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We demonstrate that matching the symmetry properties of a reservoir computer (RC) to the data being
processed dramatically increases its processing power. We apply our method to the parity task, a challenging
benchmark problem that highlights inversion and permutation symmetries, and to a chaotic system inference
task that presents an inversion symmetry rule. For the parity task, our symmetry-aware RC obtains zero error
using an exponentially reduced neural network and training data, greatly speeding up the time to result and
outperforming artificial neural networks. When both symmetries are respected, we find that the network size N
necessary to obtain zero error for 50 different RC instances scales linearly with the parity-order n. Moreover,
some symmetry-aware RC instances perform a zero error classification with only N = 1 for n � 7. Furthermore,
we show that a symmetry-aware RC only needs a training data set with size on the order of (n + n/2) to obtain
such a performance, an exponential reduction in comparison to a regular RC which requires a training data set
with size on the order of n2n to contain all 2n possible n-bit-long sequences. For the inference task, we show
that a symmetry-aware RC presents a normalized root-mean-square error three orders-of-magnitude smaller than
regular RCs. For both tasks, our RC approach respects the symmetries by adjusting only the input and the output
layers, and not by problem-based modifications to the neural network. We anticipate that the generalizations of
our procedure can be applied in information processing for problems with known symmetries.
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I. INTRODUCTION

Reservoir computing [1–3] is an emerging machine learn-
ing (ML) paradigm based on artificial neural networks
(ANNs) that is ideally suited for a variety of tasks such as
learning dynamical systems from time series data [4,5] or
classifying structures in data [6,7]. In comparison to other
ML approaches, reservoir computing requires much smaller
data sets for training and the training time can be orders-of-
magnitude faster while maintaining high performance [8,9],
making them suitable for deployment on edge-computing de-
vices [10].

The core of a reservoir computer (RC) is a pool of N
artificial neurons with recurrent connections, known as the
reservoir and illustrated in Fig. 1, along with an input layer
that broadcasts the input data to the reservoir and an output
layer that forms a weighted sum of the values of the reservoir
nodes that provides the computation result. Differing from
other approaches, the relative weights of the connections of
the input layer Win and within the reservoir Wr are generated
randomly at instantiation of the RC and held fixed, although
their overall scale can be adjusted. Only the weights of the
output layer Wout are adjusted during training, which is a linear
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optimization problem that can be solved using standard tools
and is the cause of the short training time.

Even though the RC is a complex network with random
weights, it still possesses symmetries that can substantially
impact the RC performance depending on the symmetries of
the data being processed. This point was noted and addressed
in an ad hoc way when using an RC to forecast the dynamics
of the Lorenz ’63 chaotic attractor [11–14] and the multiscale
Lorenz ‘96 system [9]. Failures in such predictions are due
to inversion symmetries in both RC and the learning system
and can be solved by breaking the RC symmetry [15]. Sym-
metry has also been shown to be important when addressed in
other ML approaches like deep learning, e.g., by considering
permutation-invariant functions to create deep networks that
can operate on sets with possibly different sizes [16,17] or
by adding special layers to feed-forward neural networks to
embed physical symmetries [18].

Here, we demonstrate for two different tasks that matching
the RC and the learning system symmetries by only making
straightforward changes to the RC input and output without
changing the reservoir can increase the RC performance. To
illustrate symmetry-matching RCs, we study a classification
and an inference task that especially highlight the issue of the
symmetry differences between the data and the RC.

For the classification task, the RC computes the parity
of a sequence of digital bits, which is a known challenging
ML task because the problem is linearly inseparable [19–21].
Hand-crafted ANNs can tackle this problem with different
scaling rules for the number of nodes (see, for example,
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Refs. [22–25]), but generic ANNs require that the network
size [26] and training time [20] increase exponentially with
the parity order n (defined precisely below) to reach a user-
defined accuracy. We show that the “symmetry-aware” RC
requires exponentially smaller N and training data in compari-
son to the nonaware RC, and has similar or better performance
than the hand-crafted ANNs.

The second task we address is inferring one unknown vari-
able of the Lorenz ’63 chaotic dynamical system [27] having
knowledge of the others. For this task, our RC reduces the
normalized root-mean-square error (NRMSE) by three orders
of magnitude in comparison to a traditional RC. Furthermore,
we demonstrate how to realize such an RC whose hyperpa-
rameters can be discovered automatically using optimization
tools [14,28]. This work paves the way for improving the
performance of RCs on other tasks matching the RC and
the known symmetries of the learning system by adjusting
symmetry-breaking parameters accordingly.

The rest of the paper is organized as follows. In Secs. II
and III, we formally introduce the parity task and the Lorenz
’63 inference task, respectively. We describe the parity-order
and the sequence-order permutation symmetries of the parity
function and the inversion symmetry present in the Lorenz
’63 system. In Sec. IV, we introduce the theoretical back-
ground of a general RC, followed by brief descriptions of the
training procedure and the RC hyperparameters. Section V is
dedicated to the explanations of the symmetry properties of a
regular RC and how it can be modified to match previously
known symmetries of the learning system, thus creating a
symmetry-aware RC. Finally, in Sec. VI we discuss the perfor-
mance of the symmetry-aware RC and compare it to standard
RC results for both the parity and the inference tasks before
present our conclusions in Sec. VII.

II. PARITY TASK

The task we first consider is to determine the parity of each
sequence of n bits in a signal u(t ), which is a Boolean time
series where each bit has a time duration T and assumes either
value +1 or −1. The RC is trained to predict the nth-order
parity function

Pn(t ) =
n∏

i=0

u(t − iT ). (1)

Inspection of this expression reveals two symmetries.
(1) Parity-order symmetry: The parity function has an in-

version symmetry that depends on n. For n odd, an n-bit
sequence will have the parity changed from p to −p if all its
bits are flipped, i.e., (u, p) → (−u,−p). On the other hand,
(u, p) → (−u, p) for n even.

(2) Sequence-order permutation symmetry: The parity of
a sequence is the same under permutation of its bits. Thus, the
parity only depends on the number of positive (or negative)
bits in the sequence.

For future reference, we divide the 2n possible n-bit input
sequences into sets Ln(l ) of size

(n
l

)
according to the number

of ones l in the sequence. For each n, there are n + 1 such sets.
Because all n-bit sequences containing l ones are equivalent
under the permutation symmetry and consequently have the
same parity, it should be possible to train a symmetry-aware

RC that shares this symmetry with a small number of se-
quences that cover these n + 1 distinct sets, rather than all 2n

possible inputs.

III. INFERENCE TASK

This task is to infer an inaccessible variable of a dynami-
cal system having knowledge of the others. We consider the
Lorenz ’63 chaotic system and assume that all three variables
x, y, and z are accessible for a training time interval. The RC is
trained to infer z having u = [x, y] as input. After the training
phase, we only have access to x and y. The Lorenz ’63 chaotic
system with the standard parameters [27] is described by

ẋ = 10(y − x),

ẏ = x(28 − z) − y,

ż = xy − 8
3 z. (2)

These equations possess an inversion symmetry (x, y, z) →
(−x,−y, z), i.e., for the inference task of z, both inputs u =
[x, y] and −u = [−x,−y] lead to the same output z. This
symmetry is similar to the parity-order symmetry for even n.

IV. RC

In our RC implementation, also known as an echo state
network, the reservoir nodes dynamics r is governed by

ṙ(t ) = −γ r(t ) + γ f (Wrr(t ) + Winu(t ) + b), (3)

where γ is the decay rate, f (·) is the nonlinear activation
function, and b is a bias. While γ and b can be differ-
ent for each node, we take them the same for simplicity.
While our reservoir is continuous in time and governed by
an ordinary differential equation as in Refs. [3,13,14], other
works use a discrete time version of the reservoir such as
in Refs. [4,11,12], for example. Performing a forward Euler
integration on Eq. (3) and rescaling γ by the integration step
recovers the discrete time model. Thus, the two approaches
are equivalent and the results presented in the following sec-
tions should hold equally well for both approaches.

The reservoir output is given by

v(t ) = Woutg[r(t )], (4)

where g(·) is often taken as a linear function but we allow it to
be nonlinear to adjust the RC symmetry as described below.
Here, v(t )=̂z(t ) is a scalar for the Lorenz ’63 inference task,
while it is a two-component vector v(t ) = {v1(t ), v2(t )} for
the parity task, where it projects the reservoir states onto the
parity labels as shown in Fig. 1. The final RC output parity is
+1 for each time span T if the average over �T component
v1 is larger than v2, and −1 otherwise. Here, �T is the
measurement window within T used for the reservoir output
calculation, which starts at an initial time T0 and finishes at
T0 + �T .

Training the RC uses supervised learning, where an input
drives the reservoir and the desired output Y is previously
known. We use Ridge regression to find the output matrix Wout

by minimizing

|Y − Woutg(r)|2 + α||Wout||2, (5)

where the Ridge parameter α prevents overfitting.
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FIG. 1. Reservoir computer scheme for (a) parity task and
(b) Lorenz ’63 system inference task.

The RC is instantiated by choosing randomly the com-
ponents of Win from a zero-mean normal distribution with
variance ρin and probability σ for a nonzero coefficient that
specifies the input connectivity. The adjacency matrix Wr has a
spectral radius ρr and each node has k connections from other
reservoir nodes. The hyperparameters γ , ρr, σ, and ρin (also
T0 and �T for the parity task) are selected using a Bayesian
optimizer [14,28] (see Appendix A).

V. SYMMETRY-AWARE RC

First, we describe how a standard RC does not take advan-
tage of the symmetries described above. In previous works
that solved the parity task with RC [29–38], u is injected into
the reservoir as serial data, as shown in Fig. 1a(i). Because
of the RC fading memory, required for good performance
[29], bits earlier in the sequence are partially forgotten by the
time the nth bit is injected into the reservoir. Also, informa-
tion from one n-bit sequence spills into the next sequence.
Thus, the combination of serial-data-input and fading memory
violates the sequence-order permutation symmetry. No adjust-
ment of the RC hyperparameters can fully fix this symmetry
mismatch and the problem becomes more pronounced as n
increases.

Furthermore, the parity-order symmetry and the Lorenz
’63 system inversion are not respected by the standard RC
commonly used in the reservoir computing community where
f (r) = tanh(r), g(r) = r, and b = 0. In this case, the RC
possesses inversion symmetry (u, r, v) → −(u, r, v), which
respects only the parity-order symmetry for n odd, but not
for n even nor the Lorenz ’63 system inversion symmetry.
Thus, we expect poor performance for the latter two tasks.
Prior work on RC has demonstrated high performance on the
parity task for n odd [29–32], while related work where the
RC does not fulfill the inversion symmetry rule has shown
high performance for both odd and even n [33,34]. Prior work
on the Lorenz ’63 system prediction task has also shown an
improvement in performance when the RC has a broken sym-
metry [11–15]. However, the literature does not explore the
effects of symmetry-breaking parameter changes or symmetry
matching on reservoir performance.

We make changes to both the input and output layers to
solve these problems and realize a symmetry-aware RC; no

change to the reservoir is required. To address the parity
sequence-order permutation symmetry we make two changes
to the input layer. First, we use a tapped delay line for the
input data as shown in Fig. 1a(ii), which converts the serial
data into an n-bit parallel word. Serial-to-parallel conversion
is a common method in high-speed electronics and hence can
be achieved in hardware without loss of RC throughput. Here,
the input is the n-dimensional vector

u(t ) = [u(t ), u(t − T ), . . . u(t − [n − 1]T )]ᵀ, (6)

where ᵀ indicates the transpose. Thus, all n components are
input into the reservoir simultaneously, while in the serial in-
put scheme only a single bit is input during the time interval T .
The second modification is to broadcast all n components of
the data vector to each node with identical weight determined
by Win. We also reset all reservoir nodes to zero after the time
T when a new sequence is input. These changes restore the
sequence-order permutation symmetry.

The parity-order symmetry can be respected to some ex-
tent by changing the symmetry of f , g, or taking b �= 0.
However, changing the symmetry of f affects the inhibitory
versus excitatory aspect of the signals and hence can have a
negative impact on RC performance. Similarly, it is difficult
(or impossible, depending on f ) to have a pure even or odd
symmetry by adjusting b. On the other hand, adjusting g can
provide symmetry matching by squaring a portion ηr of nodes
before the output multiplication so that

g(ri ) =
{

r2
i , if i � ηrN,

ri, if i > ηrN.
(7)

An optimization routine can be used to select ηr . In Ap-
pendix B, we compare all three approaches and demonstrate
that adjusting only g gives rise to a high-performing RC for
the parity task.

To respect the Lorenz ’63 system inversion symmetry, we
make changes either in the input or in the output layer. For the
first, we square the input signal so that the RC input-to-output
relations are described by

u = [x, y] → [x2, y2] → r → v,

−u = [−x,−y] → [x2, y2] → r → v,
(8)

where both inputs u = [x, y] and −u = [−x,−y] lead to the
same reservoir state r and consequently to the same output
v(t )=̂z(t ), thus respecting the Lorenz 63’ system symmetry.
For the later, the symmetry matching is obtained by adjusting
g just like in the case of the parity task for n even. Here, when
we set ηr = 1 the RC input-to-output relations become

u = [x, y] → r → r2 → v,

−u = [−x,−y] → −r → r2 → v,
(9)

where the inputs u = [x, y] and −u = [−x,−y] lead the reser-
voir to opposite states r and −r, but the squared readout
guarantees the same feature vector r2 and the symmetry
matching between the RC and the learning system (here the
Lorenz 63’ system). We use a serial input scheme for the
inference task where, for each time, only the current value
of u is input into the reservoir, as shown in Fig. 1(b). For all
results presented below, we set f (x) = tanh(x) and b = 0.
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FIG. 2. Parity task: RC performance as a function of ηr . (a) Top:
Segment of input testing signal u. Bottom: P6 desired output (con-
tinuous black line) and the optimized RC output (dashed line)
for ηr = 0 (left) and ηr = 1 (right). The hyperparameters are
(T0, �T, γ , ρr, σ, ρin ) = (0.20T, 0.45T, 2.44T −1, 1.26, 0.72, 0.30)
and (0.45T, 0.40T, 4.40T −1, 1.58, 0.99, 0.93), respectively. (b,c)
Mean BER of ten optimized RC instances as a function of ηr . The
vertical bars are limited by the q1 and q3 quartiles and the vertical
lines by the minimum and maximum BER values.

VI. RESULTS

A. Parity task

We demonstrate that when both parity symmetries are
taken into account, an RC can be designed to achieve zero er-
ror for the Pn task using exponentially reduced neural network
and training size in comparison to regular non-symmetry-
aware RCs.

1. Non-symmetry-aware RC

As a baseline, we perform the parity task applied to a
1000-bit random test time-series data shown in the top panel
of Fig. 2(a) for n = 6 using the common RC configuration
of serial-data input with ηr = 0 and N = 100. The reservoir
is trained using a different random binary time series with
1000 bits and with optimized hyperparameters. Comparing
the ground truth and RC-predicted parity in the bottom left
panel of Fig. 2(a), we see that the RC performs poorly with
a bit error rate (BER) of 0.4, essentially not much better than
guessing.

2. Respecting parity-order symmetry

Next, we modify only the output layer by taking ηr = 1
so that the parity-order symmetry is respected for this case
when n is even. The reservoir is retrained and the hyperpa-
rameters reoptimized. Dramatically, the BER drops to zero
as seen in the bottom right panel of Fig. 2(a), albeit for this
fairly large reservoir. To our knowledge, there are no previous
reports of obtaining zero-error for P6 in the reservoir comput-

FIG. 3. Mean BER as function of N and n. The dashed lines rep-
resent the fit of the network size scaling to obtain a mean BER = 0
(black bars). (a) Only the parity-order symmetry is respected. The
y axis starts with N = 1 and N = 10, then N is incremented by
10. The fit shows an exponential scaling with coefficient of deter-
mination R2 = 0.994. (b,c) Both parity-order and sequence-order
permutation symmetries are respected and the fit shows linear scaling
N ∼ 0.50n + 0.22 with R2 = 0.96 for n � 10 and N ∼ 1.2n − 4.0
with R2 = 0.99 for 10 � n � 100, respectively.

ing literature, demonstrating the importance of respecting the
parity-order symmetry.

To explore this point further, we measure the BER as a
function of ηr as seen in Figs. 2(b) and 2(c). For each point,
we optimize the hyperparameters for ten different RCs. For
n = 2 or 3, the sequences are short enough that zero error is
obtained even when the symmetry is not fully satisfied (ηr

should be equal to 1 for n even and 0 for n odd to fully satisfy
the parity-order symmetry). However, for larger n, it is of
greater importance to match this symmetry. For P7, the mean
BER is 0.013 with standard deviation of 0.009 for ηr = 0,
demonstrating that satisfying the parity-order symmetry alone
is not enough to obtain zero-error for this reservoir size.

We expect that the performance of the RC will improve
as N increases as is generally found in the RC literature. To
explore the reservoir size required to obtain zero-error on the
parity task, we set ηr to respect the parity-order symmetry,
instantiate 50 different RCs and optimize the hyperparameters
for each. Figure 3(a) shows the mean BER (colorscale) for
each N and n. Here, we stop increasing N when all 50 RCs
reach BER = 0. The width of the horizontal bars indicates
the fraction of reservoirs with BER = 0, where the minimum
width for small N indicating that no reservoir has zero error.
The white star indicates the smallest N for which at least one
out of the 50 RCs obtains BER = 0. While we only go up
to n = 7 due to exponential increasing computational cost,
the fitting (dashed line) shows an exponential scaling of N
to obtain BER = 0 for these RCs that respect parity-order
symmetry but use serial input. Here, the training and the
testing data sets are composed by different 1000-bit random
time series. We check these time series to make sure that all
the 2n different n-bit patterns are presented at least once to the
RC in both training and testing phase.

3. Respecting both parity-order and sequence-order permutation
symmetries

We find a remarkable improvement in the RC performance
when respecting both symmetries. We use the parallel input
scheme discussed above while simultaneously setting ηr to
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satisfy the parity-order symmetry. As seen in Fig. 3(b), we find
that a reservoir with only N �3 is enough to obtain BER = 0
for up to n = 7, an exponential reduction in N in comparison
to the serial-input case that does not respect the sequence-
order permutation symmetry. To our knowledge, there are
no previous results in the reservoir computing literature that
completely solve the parity task using such small networks.
Figure 3(c) shows that N continues linear scaling for n up
to 100. Past work using hand-crafted ANNs solved the parity
task with a scaling of N = log2(n + 1) [24], but full accuracy
with such scaling rule was not obtained when training these
ANNs architectures from initial random weights. Their suc-
cess rate decreased with increasing n.

As a final thought on using RCs for solving the parity task,
we note that previous studies trained the RC with long random
bit sequences. Commonly, it is found that the performance
increases with the length of the training set. We hypothesize
that the reason the performance improves for longer random
binary sequences is partly due to the fact that the RC is more
likely to be presented with the entire set of unique sequences
the longer the data set.

To quantify this point, we find that the expected number
of n-bit-long sequences required in the training time series is
given approximately by the coupon collector expression

E (n) = 1 + 2n

2n − 1
+ 2n

2n − 2
+ · · · + 2n

1
= 2nH2n , (10)

where HM is the Mth harmonic number [39]. Because the par-
ity task involves a sliding window with n bits being processed
at a time, there is a reuse of bits from one sequence to the next.
Accounting for this reuse, the training time series only need
to contain, on average, E (n) + n − 1 bits. As an example,
E = 22 for n = 3 so that we need to train the reservoir with a
24-bit-long random sequence on average.

For a fully symmetry-aware RC, each sequence in the set
Ln(l ) is equivalent so the reservoir only needs to be trained
on any one sequence in each set. Furthermore, the NOT of a
sequence in Ln(l ) (equivalent to u → −u) is found in the set
Ln(n − l ) and the parity-order symmetry ensures that the RC
will give the correct result just by training on the sequence;
that is, the NOT of the sequence is not needed.

To quantitatively predict the number of sequences required
to train the reservoir based on this line of reasoning, we
introduce the parameter s, which is the minimum number of
1’s or −1’s in a sequence. Its maximum value smax is n/2
for n even and (n − 1)/2 for n odd. With this notation, the
number of n-bit-long sequences for training is (smax + 1).
Because of the sliding window and bit re-use mentioned
above, the required training length is only n + smax, an ex-
ponential reduction in comparison to the standard method of
training a non-symmetry-aware RC. A simple way to con-
struct the training data set in this case is to make the first
n bits equal to −1 and the following smax bits equal to 1.
We use this procedure on the RCs of Figs. 3(b) and 3(c),
which greatly reduced the computation time to generate this
plot in addition to the savings obtained by using a much
smaller N .

FIG. 4. Lorenz ’63 chaotic system inference task with u = [x, y]
as input: RC performance as function of ηr , N , and training size.
(a) Mean NRMSE of ten optimized RCs as a function of ηr

for N = 100 and a training size of 100 units of time. (b) Ac-
tual (solid black line) and inferred (dashed line) z for N = 100.
Top (orange): regular RC (ηr = 0) for optimal hyperparamters
(γ , ρr, σ, ρin ) = (16.09,1.12,0.001,0.53). Bottom (blue): symmetry-
aware RC (ηr = 1) for optimal hyperparamters (γ , ρr, σ, ρin ) =
(14.29,0.87,0.06,0.32). (c) Mean NRMSE of ten optimized RCs as
function of N for ηr = 0 (orange squares) and for ηr = 1 (blue
circles) with a fixed training size of 100 units of time. (d) NRMSE of
ten optimized RCs as function of training size for ηr = 0 (orange
squares) and for ηr = 1 (blue circles) with a fixed reservoir size
N = 100. Unless declared otherwise, the training and testing data
sizes are 100 units of time each with a fixed sample time of 0.005.
The vertical bars are limited by the q1 and q3 quartiles and the vertical
lines by the minimum and maximum NRMSE values.

B. Inference task

We demonstrate how the RC performance is improved
for the inference task when the inversion symmetry in the
Lorenz 63’ system is taken into account. The RC can respect
such symmetry either by changing ηr at the output layer or
by squaring the input signal, thus modifying the input layer.
Similarly to our approach for solving the parity task, here
we make changes only on either the input or output layer to
match the input system symmetry and choose the reservoir
randomly with no problem-based modifications. For perfor-
mance comparison, we measure NRMSE between the actual
and the inferred variables.

1. Respecting symmetry by adjusting output layer

First, we consider only adjustments in ηr and use u = [x, y]
as input. Figure 4(a) shows the mean NRMSE of ten different
optimized RCs as function of ηr . The hyperparameters were
optimized for each RC and the reservoir and training sizes
were kept fixed to N = 100 and 100 time units, respectively.
The error decreases with the increasing of ηr towards the
symmetry matching parameter value (ηr = 1). Segments of
the actual variable z and its inference done by a given RC
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instance are shown in Fig. 4(b). The RC performs poorly
when ηr = 0 (regular non-symmetry-aware RC) resulting in
a NRMSE = 0.14166. When the Lorenz ’63 system sym-
metry is respected by setting ηr = 1 (symmetry-aware RC),
the NRMSE drops to 0.00046, improving the performance by
three orders of magnitude.

It is commonly found in the RC literature that the RC
performance improves as N and the training size increase.
To observe how the mean NRMSE depends on the reservoir
size we fixed the training size to 100 time units while N is
varied. Figure 4(c) shows the performance dependence on
N for both a regular non-symmetry-aware RC with ηr = 0
(orange squares) and a symmetry-aware RC whose symmetry
is matched in the output layer by setting ηr = 1 (blue circles).
For the first, the RC performs poorly with an NRMSE around
0.1 independent of the network size.

On the other hand, when the symmetry is respected, the
performance is improved as N increases. For N = 200 the
mean NRMSE is improved by three orders of magnitude in
comparison to the regular RC. This indicates that our reservoir
implementation presents a high-dimensional state space large
enough to provide a good computational capacity to solve
this task. Thus, we conclude that the poor performance of the
standard RC for the inference task is mainly related to sym-
metry mismatch between the RC and the Lorenz ‘63 system
rather than lack of either computational capacity or parameter
optimization (all hyperparameters are optimized for each RC
instance).

The dependence of the mean NRMSE on the training size
is shown in Fig. 4(d). We keep N = 100 fixed and vary
the training size. For the case where symmetry is matched,
the performance improves by one order of magnitude when
increasing the training data size. Here, we highlight the gen-
eralization capacity of the symmetry aware RC. Even though
only a small part of the chaotic attractor is presented to the
reservoir during a small training period, the symmetry aware
RC demonstrates its capacity to generalize by correctly infer-
ring the unknown variable with NRMSEs as small as 10−3

for regions of the attractor never seen during training. Even
for training data sets as small as 30 time units, the symmetry-
aware RC performs with NRMSE two orders-of-magnitude
better than a regular RC, which in itself is known to be less
data hungry than other methods like deep neural networks for
two main reasons. First, RCs have less trainable parameters
once only the output layer is trained. Second, the training pro-
cess is usually a simple linear regression instead of a nonlinear
optimization. Recently, it was shown that a Next Generation
Reservoir Computer (NG-RC) can perform predictions and
inference tasks better than regular RCs with even less training
data [40].

2. Respecting symmetry by adjusting input layer

Finally, we investigate the RC performance when the sym-
metry is matched by adjusting only the input layer. For that,
we square the input data so that u = [x2, y2] and keep ηr = 0,
i.e., we do not adjust the output layer symmetry breaking
parameter. Figure 5 shows the mean NRMSE as function of N
and the training size for this case. The green triangles symbols
are for the symmetry-aware RC with input squared and, for a

FIG. 5. Comparison between mean NRMSE of ten optimized
regular RCs (orange squares) and ten optimized symmetry-aware
RCs which have the symmetry matched to the input data by squaring
the input u = [x2, y2] (green triangles). (a) Mean NRMSE as func-
tion of N for a fixed training size of 100 time units. (b) Mean NRMSE
as function of the training size for a fixed reservoir size of N = 100.
In both cases we set ηr = 0 and optimize the hyperparameters for
each RC instance. The vertical bars are limited by the q1 and q3 quar-
tiles and the vertical lines by the minimum and maximum NRMSE
values.

better comparison, we repeat the plots of the NRMSE for the
standard RC (orange squares) from Fig. 4. Similarly to the
case where the symmetry is matched in the output layer, here
the symmetry-aware RC presents a mean NRMSE up to three
orders-of-magnitude lower than the regular RC as shown in
Fig. 5(a).

As a last thought, we highlight that, for both methods of
symmetry matching presented in this work for the inference
task, the performance does not improve for training sizes
longer than 50 time units as shown in Figs. 4(d) and 5(b).
An increase in the training data set is expected to improve
the performance of the RC, as a larger region of the attractor
is presented to the network. However, further studies are need
to investigate the reason why the performance improvement
saturates for such small training data size.

VII. CONCLUSION

Our work highlights the importance of matching the sym-
metry of an RC to the symmetry of the data being processed
and the fact that these symmetries can be satisfied by only
making changes to the input and output layers of the RC.
The parallel input scheme and the input squaring procedure
are used to match specific symmetries in the parity task and
in the inference tasks, respectively. On the other hand, the
output layer symmetry-breaking parameter ηr is introduced
and tuned until the RC runs best, meaning that we can discover
whether we need to match or break the RC symmetry accord-
ing to the input data. Both methods are valuable: modify the
RC to account for symmetries we know exist, and then try to
introduce parameters for symmetries we suspect exist.

Of note is the observation that a symmetry-aware RC has
vastly improved performance. For the parity task, traditionally
considered a hard ML problem, we obtain an exponential
reduction in the network and training set sizes needed to
obtain zero error. For the chaotic system inference task we
obtain a performance three orders of magnitude better than
regular RCs. In principle, the symmetry considerations we
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used to achieve drastic improvement in performance for reser-
voir computing can be applied to other neuromorphic and
machine learning approaches, such as ANNs. Future research
is required to determine if similar performance improvements
can be found in these methodologies when symmetry is a
design consideration.
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APPENDIX A: HYPERPARAMETERS OPTIMIZATION

We use a Gaussian-process-based Bayesian optimizer
available in the SKOPT PYTHON module to find the optimal
hyperparameters (T0, �T , γ , ρr , σ , ρin). For the parity task,
we keep k = 10 (k = N for N < 10) for the serial and k = 1
for parallel input schemes. We integrate the reservoir with
a simple Euler algorithm with time step dt = 0.01T for the
serial input scheme and save the reservoir state every five
integration steps. For the parallel input scheme, we use dt =
0.001T to have an integration time step 100 times smaller than
the characteristic decay time of the nodes (1/γ ) which can
be as small as 0.1 in this case (see Table I). For the parallel
input scheme, we save the reservoir state every 50 integration
steps. For the inference task, we keep k = 5 and integrate the
Lorenz ’63 system and reservoir equations with integration
steps 0.0001 and 0.005, respectively.

Table I shows the scanned range for each hyperparameter
for each task. The optimal hyperparameters may change for
different RC topologies, i.e., for different Wr and Win, which
are chosen before optimization. Thus, most of the hyperpa-
rameters do not have a preferred optimal value. As an example
of such diversity, Fig. 6 shows the optimal hyperparameters
distribution of the 50 RCs that have BER = 0 for the parity
task in Figs. 3(a) and 3(b). The all set of optimal hyperparame-
ters for the parity task and for the Lorenz ’63 system inference
is available upon reasonable request.

APPENDIX B: RC SYMMETRY-BREAKING PARAMETERS

The RC inversion symmetry can be adjusted by three dif-
ferent ways.

TABLE I. Hyperparameter space scanned by the Bayesian
optimizer.

Hyperparameter Parity task Parity task Lorenz ’63
serial input parallel input inference task

T0 [T ] 0–0.5 0–1 -
�T [T ] 0.05–0.5 0.05–1 -
γ 0.1–5.0 0.1–10.0 0.01–20.0
ρr 0.1–2.0 0.1–10.0 0.001–5.0
ρin 0.1–1.0 0.1–1.0 0.001–1.0
σ 0.1–1.0 0.1–1.0 0.01–1.0

FIG. 6. Optimal parameters distribution of the 50 RCs that have
BER = 0 for 2 � n � 7 for (a) the serial input scheme where only
the parity-order symmetry is respected and (b) the parallel input
scheme where both parity-order and sequence-order permutation
symmetries are respected.

(1) Changing the symmetry of f : we use f = tanh2 as the
nonlinearity for a portion η f of the nodes.

(2) Changing the symmetry of g: we square r(t ) for the
portion ηr of nodes just before output matrix multiplication.

(3) Adding a bias b: we introduce a bias b �= 0 in the
argument of f .

Figure 7 shows a box plot for the P6 classification BER
for when the RC has its symmetry adjusted separately by η f ,
ηr , and b. When one of these three parameters is adjusted,
the other two are set to zero. For each case, five different RC

045307-7



WENDSON A. S. BARBOSA et al. PHYSICAL REVIEW E 104, 045307 (2021)

g

FIG. 7. P6 classification BER for η f , ηr , and b as the symmetry-
breaking parameter. The box plot represents a set of five optimized
RC instances. The mean BER is represented by the red triangles, the
blue box is limited by the q1 and q3 quartiles, the orange horizontal
line stands for the median and the vertical lines are limited by the
minimum and maximum BERs among the five instances.

instances are optimized. The mean BER is represented by the
red triangles.

We find that the best RC performance (mean BER = 0) is
obtained when we adjust ηr . For this case, the symmetry is
broken at the output layer and all the network nodes can take
on negative or positive values. This does not happen when we
break the symmetry by adjusting η f . In that case, a portion of
nodes has its state set to be always positive due to its nonlin-
earity f = tanh2. These nodes are always excitatory to the rest
of the network. This may limit the network inhibitory behavior
and decrease the network computational capacity. Adjusting
the bias is the worst of the three symmetry-breaking proce-
dures. The high mean BER for P6 classification in comparison
to the other two parameters is explained by the inability of the
RC of having an even function whenever there is a bias inside
the nonlinear function f = tanh. Also, the bias can saturate
the node state making it less sensitive to external and internal
inputs.
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