VI. LINK OF THE SPREADABILITY TO NMR AND
DIFFUSION MRI MEASUREMENTS

NMR techniques provide noninvasive means to char-
acterize the microstructure of fluid-saturated porous me-
dia [1,7,24–26,28,29]. Here we identify a heretofore un-
known, to our best knowledge, relationship between the
spreadability S (t ) and the NMR pulsed field gradient
spin-echo (PFGSE) amplitude M(k, t ) [24] as well as MRI-
measured water diffusion in biological media [29].

Consider a fluid-saturated porous medium, which in-
variably contains paramagnetic impurities at the interface,
resulting generally partially absorbing boundary conditions.
In particular, one can extract microstructural information of
the porous medium from the PFGSE amplitude M(q, t ),
which depends on the wave vector q and time t [24–26,28].
The PFGSE amplitude contains information on both the
spectrum (eigenvalues) and eigenfunctions of the diffusion
operator, which are determined by the microstructure of the
porous medium. For statistically isotropic media, the time-
dependent diffusion coefficient D(t ) is directly obtained from
the first derivative of the logarithm of M(q, t ) with respect to
the square of the wave number q ≡ |q|, namely,

lim
q→0

−∂ lnM(q, t )

∂q2
= D(t ) t, (75)

where D(t ) is the effective time-dependent diffusion coeffi-
cient of the porous medium. The long-time limit of D(t ) is
the static effective diffusion coefficient De [2].

Mitra et al. [24] proposed a simple phenomenological
ansatz, based on an effective diffusion propagator, that re-
lates the PFGSE amplitude M(k, t ) to the spectral density
of the porous medium. They showed that this approxima-
tion provides accurate estimates of M(k, t ) for both periodic
and disordered microstructures. Now we observe that set-

ting the wave vector k to zero in their formula (7) (up to a
normalization parameter) gives, after simplification, the total
magnetization as a function of time,

M(q = 0, t ) − φ2 = 1

(2π )dφ2

∫
χ̃V (k) exp[−k2D(t )t] dk,

(76)
where φ2 here is the porosity and M(q = 0, t = 0) = 1.
Comparing this infinite-wavelength formula to relation (23)
for the excess spreadability S (∞) − S (t ) reveals that they
are very similar to one another in functional form, except
for the fact that the diffusion coefficient appearing in (76)
is the effective time-dependent one. One can map the former
to the latter problem via the transformations S (∞) − S (t ) →
M(q = 0, t ) − φ2 and D → D(t ). Indeed, the total magneti-
zation M(q = 0, t ) shares many qualitative and quantitative
features with the spreadability function S (t ). For example,
it is known that for porous media with perfectly absorbing
interfaces, the short-time behavior of M(q = 0, t ) is of order
t1/2 and proportional to the specific surface s [25], which,
as we noted in Sec. III C, is exactly the case in the small-t
behavior of the spreadability S (t ). At long times, formula (76)
for the power-law scaling (35) of the spectral density has the
following asymptotic behavior:

M(q = 0, t ) − φ2 = B �((d + α)/2) φ2

2d πd/2 �(d/2) (Det/a2)(d+α)/2

+ o((Det/a2)−(d+α)/2) (Det/a2 
 1).

(77)

This formula is identical to long-time formula (36) for the
excess spreadability when D is replaced by the static effective
diffusion coefficient De. This remarkable link between the two
problems indicates that S (t ) itself may serve as a simple figure
of merit to gauge time-dependent diffusion processes in com-

TABLE IV. The scaled first Bragg peak Q1a (raised to the power 4) for four-dimensional (4D) periodic packings of spheres of radius
a derived from common crystal structures in terms of the packing fraction φ2. The corresponding maximal packing fraction φmax

2 for each
structure is also listed. The packing with the largest value of Q1a is the one derived from the 4D checkerboard lattice D4 ≡ D∗

4.

Crystal structure (Q1a)4 φmax
2

D4 lattice 64π 2φ2 π 2/16 = 0.6168 . . .

Z4 lattice 32π 2φ2 π 2/16 = 0.3084 . . .

Dia4 crystal 32π 2φ2

√
5π 2/125 = 0.1765 . . .

Kag4 crystal (64π 2/5)φ2

√
5π 2/128 = 0.1724 . . .
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FIG. 9. “Phase diagram” that schematically shows the spectrum of spreadability regimes in terms of the exponent α. As α increases from
the extreme antihyperuniform limit of α → −d , the spreadability decay rate gets faster, i.e., the excess spreadability follows the inverse power
law 1/t (d+α)/2, except when α → +∞, which corresponds to stealthy hyperuniform media with a decay rate that is exponentially fast.

plex media and hence infer salient microstructural information
about heterogeneous media.

Diffusion-weighted magnetic resonance imaging (dMRI)
has become a powerful tool for imaging water-saturated
biological media [1]. For the purpose of modeling water
diffusion in muscles and brain tissue, Novikov et al. [29]
considered various 1D models in which diffusion is hindered
by permeable barriers and estimated the corresponding long-
time behaviors of the time-dependent diffusion coefficient
D(t ). Based on this 1D analysis, they were able to extend
their findings to any space dimension and found the following
long-time scaling behavior of D(t ):

D(t ) − De ∼ C

tϕ
, (78)

where C is an undetermined structure-dependent constant and
the exponent ϕ = (d + α)/2. Importantly, this scaling law
was verified experimentally [54]. Remarkably, we see that
the long-time behavior of D(t ) − De is identical to the excess
spreadability S (∞) − S (t ), as specified by the explicit scal-
ing law (36). While the spreadability problem is substantially
simpler than the determination of the effective time-dependent
diffusion, it is seen that, apart from constants, one can map the
former to the latter problem at long times via the transforma-
tions S (t ) → D(t ) and S (∞) → De = D(∞).

VII. DISCUSSION

Our investigation has demonstrated that the spreadabil-
ity of diffusion information S (t ) across timescales has the
potential to serve as a powerful dynamic figure of merit
to probe and classify all translationally invariant two-phase
microstructures across length scales. We established that the
small-time behavior of S (t ) is determined by the derivatives
of the autocovariance function χV (r) at the origin, the leading
term of order t1/2 being proportional to the specific surface
s. We proved that the corresponding long-time behavior is

determined by the form of the spectral density χ̃V (k) at small
wave numbers, which enables one to ascertain the class of
hyperuniform and nonhyperuniform media. Figure 9 shows a
“phase diagram” of the spectrum of spreadability regimes.

In instances in which the spectral density has the power-
law form χ̃V (k) ∼ |k|α in the limit |k| → 0, the long-time
excess spreadability for two-phase media in Rd is given by
the following inverse power-law decay:

S (∞) − S (t ) ∼ 1

t (d+α)/2
. (79)

Observe that this formula can distinguish among the possible
strongest forms of hyperuniformity, i.e., class I, according to
the value of the exponent for any α > 1; the larger the value of
α for such media, the faster the decay rate of the spreadability.
The limit α → +∞ corresponds to media in which the decay
rate of S is faster than any inverse power law, which we
showed is the case for stealthy hyperuniform media. A mea-
sured long-time decay rate of S (∞) − S (t ) ∼ t−d/2, i.e., the
case α = 0 in (79), would reveal a nonhyperuniform medium
in which the spectral density is a bounded positive number at
the origin. On the other hand, antihyperuniform media (with
−d < α < 0) have the slowest decay among all translation-
ally invariant media, the slowest being when S (∞) − S (t )
approaches a constant value (i.e., α → −d), independent of
time. The stealthy hyperuniform class is characterized by an
excess spreadability with the fastest decay rate (exponentially
fast) among all hyperuniform media and hence all transla-
tionally invariant microstructures. In short, the spreadability
provides a dynamic means to classify the spectrum of pos-
sible microstructures that span between hyperuniform and
nonhyperuniform media, which is schematically illustrated in
Fig. 9. Thus, in addition to the usual structure-based methods
to ascertain the hyperuniformity or nonhyperuniformity of
two-phase media discussed in Sec. II C, the spreadability at
long times provides an alternative dynamic probe of such
large-scale structural characteristics.
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We obtained exact results for S (t ) as a function of time
for a variety of specific ordered and disordered model mi-
crostructures across dimensions, including antihyperuniform
media, nonhyperuniform Debye random media, nonstealthy
hyperuniform media, disordered stealthy media, and peri-
odic media. We also demonstrated that the microstructures
with “fast” spreadabilities are also those that can be derived
from efficient “coverings” of Euclidean space Rd . Finally, we
identified a remarkable connection between the spreadabil-
ity S (t ) and noninvasive nuclear magnetic resonance (NMR)
relaxation measurements in physical and biological porous
media [1,7,24–26,28,29].

An interesting avenue for future work is the generalization
of the spreadability problem by relaxing Prager’s assumption
that the diffusion coefficients of both phases are identical.
This more general situation will involve expressions for S (t )
that now will not only involve the volume fractions and S(i)

2 ,
but all higher-order correlation functions S(i)

3 , S(i)
4 , . . . as well

as the ratio of the phase diffusion coefficients. The solution
of this general problem could be approached using a similar
formalism as the “strong-contrast” methodology that has been
developed to derive exact expressions for the effective con-
ductivity of two-phase media in terms of this infinite set of
correlation functions and phase contrast ratio [2,55].
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APPENDIX A: MOMENTS OF THE AUTOCOVARIANCE
FUNCTION FOR THE DISORDERED HYPERUNIFORM

MODEL

Here we provide simplified closed-form expressions ob-
tained from the general formula (56) for the nth-order moment
of the autocovariance function (50) for the special cases in the
first three space dimensions considered in Sec. IV B. Specif-
ically, for d = 1 with qa = 1, and c = √

2 and θ = π/4, we
find

Mn(χV ) = −φ1φ2
n!

2n/2
sin(nπ/4) (d = 1). (A1)

Similarly, with θ = 0, c = 1, we have for d = 2 with qa = 1,

Mn(χV ) = φ1φ2
n!

2(n+1)/2
cos[(n + 1)π/4] (d = 2), (A2)

and for d = 3 with (qa)2 = 1/3,

Mn(χV ) = φ1φ2
n!3(n+1)/2

2n+1
cos[(n + 1)π/6)] (d = 3).

(A3)

APPENDIX B: SOME d-DIMENSIONAL CRYSTAL
STRUCTURES

Here we define some well-known crystal structures, includ-
ing (Bravais) lattices as well as lattices with a basis, what

we generally call periodic point configurations [51]. Some
commonly known d-dimensional lattices include the hyper-
cubic Zd , checkerboard Dd , and root Ad lattices, defined,
respectively, by

Zd = {(x1, . . . , xd ) : xi ∈Z} for d � 1. (B1)

Dd = {(x1, . . . , xd ) ∈ Zd : x1 + · · · + xd even} for d � 3.

(B2)

Ad = {(x0, x1, . . . , xd ) ∈ Zd+1 : x0 + x1 + · · · + xd = 0}
for d � 1, (B3)

where Z is the set of integers (. . . − 3,−2,−1, 0, 1, 2, 3 . . .);
x1, . . . , xd denote the components of a lattice vector of either
Zd or Dd ; and x0, x1, . . . , xd denote a lattice vector of Ad .
The d-dimensional lattices Zd

∗ , D∗
d and A∗

d are the corre-
sponding dual (or reciprocal) lattices. Following Conway and
Sloane [50], we say that two lattices are equivalent or similar
if one becomes identical to the other possibly by a rotation,
reflection, and change of scale, for which we use the symbol
≡. The Ad and Dd lattices can be regarded as d-dimensional
generalizations of the face-centered-cubic (FCC) lattice de-
fined by A3 ≡ D3; however, for d � 4, they are no longer
equivalent. In two dimensions, A2 ≡ A∗

2 defines the triangular
lattice with a dual lattice that is equivalent. In three dimen-
sions, A∗

3 ≡ D∗
3 defines the body-centered-cubic (BCC) lattice.

In four dimensions, the checkerboard lattice and its dual are
equivalent, D4 ≡ D∗

4. The hypercubic lattice Zd ≡ Zd
∗ and its

dual lattice are equivalent for all d .
We denote by Diad and Kagd the crystals that are d-

dimensional generalizations of the diamond and kagomé
crystals, respectively, for d � 2 [56]. While the crystal Diad

has a two-particle basis (independent of d), the crystal Kagd
as a (d + 1)-particle basis.

APPENDIX C: SPREADABILITY FOR 1D INTEGER
LATTICE PACKINGS

Here we derive an exact expression for the spreadability
for all times for the special case of 1D packings of identical
rods of radius a (length 2a) centered on the sites of the integer
lattice Z with lattice spacing L, so that Qn = 2πn/L and
φ2 = 2a/L. Application of the general formula (72) in the
case of the 1D integer lattice packing, where Z (Qn) = 2 for
all n, yields

S (∞) − S (t )

= φ2

∞∑
n=1

α̃(2πna/L)

a
exp[−(2πn)2Dt/L2]

= 2

φ2 π2

∞∑
n=1

sin2(πnφ2)

n2
exp[−(2πn)2Dt/L2]. (C1)

Note that because S (t = 0) = 0, we have the identity

1

π2

∞∑
n=1

sin2(πnφ2)

n2
= φ1φ2

2
. (C2)

The autocovariance function χV (r) for the integer lattice
packing for the instance φ2 and the corresponding excess
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FIG. 10. (a) The autocovariance function χV (r) vs r/L for the
integer lattice packing for the instance φ2 = 0.5, where L is the lattice
spacing. (b) Excess spreadability S(∞) − S(t ) vs dimensionless
time Dt/a2 for short times for three different models: integer lattice
packing, nonstealthy disordered hyperuniform media, and (nonhype-
runiform) Debye random media, each with φ2 = 0.5.

spreadability for small times is shown in Fig. 10. Figure 10
compares S (∞) − S (t ) to those of the 1D models of (nonhy-
peruniform) Debye random media and nonstealthy disordered

hyperuniform media, as discussed in Sec. IV A and Sec. IV B,
respectively. It is noteworthy that when Dt/a2 = 1, the excess
spreadability for periodic media is already about four orders
of magnitude smaller than that of nonstealthy disordered hy-
peruniform media.

APPENDIX D: OPTIMALITY OF SPHERE PACKINGS

Consider a d-dimensional convex body C (convex compact
set with nonempty interior) in Rd that has the same volume
as a d-dimensional sphere and the orientationally averaged
function α̃(k;C), which generalizes relation (62) for a sphere.
To prove the conjecture presented in Sec. V D, one must show
that α̃2(k;C) in (74) at the first Bragg peak is largest for the
sphere among all orientationally averaged convex bodies with
the same volume.

The following arguments that support the conjecture utilize
the large-k and small-k expansions of α̃(k;C). The large-k
behavior of α̃2(k;C) can be extracted from relation (66) of
Ref. [57] by taking its Fourier transform, yielding

α̃2(k;C)/bd � b s1(C)

v1(C)

ξ (d )

(kb)d+1
(k → ∞), (D1)

where s1(C) and v1(C) are the surface area and volume of
C, respectively, ξ (d ) = γ (d )/κ (d ) [cf. (5) and (8)], and b is a
length scale associated with the geometry of the convex shape.
Now, by the isoperimetric inequality [58], the sphere mini-
mizes the dimensionless coefficient b s1(C)/v1(C), and hence
has the fastest decay rate of α̃(k;C) among all convex bodies
with the same volume. This conclusion is consistent with a
general theorem given in Ref. [59]. Since the sum rule (66)
still applies, the fastest decay rate for the sphere implies that
α̃2(k;C) is larger for spheres at small and intermediate values
of k. Indeed, using the general expression (22) from Ref. [60]
for the form factor, it is straightforward to obtain the following
small-k expansion of the angular-averaged function α̃(k;C)
that supports this conclusion:

α̃2(k;C) = v1(C) − I (C)k2 + O(k4), (D2)

where I (C) is the trace of the moment of inertia tensor of C
(measured with respect to the centroid) divided by d . The trace
of this tensor is minimized by the sphere and so the function
α̃(k;C) near the origin is largest for the sphere among all
convex bodies. Indeed, the sphere is the minimizer of I (C) for
all measurable Borel sets with a prescribed finite volume [61].
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