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Lattice Boltzmann method with moment-based boundary conditions
for rarefied flow in the slip regime
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A lattice Boltzmann method with moment-based boundary conditions is used to compute flow in the slip
regime. Navier-Maxwell slip conditions and Burnett-order stress conditions that are consistent with the discrete
velocity Boltzmann equation are imposed locally on stationary and moving boundaries. Micro-Couette and
micro-lid-driven cavity flows are studied numerically at Knudsen and Mach numbers of the order O(10−1).
The Couette results for velocity and the deviatoric stress at second order in Knudsen number are in excellent
agreement with analytical solutions, and the cavity results are in excellent agreement with existing data. The
algorithm is shown to compute nonequilibrium effects in the pressure that are in very good agreement with
DSMC simulations of the Boltzmann equation but not captured by the Navier-Stokes equations.
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I. INTRODUCTION

The study of flows in microdevices has received much
attention in recent years [1–4]. In microdevices the Knudsen
number Kn (the ratio between the mean-free path of particles
and a characteristic macroscopic length scale) and the Mach
number Ma (the ratio of the flow speed to the speed of sound)
are typically of the order O(10−1). This is known as the slip
flow regime, and it exhibits phenomena that is not captured
by the Navier-Stokes equations. This includes narrow [O(Kn)
wide] slip boundary layers in the macroscopic velocity, known
as Knudsen layers [2] and nonequilibrium effects in the pres-
sure tensor [5]. To fully capture the flow one can solve the
Boltzmann equation

∂ f

∂t
+ c · ∇ f = − 1

τ
( f − f (e) ), (1)

where f = f (x, c, t ) is the particle velocity distribution func-
tion with velocity c at position x and time t . The right-hand
side is the BGK collision term, which assumes the relaxation
of f to the Maxwell-Boltzmann equilibrium f (e) over the
collisional timescale τ .

Solving Eq. (1) is challenging due to its high dimen-
sionality. Simpler, lower dimensional, macroscopic equations
of motion are thought to be good approximate descrip-
tions of slip flow outside of the boundary layers as long
as appropriate boundary conditions are used [6]. The three
nondimensional numbers that characterize the macroscopic
flow are the Reynolds, Mach, and Knudsen numbers, which
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are connected by von Kármán’s relation and defined to be

Re = ρuH

μ
, Ma = u

a
, Kn =

√
πγ

2

Ma

Re
, (2)

where u is the characteristic flow velocity, ρ is the density
of the fluid, H is the macroscopic length scale, and μ is
the dynamic viscosity. The speed of sound in the fluid is
a = √

γ RT where γ is the ratio of specific heats for an ideal
monatomic gas (taken to be 5/3) and R and T are the gas
constant and absolute temperature. Later we will use the ideal
equation of state for pressure, p = ρRT . The Navier-Stokes
equations with Navier-Maxwell slip boundary conditions are
often solved in favor of the Boltzmann equation [7]. Here,
provided the velocity in the bulk flow is accurately captured,
one sacrifices capturing the narrow boundary layer in favor of
ease of analysis or computation.

The Navier-Stokes equations can be recovered from an
asymptotic expansion of (1) to first order in Kn � 1. Thus by
modeling the slip flow regime using the Navier-Stokes equa-
tions one is ignoring physical contributions to nonconserved
hydrodynamic moments at higher order in Kn, as well as the
Knudsen velocity boundary layer. These contributions can be
seen and understood by taking moments in the hydrodynamic
reference frame, that is, with respect to the peculiar velocity.
Defining the peculiar velocity ξ = c − u, one can obtain from
(1) the evolution of the pressure tensor P = ∫

ξξ f dξ [8]

∂t Pαβ + ∂γ (uγ ∂γ Pαβ + Qαβγ ) + Pαγ

∂uβ

∂xγ

+ Pγ β

∂uα

∂xγ

= − 1

τ

(
Pαβ − P(e)

αβ

)
, (3)
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where Q = ∫
ξξξ f dξ. This level of detail can be apprecia-

ble for moderate Knudsen numbers (as discussed below) but
cannot be predicted by the Navier-Stokes model.

The importance of flows in microdevices with moving
boundaries has seen the development of numerical methods
for macroscopic equations in the slip flow regime and also
numerical solvers for the Boltzmann equation [9–13]. Of par-
ticular interest here, Mizzi et al. [5] computed solutions to
the Navier-Stokes-Fourier equations in micro-lid-driven cav-
ity flow and compared them with their DSMC results for
the Boltzmann equation. Importantly, they found that while
the Navier-Stokes-Fourier model could predict the velocity
field well outside of kinetic boundary layers, it could not
compute accurate solutions to other aspects of flow in the slip
regime. In particular, and in agreement with Jiang et al. [14],
they showed that the nonequilibrium effects of the Knudsen
number were strong near the moving wall and in the vicinity
of the corners, with the Navier-Stokes and DSMC solvers
predicting considerably different pressures. Mizzi et al. [5]
argued for alternative solution methods to be developed. We
show in this article that the lattice Boltzmann equation with
moment-based boundary conditions can accurately capture
the pressure distribution in the slip flow regime where the
Navier-Stokes-Fourier equations could not.

The lattice Boltzmann method (LBM) may be considered
an intermediate approach to computing slip flow. Its discrete
particle velocity set restricts it to capturing only the first few
moments of the Boltzmann equation (1), and, for standard
integer lattices at least, it cannot capture kinetic effects in
the velocity field [15]. However, the LBM will capture the
bulk flow with a high degree of accuracy when supplemented
with appropriate slip boundary conditions [16,17]. Further-
more, and despite being primary used as a Navier-Stokes
solver, it can compute the pressure tensor, viz., the devia-
toric stress, from kinetic theory with an isothermal equation
of state, even with a small number of degrees of freedom
[18]. The application of the LBM to the slip flow regime has
received significant attention [16,17,19–25], but most stud-
ies used “kinetic-style” boundary conditions that are prone
to inaccuracies in the slip at the boundaries; see Verhaeghe
et al. [17] and Reis and Dellar [16] for an overview. A two-
relaxation-time collision operator can be used to remove or
minimise such artifacts, allowing for a far more robust scheme
[26,27], yet the timescale of the relaxation of the third order
moment required to minismize the error is too long to capture
the deviatoric stress at appreciable Knudsen numbers [28].
Alternatively, a novel technique for implementing boundary
conditions in the LBM was proposed by Bennett [29] and
used to impose the Navier-Maxwell conditions precisely for
slip flow in microchannels by Reis and Dellar [16]. This
methodology does not produce any artificial slip and can be
used with any lattice Boltzmann collision operator [30–32].
It can also be used to impose boundary conditions that are
consistent with the deviatoric stress and has been shown to
predict non-Navier-Stokes behavior [28,33], but until now this
has not been used to compute the slip-flow regime. Here we
show that the LBM with consistent moment-based boundary
conditions can accurately compute flow in the slip regime,
including subtle effects in the pressure that the Navier-Stokes-
Fourier systems cannot capture.

FIG. 1. The nine particle velocities and the D2Q9 lattice.

The remainder of the article is organized as follows. In
Sec. II we discuss the lattice Boltzmann framework for the
slip flow regime, and we explain the boundary conditions and
their implementation in Sec. III. Numerical results for micro-
Couette and mico-lid-driven cavity flows are shown in Secs.
IV and V, respectively, and concluding remarks are made in
Sec. VI.

II. THE LATTICE BOLTZMANN METHODOLOGY

The discrete velocity Boltzmann equation with a BGK
collision operator with relaxation time τ is

∂ fi

∂t
+ ci · ∇ fi = − 1

τ

(
fi − f (0)

i

)
, (4)

where fi represents the particle distribution function with dis-
crete particle velocity ci. Here the truncated discrete velocity
set {ci|i = 0, . . . , 8} forms the integer D2Q9 lattice shown in
Fig. 1. The prescribed equilibria, f (0)

i , are [34,35]

f (0)
i (x, t ) = ωiρ

(
1 + 3ci · u + 9

2 (ci · u)2 − 3
2 u2

)
, (5)

with lattice weights

ωi =
⎧⎨
⎩

4/9, if i = 0,

1/9, if i = 1, . . . , 4,

1/36, if i = 5, . . . , 8.

(6)

Macroscopic observables are obtained by taking discrete
velocity moments of fi. The first three moments are the hydro-
dynamic mass, momentum, and momentum flux, respectively:

ρ =
∑

i

fi, ρu =
∑

i

fici, � =
∑

i

ficici, (7)

and mass and momentum are conserved by collisions:

ρ =
∑

i

f (0)
i , ρu =

∑
i

f (0)
i ci. (8)

The remaining moments are nonhydrodynamic moments (or
“ghost moments”) and are given by

Qxxy =
∑

i

ficiyc2
ix, Qxyy =

∑
i

ficixc2
iy,

Sxxyy =
∑

i

fic
2
ixc2

iy. (9)
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A. Macroscopic equations

Taking the first three moments of the discrete Boltzmann
equation (4) yields exact conservation laws for mass and mo-
mentum and a partial differential equation for the evolution of
the flux of momentum,

∂tρ + ∇ · ρu = 0, (10)

∂tρu + ∇ · � = 0, (11)

∂t� + ∇ · Q = − 1

τ
(� − �(0) ), (12)

where �(0) = ∑
i f (0)

i cici is the equilibrium momentum flux
tensor and, from Eq. (5), is known to be

�(0) = ρ

3
I + ρuu. (13)

We identify the pressure as p = ρ/3 = ρRT , i.e., an ideal
equation of state. The right-hand side of equation (12) in-
cludes the deviatoric stress � = �0 − �, which one usually
approximates to first order in relaxation time τ (or Knud-
sen number) using a Chapman-Enskog analysis. Instead, the
stress can be obtained by taking moments with respect to
the discrete peculiar velocity ξi = ci − u. The pressure tensor
P = ∑

i fiξiξi in discrete kinetic theory evolves according to
the same PDE found in classical kinetic theory, i.e., Eq. (3),
although without enough degrees of freedom to specify Q
completely [8,18,36]. Following Dellar [18], the deviatoric
stress with the D2Q9 lattice isothermal equation of state,
p = ρRT = ρ/3, is � = ρ/3I − P and is governed by

�αβ + τ (∂ t�αβ + uγ ∂γ �αβ + �αγ ∂γ uβ + �βγ ∂γ uα )

= μ(∂βuα + ∂αuβ ), (14)

where μ = ρτ/3 is the dynamic viscosity. It has been as-
sumed that the third-order moment remains close to its
equilibrium, which is O(Ma3), and thus has been neglected
(and we note that the equilibrium part of Q is zero in con-
tinuous kinetic theory) [18]. It is noted again that this is an
isothermal LBM.

Clearly, the stress embedded in the D2Q9 discrete velocity
model includes contributions beyond what is captured by the
Navier-Stokes equations. The Navier-Stokes relation would
be recovered only if the terms multiplied by τ on the left-
hand side of Eq. (14) vanish. Instead, the stress includes
nonequilibrium effects from the Boltzmann equation. While
these contributions may be negligible for very small Knudsen
numbers, they can be appreciable in the slip flow regime or
when τ is not small [16,28].

B. From discrete Boltzmann to lattice Boltzmann

To solve Eq. (4) numerically we integrate both sides along
a characteristic for time, �t , to obtain

fi(x + ci�t, t + �t ) − fi(x, t ) = − 1

τ

∫ �t

0

(
fi − f (0)

i

)
ds.

(15)

The integral on the right side is approximated using the trape-
zoidal rule to give a fully discrete and implicit system of

algebraic equations:

fi(x + ci�t, t + �t ) − fi(x, t )

= −�t

2τ

[
fi(x + ci�t, t + �t ) − f (0)

i (x + ci�t, t + �t )
]

− �t

2τ

[
fi(x, t ) − f (0)

i (x, t )
] + O(�t3). (16)

This second-order implicit system is converted into an explicit
algorithm using the He et al. [37] variable change

f̄i(x, t ) = fi(x, t ) + �t

2τ

[
fi(x, t ) − f (0)

i (x, t )
]
, (17)

to obtain the second order in space and time lattice Boltzmann
equation (LBE) for f̄i:

f̄i(x + ci�t, t + �t ) − f̄i(x, t )

= − �t

(τ + �t/2)

[
f̄i(x, t ) − f (0)

i (x, t )
] + O(�t3). (18)

Recall that the grid spacing and time step are connected by the
lattice speed c = (�x/�t ) � 1.

Density, momentum, and momentum flux are computed
from f̄i using the variable change (17),

ρ =
∑

i

fi =
∑

i

f̄i, ρu =
∑

i

f̄ici =
∑

i

fici, (19)

� =
∑

i

f̄icici =
∑

i

fi +
∑

i

�t

2τ

(
fi − f (0)

i

)

= (2τ + �t )

2τ
� − �t

2τ
�(0). (20)

Thus, the deviatoric stress is given in terms of barred quanti-
ties as

� = �0 − � = 2τ (�(0) − �)

(2τ + �t )
. (21)

III. HYDRODYNAMIC BOUNDARY CONDITIONS FOR
THE SLIP FLOW REGIME

Modeling microflows at small Knudsen numbers with
macroscopic conservation laws can capture phenomena out-
side of the velocity boundary layers provided suitable
boundary conditions are used. We consider flat walls that may
move tangentially only. In the slip flow regime, the tangential
velocity at a wall can be modeled with the Navier-Maxwell
condition, which says the amount of slippage is proportional
to the shear at the wall [6],

ux = Um − σKnH
∂ux

∂y

∣∣∣∣
wall

. (22)

Here we have taken the liberty to let the subscripts x and
y denote the tangential and normal directions at a flat wall,
respectively. In Eq. (22) Um is the velocity of the wall and
σ is the (streamwise momentum) accommodation coefficient.
In what follows we use σ = 1. The coefficient KnH , where
H is the characteristic macroscopic length scale, defines the
mean-free path. The kinematic condition states that uy = 0.

In Sec. II A we saw that the stress embedded in the LBM is
given by Eq. (14). At a boundary we assume there is no depen-
dence on time or tangential coordinate, ∂t = ∂x = 0. Noting
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TABLE I. Moment combinations for unknown fi at the north
boundary.

Moments Combination of unknowns at north boundary

ρ, ρuy,�yy f4 + f7 + f8

ρux, �xy, Qxyy f7 − f8

�xx, Qxxy, Sxxyy f7 + f8

that the normal velocity is zero by the kinematic condition,
the components of stress at a boundary are

�xx + 2τ�xy
∂ux

∂y
= 0, (23)

�yy = 0, (24)

�xy − μ
∂ux

∂y
= 0. (25)

Equations (24) and (25) represent the shear stress and the
normal component of the stress at a boundary, respectively,
and they are the same as in the Navier-Stokes equations.
Equation (23) shows the tangential component of the stress at
a boundary. This would be zero in the Navier-Stokes equation,
but at O(τ 2) it is proportional to the square of the shear. Thus
special consideration of the tangential stress at the boundary
is needed in lattice Boltzmann computations.

A. Moment-based boundary conditions for the lattice
Boltzmann equation

The moment-based approach for implementing boundary
conditions for the LBE is a general methodology that imposes
constraints directly and precisely upon moments of the LBE
and then translates them into conditions for the unknown
distribution functions at a boundary [29]. The unknowns are
the incoming fi (or f̄i), i.e., the fi with velocity ci pointing
into the fluid domain, and clearly one should have as many
boundary moment conditions as there are unknown fi, and
these moments need to be linearly independent at a boundary.
For the D2Q9 lattice with boundaries aligned with grid points
three conditions are needed for three unknowns.

We proceed by illustrating the method using a horizontal
boundary at the north of the domain. Here the functions f̄4, f̄7,

and f̄8 are unknown and need to be supplied to the algorithm
(see Fig. 1). These unknowns appear in the moments in one of
three linear combinations, as shown in Table I. Thus one must
impose a condition on one moment from each row of Table I
and then solve for the unknown fi [noting the definitions
given in Eqs. (7) and (9)]. For the second-order discretiza-
tion (18), the conditions need to be expressed in terms of
“barred” quantities using the transformation (17). Considering
we are computing solutions to hydrodynamic flow equations
we choose to impose hydrodynamic constraints. For the slip
flow regime considered here we have conditions for the two
components of momentum,

ρuy = 0, ρux = ρUm − ρσKnH
∂ux

∂y

∣∣∣∣
wall

, (26)

FIG. 2. Numerical and analytical solutions for the velocity in
micro-Couette flow with Kn = 0.05 and Ma = 0.09.

and also the tangential component of the momentum flux (and
hence stress)—the only hydrodynamic moment in the final
row of Table I.

Equation (23) for the tangential stress can be rewritten
using Eq. (25) as

�xx = −2τ

μ
�2

xy, (27)

and since �xx = �(0)
xx − �xx, we have the boundary condition

for the momentum flux moment of the LBE:

�xx = ρ

3
+ ρu2

x + 2τ

μ
�2

xy. (28)

This condition, together with the two in Eq. (26), gives our
three linear independent moment constraints at the boundary.
Using the transformation (17), these are easily converted into

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

ux

y

Kn= 0.01
Kn=0.05
Kn=0.1

Kn= 0.2

FIG. 3. Velocity profiles of mico-Couette flow at Kn = 0.01,
0.05, 0.1, 0.2 with Ma = 0.09.
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−0.003

−0.0025

−0.002

−0.0015

−0.001

−0.0005

0

 0.0005

0  0.2  0.4  0.6  0.8 1

Γxx

y

LBE with Navier−Stokes stress conditions
LBE with Burnett stress conditions

Analytical solution

FIG. 4. Numerical and analytical solutions for the deviatoric
stress �xx (0.5, y) in micro-Couette flow with Kn = 0.05 and Ma =
0.09. Numerical results for the consistent Burnett-order (23) and in-
consistent Navier-Stokes (�xx = 0) order stress boundary conditions
are shown.

conditions on “barred” moments:

ρuy = 0,

ρux = ρUm + 2τρσKnH

μ(2τ + 1)
�xy,

�xx = ρ

3
+ ρu2

x + 4τ 2

μ(2τ + 1)
�

2
xy,

(29)

where we have used Eqs. (21) and (25) to write the shear
derivative in terms of locally available moments (noting that
�(0)

xy = ρuxuy = 0 at the boundary). The moments ρ and �xy

in the boundary conditions above can be written in terms of
imposed conditions and known (incoming) distribution func-
tions:

ρ = ρuy + f̄0 + f̄1 + f̄3 + 2( f̄2 + f̄5 + f̄6)

= f̄0 + f̄1 + f̄3 + 2( f̄2 + f̄5 + f̄6),

�xy = −ρux + f̄1 − f̄3 + 2 f̄5 − 2 f̄6.

FIG. 5. Schematic diagram of lid-driven cavity flow.

0

 0.2

 0.4

 0.6

 0.8

1

−0.2 0  0.2  0.4  0.6  0.8 1

y

ux

 Kn=0.01
 Kn=0.05

Kn= 0.1

FIG. 6. Horizontal velocity profiles ux (x, 0.5) at different Knud-
sen numbers when Ma = 0.09.

Simply solving the linear system (29) for the three unknowns
yields

f̄4 = −�xx + f̄1 + f̄3 + f̄2 + 2( f̄5 + f̄6),

f̄7 = 1
2 (�xx − ρux ) − f̄3 − f̄6,

f̄8 = 1
2 (ρux + �xx ) − f̄1 − f̄5. (30)

We note that most previous applications of moment-based
boundary conditions [16,29,30,38–40] impose a Navier-
Stokes stress condition, �xx = 0 at a boundary, but this has
been shown to be inconsistent with the underlying moment
system [28,33].

IV. MICRO-COUETTE FLOW

We use the LBE to compute solutions to planar micro-
Couette flow with the Navier-Maxwell slip condition (22) and
Burnett stress condition (23) imposed on the top and bottom
boundaries using the moment-based approach described in
Sec. III A. The top wall moves horizontally with velocity Um

−0.2

−0.15

−0.1

−0.05

0

 0.05

 0.1

 0.15

 0.2

0  0.2  0.4  0.6  0.8 1

uy

x

 Kn=0.01
Kn=0.05
Kn= 0.1

FIG. 7. Vertical velocity profiles uy(0.5, y) at different Knudsen
numbers when Ma = 0.09.
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FIG. 8. Streamlines in micro-lid-driven cavity flow when Ma = 0.09 and Kn = 0.1 (left) and Kn = 0.001.

while the parallel bottom wall, which is a distance H away,
is stationary. The domain is periodic in the flow direction.
Four different values of the Knudsen number are used: Kn =
0.01, 0.05, 0.1, and 0.2; and our results are compared with
the analytical solution of the Navier-Stokes equations with
the aforementioned boundary conditions, assuming the flow
is steady (∂t = 0), incompressible (ρ = const), and unidirec-
tional [u = u(y)]:

u(y) = Um

(1 + 2Kn)

[(
y

H

)
+ Kn

]
. (31)

In the plots that follow the velocity has been scaled with the
wall moving velocity, Um, and the normal coordinate with the
channel height, H .

Figure 2 plots the numerical and analytical solution for
the velocity when Kn = 0.05. For clarity of visualization,
a 1 × 17 grid is used in the plot, but errors smaller than
O(10−10) were observed on just three grid points. Figure 3
plots the velocity profiles at different Kn and shows the in-
creasing slip at the boundaries as we increase the Knudsen
number. In all cases the LBM results are grid independent and
agree well with the benchmark data [22,23,25] and, moreover,
with the analytical solution.

Figure 4 plots the computed and analytical solution of the
tangential component of the deviatoric stress down the center
of the channel, �xx(0.5, y), when Kn = 0.05 and Ma = 0.09.
The analytical solution is

�xx = −2τμ

[
Um

H (1 + 2Kn)

]2

, (32)

where we have used Eq. (14) noting that the flow is steady
(∂t = 0) and unidirectional [u = u(y)], and the flow veloc-
ity is given by Eq. (31). The computed solution with the
Navier-Stokes stress condition �xx = 0 that has often been
used with the moment-based approach [16,30,31,38,39,41] is
also shown. The resolution is the same as above, and the re-
sults are grid independent. The figure illustrates the excellent
agreement between the numerical and analytical solutions for
�xx using the Navier-Maxwell slip (22) and stress moment-
based boundary conditions (23). We remark that when the

Navier-Stokes condition is used, the stress is constrained to
be zero at the boundaries, and this is in contradiction the
the underling PDE moment system, and hence the spurious
numerical boundary layers observed in Fig. 4.

V. MICRO-LID-DRIVEN CAVITY FLOW

The methodology is applied to two-dimensional micro-lid-
driven cavity flow, with the top wall of a square box of side L
moving horizontally with constant velocity Um while the other
boundaries are stationary; see Fig. 5. The Navier-Maxwell
slip condition (22) and the Burnett stress condition (23) are
applied to all boundaries. A grid of size 65 × 65 was used in
the simulations shown here with no discernible differences in
the velocity field on finer grids, and second-order convergence
has been observed from 17 × 17 grids. In the plots that follow
the velocity has been scaled with the moving wall velocity,
Um, and the coordinates with the channel height, L.

Figures 6 and 7 show the effect of the Knudsen number
on the behavior of the velocity when the Mach number is
fixed at Ma = 0.09. The wall slippage increases with Kn,
and the respective turning points are smaller in magnitude, in
agreement with existing results [9,11,22,25].

We plot in Fig. 8 the streamlines when Kn = 0.1 and
0.001; the latter being used to highlight vanishingly small
slip lengths. The secondary vortices in the corners that ap-
pear for the case of no slip are not detected when there is
significant wall slip (increasing Knudsen number), and the
location of the primary vortex travels towards the center of
the cavity as we increase Kn, in agreement with the results
of Ogata and Kawaguchi [9]. For more quantitative mea-
sures, Table II shows the maximum value of the primary
stream function, �max, and its location. Our data show that
�max decreases when the Knudsen number increases with
fixed Ma [meaning that Re is decreasing by von Kármán’s
relation, Eq. (2)], and the location of the maximum stream
function creeps downwards with higher Kn and thus more
slip.

Finally, the normalized pressure P = p/p0 along the sur-
face of the cavity when Kn = 0.05 is shown in Fig. 9 and
when Kn = 0.1 in Fig. 10. In these figures the coordinate
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TABLE II. The maximum value of the streamfunction and its
location for various Kn when Ma = 0.09.

Kn �max (x, y)

0.001 0.1047 (0.60, 0.73)
0.01 0.0951 (0.50, 0.77)
0.05 0.0789 (0.50, 0.74)
0.10 0.0681 (0.50, 0.71)
0.20 0.0635 (0.49, 0.63)

S refers to the distance along the perimeter of the cavity in
the clockwise direction from the origin (0,0), denoted by A
in Fig. 5. A 129 × 129 grid was used, and no discernible
difference was observed on finer grids. The influence of
the Knudsen number and rarefaction on the pressure dis-
tribution is seen and in agreement with Jian et al. [14].
Moreover, our results are in very good quantitative agree-
ment with the hard sphere DSMC results of Mizzi et al. [5].
The computed solutions of the Navier-Stokes-Fourier equa-
tions with slip conditions of [5] are also shown in Figs. 9
and 10. It is noteworthy that the solutions based on the
Navier-Stokes-Fourier model, which has the normal pres-
sure tensor −pI, overpredicts the pressure greatly, whereas
the LBM with the prescribed boundary conditions has a
pressure evolution equation that agrees with kinetic the-
ory and computes solutions in agreement with the DSMC
results.

VI. CONCLUSION

The lattice Boltzmann method (LBM) has been used to
compute near-continuum flow. Navier-Maxwell slip veloc-
ity conditions and Burnett-order deviatoric stress conditions
were imposed on moving and stationary boundaries to cap-
ture Knudsen phenomena using a moment-based approach.
Although the LBM does not compute Knudsen boundary
layers, it can predict the slip flow regime outside of these

FIG. 9. Nondimensional pressure distribution P = p/p0 along
the cavity walls when Kn = 0.05 and Ma = 0.09. The Mizzi et al.
[5] DSMC (line) and Navier-Stokes-Fourier (dashed) results are also
shown.

FIG. 10. Nondimensional pressure distribution P = p/p0 along
the cavity walls when Kn = 0.1 and Ma = 0.09. The Mizzi et al.
[5] DSMC (line) and Navier-Stokes-Fourier (dashed) results are also
shown.

boundary layers very well. This has previously been shown for
pressure-driven microchannel flows using the moment-based
approach by Reis and Dellar [16] and extended here to more
complicated flows and boundaries. The influence of the Knud-
sen number on the behavior of the micro-lid-driven cavity
has been examined, with the cross-channel velocity profiles
flattening and the primary vortex creeping towards the cavity
center as Kn increases.

Furthermore, the D2Q9 lattice Boltzmann can compute
subtle kinetic phenomena in its non-conserved hydrodynamic
moments, even though it does not capture Knudsen bound-
ary layers. The pressure tensor embedded in the moments of
the LBM approximates that of the BGK Boltzmann equation
when the Mach number is small but fixed and the flow is
isothermal with the equation of state p = ρRT [18,28,33].
Spurious numerical boundary layers in computations of the
stress can appear in simple flows if constraints inconsistent
with the pressure tensor are imposed, but these can be re-
moved using the moment-based method. We remark that all
results presented here converged under mesh refinement with
fixed nondimensional numbers.

We have shown that the LBM can predict near-wall
nonequilibrium phenomena in the pressure. Where simula-
tions of the Navier-Stokes-Fourier equations over predict the
pressure considerably, the LBM computations are in very
good agreement with the DSMC results of Mizzi et al. [5].
While the model considered here does not include tempera-
ture, extending the methodology to thermal flows is a prospect
for future work, and following Krastins et al. [32], the ex-
tension to other lattices in three dimensions is relatively
straightforward.
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