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Understanding degeneracy of two-point correlation functions via Debye random media

Murray Skolnick
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Salvatore Torquato *

Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials,
and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA

(Received 29 July 2021; accepted 27 September 2021; published 13 October 2021)

It is well known that the degeneracy of two-phase microstructures with the same volume fraction and two-point
correlation function S2(r) is generally infinite. To elucidate the degeneracy problem explicitly, we examine
Debye random media, which are entirely defined by a purely exponentially decaying two-point correlation
function S2(r). In this work, we consider three different classes of Debye random media. First, we generate
the “most probable” class using the Yeong-Torquato construction algorithm [Yeong and Torquato, Phys. Rev. E
57, 495 (1998)]. A second class of Debye random media is obtained by demonstrating that the corresponding
two-point correlation functions are effectively realized in the first three space dimensions by certain models of
overlapping, polydisperse spheres. A third class is obtained by using the Yeong-Torquato algorithm to construct
Debye random media that are constrained to have an unusual prescribed pore-size probability density function.
We structurally discriminate these three classes of Debye random media from one another by ascertaining their
other statistical descriptors, including the pore-size, surface correlation, chord-length probability density, and
lineal-path functions. We also compare and contrast the percolation thresholds as well as the diffusion and
fluid transport properties of these degenerate Debye random media. We find that these three classes of Debye
random media are generally distinguished by the aforementioned descriptors, and their microstructures are also
visually distinct from one another. Our work further confirms the well-known fact that scattering information
is insufficient to determine the effective physical properties of two-phase media. Additionally, our findings
demonstrate the importance of the other two-point descriptors considered here in the design of materials with a
spectrum of physical properties.
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I. INTRODUCTION

Two-phase disordered heterogeneous media in
d-dimensional Euclidean space Rd are ubiquitous; examples
include composites, porous media, polymer blends, colloids,
complex fluids, and biological media [1–8] among other
synthetic and natural materials. Such two-phase media exhibit
a rich range of complex structures that have varying degrees
of disorder and intricate material properties [9–11].

To fully characterize the microstructure of a two-phase
medium as well as its effective physical properties, an infi-
nite set of n-point correlation functions are required in the
infinite-volume limit [1]. A variety of different types of such
correlation functions arise in rigorous theories that depend on
the bulk physical property of interest [1]. For example, there
is the standard n-point correlation function S(i)

n (x1, . . . , xn)
which gives the probability that the position vectors x1, . . . xn

all lie in phase i where i = 1, 2 for two-phase media (see
Sec. II for details) [1,12]. Given that it is generally impossible
to obtain the information contained in such an infinite set of
correlation functions, their lower-order versions are often used
as a starting point to characterize the structure and physical
properties of a two-phase medium.

*torquato@electron.princeton.edu

For statistically homogeneous media, the one-point func-
tion is simply the volume fraction of the phase of interest,
e.g., S1(x1) = φ, and hence position-independent. The two-
point function S2(x1, x2), which is readily obtained from
scattering experiments [1,13], encodes information about pair
separations, and depends only on the relative displacement
r = x2 − x1 for homogeneous media. The three-point func-
tion S3(x1, x2, x3) contains information about how these pair
separations are assembled into triangles.

While S2 contains important structural information, prior
work has established that microstructures with a specific S1

and S2 are highly degenerate [14–18]. Furthermore, the set
of S1- and S2-degenerate microstructures is infinitely large in
the thermodynamic limit. This degeneracy implies that the
other microstructural descriptors of these two-phase systems
will generally differ. There is a variety of descriptors that
incorporate higher-order information that one could consider
to differentiate S2-degenerate microstructures [1]. At first
glance, a natural higher-order function to include beyond S1

and S2 is the three-point function S3. However, Jiao, Stillinger,
and Torquato revealed that S3 does not appreciably increase
information content over pair statistics in systems that lack
long-range order [15].

In contrast, one can fruitfully increase information con-
tent by also incorporating superior two-point topological
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FIG. 1. The set of all microstructures associated with a partic-
ular S2 is schematically shown as the region enclosed by the solid
contour in (a) and (b). The shaded region in (a) shows the set of all
microstructures associated with the same S2 and S3. The shaded and
more restrictive region in (b) shows the set of all microstructures as-
sociated with the same S2 and a superior set of two-point descriptors,
X , which has a higher information content than S3 does. This figure
is adapted from Fig. 5 in Ref. [15].

descriptors, such as the two-point cluster function C2(r)
[15,19,20]. It has been established that other two-point
descriptors, which can be easier to compute than three-
point statistics, also encode important higher-order nontrivial
microstructural information [15,21,22]. Examples of such
two-point quantities include the lineal-path function L(z) and
related chord-length probability density function p(z) [23],
the pore-size function P(δ) [24], surface-void correlation
function Fsv (r), and the surface-surface correlation function
Fss(r) [25–27] (see Sec. II for definitions). Figure 1 illustrates
these ideas by schematically showing the relative sizes of the
degenerate microstructures when S2 and S3 are used versus
when S2 and a set of superior two-point functions, X , are used.

So-called Debye random media [21] are unique models
of statistically isotropic and homogeneous two-phase media
in that they are defined entirely by the two-point correlation
function S2(r), namely,

S(i)
2 (r) = φi(1 − φi )e

−r/a + φ2
i , (1)

where r = |r| is a radial distance, and a is a positive constant
that represents a characteristic length scale of the medium.
Debye et al. [13] proposed the exponentially decaying two-
point correlation function [Eq. (1)] as a model of media with
phases of “fully random shape, size, and distribution.” It is
noteworthy that Debye random media are a good approxi-
mation of certain realistic two-phase media [13], including
Fontainebleau sandstones [28]. Given the aforementioned de-
generacy associated with the same S1 and S2, there should
exist a multitude of different classes of Debye random media
that are distinguished by other microstructural descriptors.
Thus, such two-phase media provide a singular opportunity
to study the degeneracy of a two-point correlation function.

In this paper, we examine three such classes of Debye ran-
dom media. First, we consider Debye random media realized
using the Yeong-Torquato stochastic (re)construction proce-
dure [21] (see Sec. III for details). These “most probable”
realizations of Debye random media, which we refer to as
Yeong-Torquato Debye random media (YT-DRM), have been

studied by Yeong and Torquato [21] and Ma and Torquato
[29]. We obtain the second class of structures by demonstrat-
ing that certain systems of overlapping, polydisperse spheres
with exponentially distributed radii effectively realize Debye
random media in the first three space dimensions, i.e., for
d = 1, 2, and 3 [30–32]. Henceforth, we refer to this class
of structures as overlapping-polydisperse-spheres Debye ran-
dom media (OPS-DRM). To realize the third class, we use the
Yeong-Torquato procedure to construct Debye random media
constrained to have an unusual pore-size function P(δ) that
has compact support (see Secs. VI and VII B for details). As
such, we refer to this class as compact-pores Debye random
media (CP-DRM).

We structurally discriminate these three classes of Debye
random media from one another using various descriptors
to characterize how the microstructures and physical proper-
ties of S2-degenerate systems can vary. We determine Fsv (r),
Fss(r), P(δ), L(z), and p(z) for OPS-DRM analytically us-
ing the canonical correlation function formalism [33] (see
Sec. II F), for CP-DRM via empirical and semianalytical
means, and subsequently compare these descriptors to their
analogues for YT-DRM that were determined by Ma and
Torquato [29]. Additionally, we compare and contrast the
percolation and phase inversion symmetry properties of these
three classes, both of which provide stringent tests for com-
parison (see Sec. II A for definitions). Lastly, we treat these
structures as porous media and compute bounds on their mean
survival times, principal diffusion relaxation times, as well as
bounds on and approximations of their fluid permeabilities.
Our analysis considers these systems in 2D and in 3D for cer-
tain cases. Overall, we find that these degenerate Debye ran-
dom media are generally differentiated by these descriptors to
varying degrees.

The paper is organized as follows: in Sec. II, we provide
definitions of and compare the microstructural descriptors
used in this paper. In Sec. III we review the Yeong-Torquato
(re)construction procedure. In Sec. IV we derive the two-point
correlation function for OPS-DRM in 1D, 2D, and 3D. In
Sec. V we demonstrate that our OPS systems are excellent
models of Debye random media and possess effective phase
inversion symmetry. In Sec. VI we describe CP-DRM. In
Sec. VII we compare various two-point microstructural de-
scriptors of YT-DRM, OPS-DRM, and CP-DRM in 2D and
3D. In Sec. VIII we compare the percolation thresholds of
these three classes of structures in 2D. In Sec. IX we compare
their diffusion properties in 2D and 3D as well as their fluid
transport properties in 3D. In Sec. X we give concluding
remarks and discuss possible future directions of research.

II. DEFINITIONS OF MICROSTRUCTURAL
DESCRIPTORS

In this section, we briefly describe several microstructural
descriptors that have been used to characterize two-phase
random media and are particularly germane to the present
study. To supplement this discussion, we briefly summarize
the canonical correlation function formalism for overlapping
monodisperse spheres to elucidate the nontrivial informa-
tion contained in the various two-point descriptors described
below.
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A. n-point correlation function

A two-phase random medium is generally a domain of
space V ⊆ Rd that is partitioned into two disjoint regions:
a region of phase 1, V1, and volume fraction φ1 as well
as a region of phase 2, V2, of volume fraction φ2 [1]. The
phase indicator function I (i)(x) for a two-phase medium is
defined as

I (i)(x) =
{

1, x ∈ Vi,

0, xi /∈ Vi.
(2)

The n-point correlation function S(i)
n for phase i is

defined as [1]

S(i)
n (x1, x2, . . . , xn) =

〈
n∏

i=1

I (i)(xi )

〉
, (3)

where the angular brackets denote an ensemble average. The
quantity S(i)

n (x1, x2, . . . , xn) can be interpreted as the proba-
bility of finding the ends of all vectors x1, . . . , xn in phase
i. Using relation (3), the volume fraction of phase i is the
one-point correlation function

S(i)
1 = 〈I (i)(x)〉, (4)

which is equal to the volume fraction of phase i, φi, for
statistically homogeneous media. Similarly, the two-point cor-
relation function is written as

S(i)
2 (x1, x2) = 〈I (i)(x1)I (i)(x2)〉. (5)

A two-phase medium has phase-inversion symmetry if the
morphology of phase 1 at volume fraction φ1 is statistically
identical to that of phase 2 in the system where the volume
fraction of phase 1 is 1 − φ1 [1]:

S(1)
n (xn; φ1, φ2) = S(2)

n (xn; φ2, φ1), n � 2. (6)

A notable property of such phase-inversion symmetric
random media is that for φ1 = φ2 = 1/2 it is possible to
determine the odd-order probability functions S(i)

2m+1 from
S(i)

2m, S(i)
2m−1, . . . , S(i)

1 .
For statistically homogeneous systems, the two-point func-

tion depends only on the displacement vector r ≡ x2 − x1

and simplifies to S2(x1, x2) = S2(r). If the medium is also
statistically isotropic, the two-point function depends only
on the magnitude of the displacement vector, simplifying as
S2(r) = S2(r). The two-point function S(i)

2 (r) is related to the
autocovariance function χV (r) by subtracting its large-r limit:

χV (r) ≡ S(1)
2 (r) − φ2

1 = S(2)
2 (r) − φ2

2 . (7)

Note the limits of the autocovariance function

lim
r→0

χV (r) = φ1φ2, lim
r→∞ χV (r) = 0, (8)

where the later limit holds for systems that lack long-range or-
der. Another important quantity is the spectral density which
is the Fourier transform of the autocovariance function

χ̃V (k) =
∫

χV (r)eik·rdr. (9)

The spectral density can be obtained from scattering experi-
ments [13,34].

Debye and coworkers [13] showed that the derivative of the
two-point correlation function at the origin is proportional to
the specific surface s for 3D isotropic media. This property
has been generalized to anisotropic media [35] as well as
d-dimensional media [1], which is written as

dS(i)
2

dr

∣∣∣∣
r=0

= −ωd−1

ωd d
s, (10)

where

ωd = πd/2

�(1 + d/2)
(11)

is the volume of a d-dimensional sphere of unit radius and
�(x) is the gamma function. For the first three spatial dimen-
sions, the derivative in Eq. (10) is −s/2, −s/π and −s/4
which we employ in subsequent sections.

B. Surface correlation functions

Some important, but less well-known, descriptors are the
two-point surface correlation functions which arise in rigorous
bounds on transport properties of porous media [1,25]. The
interface indicator function is defined as [1]

M(x) = |∇I (1)(x)| = |∇I (2)(x)|. (12)

The specific surface is the expected area of the interface per
unit volume. For homogeneous media, s is the ensemble aver-
age of the surface indicator function:

s = 〈M(x)〉. (13)

The surface-void correlation function Fsv (r) measures the
correlation between one point on the interface and the other in
the void phase. For homogeneous systems, it is defined as

Fsv (r) = 〈M(x)I (void)(x + r)〉. (14)

Henceforth, we will take phase 1 to be the void (matrix) phase
and phase 2 to be the solid (inclusion) phase. For systems
lacking long-range order, the surface-void correlation function
has the large-r limit

lim
r→∞ Fsv (r) = sφ1. (15)

Ma and Torquato have shown that the derivative of Fsv (r) can
be related to the Euler characteristic χ , a measure of phase
connectivity, by the relation [22]

dFsv (r)

dr

∣∣∣∣
r=0

= χ

V
. (16)

The right-hand side of relation (16) can be interpreted as an
intensive property or specific Euler characteristic.

One may also measure the correlation of points on the
phase interface using the surface-surface correlation function
Fss(r). For homogeneous media, it is defined as

Fss(r) = 〈M(x)M(x + r)〉. (17)

It has been shown that Fss(r) diverges for small r as
(d − 1)ωd−1s/dωd r [22]. In the large-r limit, we have

lim
r→∞ Fss(r) = s2 (18)

for systems with no long-range order.
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C. Pore-size function

An important characterization of the pore (void) space is
with the pore-size probability density function P(δ), which is
defined by [1]

P(δ) = −∂F (δ)/∂δ, (19)

where F (δ) is the complementary cumulative distribution
function that measures the probability that a randomly placed
sphere of radius δ centered in the pore space V1 lies entirely in
V1. We have that F (0) = 1 and F (∞) = 0, and it immediately
follows that P(0) = s/φ1 and P(∞) = 0. The nth moment of
the pore-size probability density function is [1]

〈δn〉 ≡
∫ ∞

0
δnP(δ) dδ. (20)

These moments act as a measure of the characteristic
length scale of the pore space and have been shown to be
useful in the prediction of transport properties of random
media [36,37]. The first moment, the mean pore size 〈δ〉, as
well as the second moment 〈δ2〉 are of particular interest to us
in this work.

D. Lineal-path function

An additional descriptor that we consider in this work is
the lineal-path function L(i)(z) [23]. The lineal-path function
L(i)(z) is the probability that a line segment of length z lies
entirely in phase i. Thus, L(i)(z) contains degenerate con-
nectedness information along a path in phase i. Naturally, it
is a monotonically decreasing function with L(i)(0) = φi and
L(i)(z → ∞) = 0.

E. Chord-length probability density function

The chord-length density probability density function
p(i)(z) is another descriptor and is related to the lineal-path
function [38,39]. In this context, the chords are the line seg-
ments between intersections of an infinitely long line with the
two-phase interface. For statistically isotropic media, p(i)(z)dz
is the probability of finding a chord with length between
z and z + dz in phase i. The chord-length density function
often arises in the study of transport properties of porous
media [40–42].

One can show that p(i)(z) is directly related to the second
derivative of the lineal-path function L(i)(z) [38],

p(i)(z) = 	
(i)
C

φi

d2L(i)(z)

dz2
. (21)

Here, 	(i)
C is the mean chord length for phase i and thus the first

moment of the chord-length probability density function.

F. The canonical correlation function Hn

The canonical n-point correlation function Hn developed
by Torquato [33] provides a unified means to derive explicit
closed-form expressions of any specific correlation function
for various particle and cellular models of two-phase ran-
dom media. This canonical function enables one to relate
and compare the microstructural information contained in one
descriptor to that of any other. For concreteness, we specialize

the discussion of the Hn for overlapping, d-dimensional, ra-
dius R monodisperse spheres (phase 2) embedded in a matrix
(phase 1).

The central idea employed by Torquato [33] to define
and derive Hn was to consider the space and surface that is
available to a spherical “test” particle that is inserted into the
system. Following this principle, he derived

Hn(xm; xp−m; rq)

= (−1)m ∂

∂a1
. . .

∂

∂am

{
ρq

q∏
l=1

p∏
k=1

�(|xk − rl | − ak ) exp [−ρvp(xp; a1, . . . , ap)]

}
. (22)

Here, Hn gives the probability of inserting m test particles of
radius b = a − R whose centers xm fall on the phase interface,
inserting p − m test particles of radius b whose centers xp−m

fall in phase 1, and that the centers of any q inclusions are
given by rq. The function vp(xp; a1, . . . , ap) is the union vol-
ume of p, d-dimensional spheres of radii a1, . . . , ap, and ρ is
the number density. Also note the definition of the Heaviside
step function

�(x) =
{

0, x < 0,

1, x � 0.
(23)

From here, one can use specific limits of Eq. (22) to derive
key microstructural descriptors. All descriptors considered in
this paper amount to placing different combinations of p − m
test particles into the matrix phase and m test particles onto the
phase interface, while placing no restriction on the centers of
the spherical inclusions (i.e., q = 0). For example, the n-point
correlation function is derived using the following limit:

Sn(xn) = lim
ai→R,∀i

Hn(∅; xn; ∅), (24)

which clearly involves p − m = n phase 1 test point-particles
and m = 0 interface test point-particles. From this expression,
we can write the two-point correlation function as

S2(x1, x2) = exp [−ρv2(x1, x2; R)]. (25)

For the surface-void and surface-surface correlation func-
tions, we have the limits

Fsv (x1, x2) = lim
ai→R,∀i

H2(x1; x2; ∅)

= − lim
a1→R

∂

∂a1
exp[−ρv2(r; a1, R)] (26)

and

Fss(x1, x2) = lim
ai→R,∀i

H2(x1, x2; ∅; ∅)

= lim
a1,a2→R

∂

∂a1

∂

∂a2
exp[−ρv2(r; a1, a2)]. (27)

From these expressions, the extra information in the surface
correlation functions is revealed: both Fsv and Fss involve a
product of Eq. (25) and a term related to surface area of the
phase interface due to the partial derivatives.
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The complementary pore-size distribution function F (δ)
is related to the “void” exclusion probability function EV (r)
which is defined in terms of Hn as [33]

EV (r) = H1(∅; x1; ∅). (28)

We see that higher-order microstructural information is incor-
porated into F (δ) = EV (δ + R)/φ1 by the requirement that the
entire volume excluded by the radius r test particle is devoid
of phase 2. Lastly, Lu and Torquato found that the lineal-path
function L(z) is a special case of EV (r) [23] where a test line
segment of length z is inserted into the system. Thus, L(z)
incorporates functionals of higher-order information through
the requirement that the entire test line is in phase 1 and not
just its end points.

III. THE YEONG-TORQUATO RECONSTRUCTION
ALGORITHM

The Yeong-Torquato optimization procedure is a popular
algorithm that has been used by various groups to construct
or reconstruct microstructures that realize a set of prescribed
correlation functions [15,18,43–47]. Here, we briefly describe
the Yeong-Torquato algorithm. For the 2D reconstructions
employed in this work, the two-phase system is represented
as a square grid of pixels that is subject to periodic boundary
conditions. This square has side length L and contains N2

pixels which can represent phase 1 or 2. The Yeong-Torquato
procedure treats the task of transforming this grid into the
desired microstructure as an energy-minimization problem
that it solves by simulated annealing.

The “energy” is defined as

E =
∑

α

wαEα =
∑

α

∑
x

wα

[
f α
n (x) − f̂ α

n (x)
]2

(29)

and measures how close the current system is to realizing the
prescribed, target statistical descriptors: the volume fraction
and some set f̂ 1

n (x), f̂ 2
n (x), . . . where f̂ α

n is an n-point corre-
lation function of type α and x ≡ r1, r2, . . . denotes position
vectors in the medium. Note that f 1

n (x), f 2
n (x), . . . is the set

of correlations measured from the system that is being recon-
structed and the number wα is a weight for target descriptor
f̂ α
n . The microstructure of the system is evolved using volume

fraction conserving pixel swapping moves which are accepted
according to the Metropolis rule while a fictitious temperature
is lowered which has the effect of reducing the acceptance
probability. For more details on the Yeong-Torquato proce-
dure and simulated annealing, see Ref. [21].

In this work, we employ an accelerated implementation
of the Yeong-Torquato construction algorithm developed by
Ma and Torquato [29]. In this scheme, relatively large 2D
systems (501×501 pixels) are more easily realized by using
a cutoff lc < L when sampling S(i)

2 (r). For S(i)
2 (r) like Eq. (1)

that decay to their asymptotic value (φ2
i ) rapidly, the use of

a cutoff is valid as long as it is sufficiently larger than the
characteristic length of the system. Notably, the computational
cost of the accelerated scheme scales as O(Nd ); an improve-
ment over the O(N2d ) scaling of the original Yeong-Torquato
implementation. Moreover, in this work, we found that the
accelerated scheme frees sufficient computational resources

to facilitate the construction of Debye random media with a
specific pore-size probability density function (see Sec. VI).

The implementation of the Yeong-Torquato procedure used
here employs a pixel refinement phase where, after a fraction
of the total Monte Carlo steps, only pixels at the phase inter-
face are selected for trial swaps. This refinement phase has the
net effect of eliminating small isolated “islands” of one phase
embedded in a “sea” of the other phase. Lastly, S2 is sampled
in all directions (as described in Ref. [18]), which contrasts
the original scheme used by Yeong and Torquato wherein
two-point correlations were sampled only along orthogonal
directions [21].

Samples of Debye random media realized with the
Yeong-Torquato procedure for various volume fractions in 2D
are presented in Fig. 2. Note how, at lower φ1, the void phase
consists of islands with a spectrum of sizes and shapes. As
φ1 is increased, the islands continually merge until phases
1 and 2 are statistically indistinguishable at φ1 = 1/2. Due
to the phase inversion symmetry that is manifest in Eq. (1),
realizations of YT-DRM for φ1 = 0.6–0.9 are identical to
those with φ1 = 0.4–0.1, which is evident in Fig. 2.

IV. TWO-POINT CORRELATION FUNCTION FOR
OVERLAPPING, POLYDISPERSE SPHERES

In this section, we derive the two-point correlation func-
tion for systems of polydisperse, totally penetrable spheres
in the first three dimensions following the approach in
Refs. [1,30–32]. We take sphere radii R to follow the
normalized probability density f (R). The average of any R-
dependent function is thus computed as

〈w(R)〉 =
∫ ∞

0
w(R) f (R) dR. (30)

As in prior work, [1,30–32] we define a reduced density to be

η = ρ〈v1(R)〉, (31)

where the average volume of the spheres is 〈v1(R)〉 = ωd〈Rd〉.
Following Torquato [1,30–32], we consider the Schulz distri-
bution [48]

f (R) = 1

�(m + 1)

(
m + 1

〈R〉
)m+1

Rme−(m+1)R/〈R〉, (32)

where 〈R〉 is the mean radius of the distribution, and m is
restricted to integer values in the interval [0,∞). Increasing
the parameter m lowers the variance of the distribution and the
monodisperse limit is recovered when m → ∞, i.e., f (R) →
δ(R − 〈R〉). In this work, we take m = 0, which corresponds
to an exponential distribution where many particles have
small radii.

The two-point correlation function for the void phase of
these systems is [1]

S(1)
2 (r) = exp

[
ln φ1

〈v2(r; R)〉
〈v1(R)〉

]
, (33)

where v2(r; R) is the union volume of two d-dimensional
spheres of radius R, which is given for d = 1, 2, and 3 in
Ref. [1]. Using the union volume formulas in Eq. (33), we
find that the two-point probability function for the first three
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Realizations of 2D YT-DRM. Images (a)–(i) correspond to void phase (yellow) volume fraction φ1 = 0.1–0.9 and inclusion
phase (blue) volume fraction φ2 = 0.9–0.1, respectively. Following Ma and Torquato [29], these microstructures are 501×501 pixels with
characteristic length a = 5, and a cutoff lc = 10a was used for sampling S(1)

2 (r).

dimensions has the form

S(1)
2 (r) = exp [ln φ1h(r; 〈R〉)], (34)

where for d = 1, 2, and 3, respectively,

h(r; 〈R〉) = 2 − e−r/2〈R〉, (35)

h(r; 〈R〉) = 2 + r2

4π〈R〉2
K1

(
r

2〈R〉
)

− 2

π
G4,0

2,4

(
r2

16〈R〉2

∣∣∣∣ 1, 1
0, 1

2 , 3
2 , 2

)
, (36)
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FIG. 3. The plots in the left column [(a), (c), and (e)] are for the two-point function of the void phase of OPS-DRM, where the colored
lines are of function (34) with h(r; 〈R〉) given by (35) for 1D (a), (36) for 2D (c), and (37) for 3D (e). For h(r; 〈R〉), the value of mean radius
〈R〉 is given by Eq. (39). The plots in the right column [(b), (d), and (f)] are for the two-point function of the disk phase, where the colored
markers are for S(2)

2 (r) that was sampled numerically from realizations of OPS-DRM. Panel (b) is from 1D systems, (d) is from 2D systems, and
(f) is from 3D systems. Note that in all cases, S(i)

2 (r = 0) = φi and S(i)
2 (r → ∞) = φ2

i . The black lines are all given by (1) with the appropriate
volume fractions.

045306-7



MURRAY SKOLNICK AND SALVATORE TORQUATO PHYSICAL REVIEW E 104, 045306 (2021)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Realizations of 2D OPS-DRM. Images (a)–(i) correspond to void phase (yellow) volume fraction φ1 = 0.1–0.9 and disk phase
(blue) volume fraction φ2 = 0.9–0.1, respectively.

h(r; 〈R〉) = 8〈R〉 − e−r/2〈R〉(r + 4〈R〉)

4〈R〉 . (37)

For h(r, 〈R〉) of 2D systems, K1(x) is the first-order, modified

Bessel function of the second kind, and Gp,q
m,n(z|a1, . . . , ap

b1, . . . , bq
) is the

Meijer-G function.

V. REALIZING DEBYE RANDOM MEDIA WITH
OVERLAPPING, POLYDISPERSE SPHERES

In this section, we show that S(1)
2 (r) for overlapping,

polydisperse spheres with exponentially distributed radii [de-
scribed by Eq. (34)] is an excellent approximation of the
exponentially decaying S2(r) of Debye random media, defined
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TABLE I. Parameters for Eq. (39) for dimensions 1,2, and 3.
These values were computed for OPS-DRM with characteristic
length a = 0.2 and system side length L = 20.

an d = 1 d = 2 d = 3

a1 0.05063 0.04399 0.03015
a2 1.23419 1.96841 1.19292
a3 0.41971 0.33559 0.39660
a4 0.08573 0.07204 0.05611

by Eq. (1), across the first three space dimensions. The an-
alytically known two-point correlation function for the void
phase of OPS-DRM in dimensions 1,2, and 3 are plotted in
Figs. 3(a), 3(c), and 3(e), respectively. Analogous results for
the numerically sampled two-point correlation function for
the sphere phase of OPS-DRM are plotted in Figs. 3(b), 3(d),
and 3(f).

We measure the discrepancies between the S(i)
2 (r) for

OPS-DRM and Eq. (1) using the following error estimate
generalized from Ref. [49]:

� f2(r) = 1

NL

∑
r

|δ f (r)|, (38)

where f2(r) is a two-point descriptor, NL is the number of
sampling bins, and δ f (r) is the difference between the two
functions being compared. We specifically found that 10−5 <

�S(1)
2 (r) < 10−4 and 10−4 < �S(2)

2 (r) < 10−3, which are
both sufficiently small [29,49]. In summary, these results
indicate that, while Eq. (34) is not mathematically symmet-
ric under φ1 → φ2, OPS-DRM has effective phase inversion
symmetry at the two-point level.

Recall from Sec. III that actual Debye random media has
phase inversion symmetry at the two-point level. Also note
that because the forms of Eqs. (1) and (33) are distinct, a
fitting procedure must be employed to determine the mean
radius 〈R〉, which yields an OPS system with effective char-
acteristic length a for a given φ1. These values of 〈R〉 were
determined using a least-squares optimization scheme and
then fitted to the exponentially damped power law

〈R〉(φ1) = a1e−a2φ1φ
−a3
1 + a4 (39)

in order to interpolate values of 〈R〉 for φ1 ∈ [0, 1]. The
parameters a1, a2, a3, and a4 for dimensions 1,2, and 3 are
listed in Table I. Samples of OPS-DRM microstructures in
2D for different volume fractions are presented in Fig. 4.
Interestingly, for φ1 < 1/2 the void space of OPS-DRM is
filamentous while that of YT-DRM consists of more com-
pact regions. For φ1 > 1/2, we see that OPS-DRM has a
wide range of inclusion sizes, whereas those in YT-DRM are
more uniformly distributed in size; see Figs. 4(i) and 2(i),
respectively.

VI. DEBYE RANDOM MEDIA WITH COMPACT PORES

In this section, we introduce a class of Debye random
media whose pore-size probability density function is con-

FIG. 5. (a) Plots of S(1)
2 (r) for several φ1 where the scatter plots

are numerically sampled from realizations of 2D CP-DRM and the
solid lines are of Eq. (1). (b) Analogous plots of F (δ), but the solid
lines are of Eq. (42).

strained to have compact support as follows:

P(δ) = (A − mδ)�

(
A

m
− δ

)
. (40)

The parameter A must be equal to s/φ1 from the condition that
P(0) = s/φ1 where the specific surface s for d-dimensional
Debye random media is given by

s = ωd dφ1φ2

ωd−1a
. (41)

The slope m must equal φ2
1/(2s2) per the normalization con-

dition on P(δ). The complementary cumulative distribution
function corresponding to (40) is given by

F (δ) =
(

sδ − 2φ1

2φ1

)2

�

(
2φ1

s
− δ

)
(42)

using relation (19). Also note that the nth moment of (40) is
given by

〈δn〉 = 2n+1

2 + 3n + n2

(
φ1

s

)n

(43)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. Realizations of 2D CP-DRM. Images (a)–(i) correspond to void phase (yellow) volume fraction φ1 = 0.1–0.9 and inclusion phase
(blue) volume fraction φ2 = 0.9–0.1, respectively. Once again following Ma and Torquato [29], our configurations are 501×501 pixels with
characteristic length a = 5, and a cutoff lc = 10a was used for sampling S(1)

2 (r).

from relation (20). The critical feature of P(δ) and F (δ) for
this class of Debye random media is that they are equal to zero
for δ > � where the pore-size cutoff � = 2φ1/s. Moreover,
this cutoff makes the pore regions of such structures more
compact (see Sec. VII B).

We realized CP-DRM in 2D using the accelerated
Yeong-Torquato procedure with S(1)

2 (r) constrained to be
Eq. (1) and F (δ) constrained to be Eq. (42). For the simulated
annealing energy function (29), the weight wF (δ) was chosen
such that wF (δ)EF (δ) = ES2(r) for the initial configuration. Ten
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FIG. 7. Plots of the surface-void for 2D (a) and 3D (b) and surface-surface for 2D (c) and 3D (d) correlation functions for the three different
classes of Debye random media. For YT-DRM, Fsv (r) and Fss(r) are given by Eqs. (49) and (50), respectively. Fsv (r) and Fss(r) for the OPS
class in 2D are given by Eqs. (45) and (46), respectively, and by Eqs. (47) and (48) for 3D OPS-DRM. Open symbols are the results for
CP-DRM and are color-coded according to volume fraction. In the plots of Fss(r), the horizontal black line is meant to aid in visualization of
the asymptotic value. In (a), the range of r values is half of that used in the other subplots in order to facilitate viewing the fine features of
Fsv (r) for CP-DRM around the origin. In (c), for the sake of clarity, the results for φ1 = 0.1, 0.9 have been omitted due to larger error bars that
obscure the curves for the other volume fractions.

configurations of CP-DRM were made for each volume frac-
tion φ1 = 0.1, 0.2, . . . , 0.9. The “pixel-refinement phase” was
also utilized for all constructions. To sample F (δ), we treated
every pixel as a pore center to ensure that the pore space of
the final structure was completely consistent with Eq. (42).
Additionally, when updating F (δ), we considered only pores
that included the swapped pixels to improve performance.

Comparison of S(1)
2 (r) sampled from our constructed

CP-DRM to Eq. (1) for various volume fractions in Fig. 5(a)
confirms that these systems are in fact Debye random me-
dia [10−5 < �S2(r) < 10−4]. In Fig. 5(b) analogous plots of
sampled F (δ) against Eq. (42) indicate that our constructed
systems completely satisfy the prescribed pore-size statistics
[10−5 < �F (δ) < 10−4]. Selected constructed configurations
of this class of Debye random media for different volume
fractions are presented in Fig. 6. For φ1 < 0.4, note how the

void spaces of these microstructures are more elongated and
channel-like. We observe similar features in OPS-DRM but
not in YT-DRM; see Figs. 4 and 2, respectively.

VII. COMPARISON OF YT-DRM AND OPS-DRM
MICROSTRUCTURES

In order to probe how S2-degenerate two-phase media
differ in their other microstructural statistics, we compute
and compare a set of alternative two-point descriptors [i.e.,
Fss(r), Fsv (r), P(δ), L(z), and p(z)] for YT-DRM, OPS-DRM,
and CP-DRM in 2D. In 3D, while we know all of these
descriptors for OPS-DRM, we know only Fsv (r) and Fss(r) for
YT-DRM and P(δ) for CP-DRM. As such, our exploration of
the effect of dimension on the degeneracy problem is limited
to these descriptors.
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A. Surface correlation functions

In 2D and 3D, the specific surface for OPS-DRM is
given by

s = ηφ1

〈R〉 , (44)

which contrasts s for YT-DRM and CP-DRM which is equal
to πφ1φ2/a in 2D and 4φ1φ2/a in 3D [see Eq. (41)]. For
the surface-void and surface-surface correlation functions for
the overlapping polydisperse sphere systems, we employ the
canonical correlation function formalism [33] and find that for
2D structures

Fsv (r) = 2πρ

〈
R − R

π
cos−1

(
r

2R

)
�(2R − r)

〉
S(1)

2 (r) (45)

and

Fss(r) =
{〈

2ρR

[
π − cos−1

(
r

2R

)
�(2R − r)

]〉2

+
〈

2ρR�(2R − r)

r
√

1 − (r/2R)2

〉}
S(1)

2 (r). (46)

Note that these average value integrals must be computed
numerically. For 3D, Lu and Torquato derived expressions
for Fsv (r) and Fss(r) for overlapping, polydisperse spheres for
a general distribution of radii [32]. Here, we evaluate these
expressions for the m = 0 Schulz distribution and find that

Fsv (r) = π〈R〉ρ[8〈R〉 − e−r/2〈R〉(r + 4〈R〉)]S(1)
2 (r) (47)

and

Fss(r) = πρ

2

{
e−r/2〈R〉

r
(r2 + 4r〈R〉 + 8〈R〉2)

+ 2πρ〈R〉2[e−r/2〈R〉(r + 4〈R〉) − 8〈R〉]2

}
S(1)

2 (r).

(48)

For general-dimensional Debye random media realized via
stochastic reconstruction, Ma and Torquato [29] proposed
the following semiempirical forms for the surface-correlation
functions:

Fsv (r) = s

φ1

1

1 + e−r/a
S(1)

2 (r) (49)

and

Fss(r) = s2 + (d − 1)φ1φ2

ar
e−r/a + |φ2 − φ1|

2a2

e−r/a

1 + e−r/a
.

(50)

These functions were originally fit using statistics sampled
from realizations of 2D YT-DRM and then generalized to
dimension d using theoretical arguments presented in [22].
We use the method developed by Ma and Torquato [22] to
sample Fsv (r) and Fss(r) for 2D CP-DRM.

In Figs. 7(a) and 7(c), plots of Fsv (r) and Fss(r) [50] for the
three different classes of 2D Debye random media are shown.
We see that Fsv (r) is a monotonically decreasing function
of r only for YT-DRM, but that it is otherwise similar to

Fsv (r) for OPS-DRM. Additionally, Fsv (r) is flat only for YT-
DRM at φ1 = 1/2, and thus the Euler characteristic for this
class of Debye random media is equal to zero when φ1 = φ2

[see relation (16)]. This behavior is related to the percolation
threshold of YT-DRM (see Sec. VIII). Most notably, Fsv (r)
for CP-DRM has a negative slope at the origin and a local
minimum for each volume fraction considered. Note also that
Fss(r) is monotonically decreasing and symmetric under the
transformation φ1 → (1 − φ1) for both YT-DRM and CP-
DRM, whereas it has a minimum and no such symmetry for
OPS-DRM. Lastly, the large error bars on the plot of Fss(r) for
CP-DRM suggest that these structures posses a high degree of
variability in their surface geometries. In Figs. 7(b) and 7(d),
plots of Fsv (r) and Fss(r) for 3D OPS-DRM and YT-DRM
are shown. For OPS-DRM, the Fsv (r) curves are extremely
similar to their 2D versions, while the Fss(r) curves become
monotonically decreasing. It should be noted that in all plots,
Fsv (r) is scaled by sφ1 and Fss(r) by s2 to bring their large-r
asymptotic values to unity.

B. Pore-size function

Here, we compare the pore statistics of the three classes
of Debye random media in 2D and 3D. Following Torquato
[1,51], we find that the pore-size probability density function
P(δ) for Debye random media approximated by overlapping,
polydisperse spheres in 2D is given by

P(δ) = 2πρ

φ1
(〈R〉 + δ) exp[−πρ(δ2 + 2δ〈R〉 + 2〈R〉2)]. (51)

We use Eq. (20) to compute the first and second moments
of this distribution and find that they are

〈δ〉 = e−l2
erfc(l )

2φ1
√

ρ
(52)

and

〈δ2〉 = e−2l2
[1 − el2

π〈R〉√ρ erfc(l )]

φ1πρ
, (53)

respectively, where erfc(x) is the complementary error func-
tion and l = √

πρ〈R〉. Using a similar approach, we find that
the pore-size probability density function for 3D OPS-DRM
is given by

P(δ) = 4πρ

3φ1
(3δ2 + 6δ〈R〉2 + 6〈R〉3)

× exp

[
−4πρ

3
(δ3 + 3δ2〈R〉 + 6δ〈R〉2 + 6〈R〉3)

]
.

(54)

Numerical integration must be used to find 〈δn〉 of Eq. (54) for
n � 1.

Ma and Torquato, guided by the scaled-particle theory
[1,29], proposed the following form of P(δ) for Debye random
media realized with the Yeong-Torquato procedure:

P(δ) =
(

πφ2

a
+ 2p1δ

)
exp

(
−p1δ

2 − πφ2

a
δ

)
. (55)

Here, p1 = (1.05φ2 − 2.41φ2
2 + 4.16φ3

2 )/a2 is a free param-
eter whose value was determined by a fitting Eq. (55) to
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simulated data. The first and second moments of Eq. (55) are

〈δ〉 = 1

2

√
π

p1
ek2

erfc (k) (56)

and

〈δ2〉 = 1

p1
− φ2

2a

(
π

p1

)3/2

ek2
erfc(k), (57)

respectively, where k = φ2π/(2a
√

p1).
In Fig. 8(a) we show plots of P(δ) for all three classes of

Debye random media in 2D and plots of P(δ) for 3D CP-DRM
and OPS-DRM in Fig. 8(b). Note that P(δ) is scaled by φ1/s
to bring its value at the origin to unity. Plots of 〈δ〉 scaled by
a as a function of φ1 are shown in Fig. 8(c). In 2D these plots
reveal that, for a given volume fraction, YT-DRM have the
largest pores of the three classes. This difference in behavior
can be explained by visual comparison of these three systems
in Fig. 9. We see that OPS-DRM [Fig. 9(b)] have numerous
islands of small disks embedded in the matrix phase which
disrupt the pore space and collectively lower 〈δ〉. Such islands
are not present in Debye random media constructed with
the Yeong-Torquato procedure due to the pixel refinement
phase described in Sec. III. The presence of these islands in
the overlapping, polydisperse sphere systems is explained by
examining the distribution of their radii: f (R) = e−r/〈R〉/〈R〉,
where smaller radii R are clearly the most probable.

These islands are also present in CP-DRM [Fig. 9(a)]
where they similarly disrupt the pore space and, notably, have
survived the pixel refinement phase of the Yeong-Torquato
procedure. The persistence of these islands in CP-DRM in-
dicates that they are critical to enforcing the strict-cutoff � on
the maximum pore radius. In 3D, we see that CP-DRM, on
average, have larger pores than do OPS-DRM.

C. Lineal-path function

Here, we compare the lineal-path functions for the void
phases of the three classes of Debye random media in 2D.
Following Lu and Torquato [1,31], one will find that L(z) for
overlapping polydisperse disks is

L(z) = φ1 exp

(
ln φ1

2〈R〉
π〈R2〉 z

)
. (58)

Note that, from this expression, we can define the average
lineal size of these systems as

Lw(φ1) = − π〈R2〉
2 ln φ1〈R〉 . (59)

Specializing Eq. (58) for exponentially distributed radii, we
find the lineal-path function for OPS-DRM to be

L(z) = φ
1+z/(π〈R〉)
1 . (60)

For 2D Debye random media constructed using the
Yeong-Torquato procedure, Ma and Torquato found that the
lineal-path function also exhibits an exponential decay. As
such, they fit their data for L(z) to Eq. (58) and found that the
ratio 〈R〉/〈R2〉 fell in the range (0.94 ± 0.04)a and was largely
insensitive to changes in volume fraction. Here, we found that
CP-DRM exhibit roughly the same L(z) that YT-DRM do.

FIG. 8. Plots of the pore-size probability density function P(δ)
for 2D (a) and 3D (b), as well as the mean pore size 〈δ〉 as a function
of φ1 (c). For YT-DRM, P(δ) is given by Eq. (55) and 〈δ〉 by Eq. (56).
For 2D OPS-DRM, these descriptors are given by Eqs. (51) and (52),
respectively. For 3D OPS-DRM, P(δ) is given by Eq. (54) and 〈δ〉
was computed numerically. The open symbols in (a) are numerically
sampled P(δ) for 2D CP-DRM, are color-coded by volume fraction,
and have negligibly small error bars that cannot be distinguished
on the scale of this figure. 〈δ〉 for CP-DRM is given by Eq. (43)
with n = 1.
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(a)

(b)

(c)

FIG. 9. (a) YT-DRM with characteristic length a = 5. (b) OPS-
DRM with characteristic length a = 0.2. (c) CP-DRM with char-
acteristic length a = 5. For all cases, φ1 = φ2 = 1/2 and the
characteristic length is chosen such that it is 1/100 of the periodic
system side length. Configurations (a) and (c) are both 251×251
pixels.

FIG. 10. Plots of the lineal-path function L(z) (a) and the average
lineal-size Lw (φ1) (b) for the three classes of Debye random media
in 2D. L(z) for YT-DRM and OPS-DRM is given by Eq. (58) with
their respective average lineal sizes. The open symbols in (a) are
for numerically sampled L(z) for CP-DRM and are color-coded by
volume fraction. The open symbols in (b) are for numerically sam-
pled Lw for CP-DRM. For both sets of scatter plots, the error bars are
too small to be distinguished on the scale of this figure. Note that the
nonlinearity in the sampled L(z) is caused by the cutoff lc used in the
accelerated Yeong-Torquato procedure.

This behavior contrasts that of OPS-DRM systems for which
the ratio 〈R〉/〈R2〉 is equal to 1/2〈R〉 and thus depends on
the volume fraction [see Eq. (39)]. The lineal-path functions
for the three classes of Debye random media are plotted in
Fig. 10(a), and the average lineal size for these structures are
plotted in Fig. 10(b). Interestingly, OPS-DRM have the largest
Lw for φ1 < 1/2.

D. Chord-length probability density function

Using Eq. (21), it is trivial to obtain the matrix chord-length
probability density function p(z) from the lineal-path function
(58). Given that all three classes of Debye random media
considered in this paper exhibit the same exponentially-
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FIG. 11. Plots of the matrix chord-length probability density
function p(z) for the three classes of Debye random media in 2D.
For YT-DRM and OPS-DRM, p(z) is given by Eq. (61). The open
symbols are for numerically sampled p(z) for CP-DRM and are
color-coded by volume fraction.

decaying form for L(z) [e.g., Eq. (58)], we find that

p(z) = 2η〈R〉
π〈R2〉φ

2〈R〉z/(π〈R2〉)
1 (61)

via relation (21). The matrix chord-length probability density
functions for the three classes of Debye random are plotted
in Fig. 11. Given that the three classes of degenerate Debye
random media have similar L(z), it is not surprising that they
share similar p(z) as well.

VIII. COMPARISON OF PERCOLATION THRESHOLDS

In their study on Debye random media realized with the
Yeong-Torquato procedure, Ma and Torquato [29] conjectured
that the percolation threshold of the inclusion phase φc

2
in d = 2 is 1/2. This prediction was based on the phase-
inversion symmetry that is manifest in Eq. (1) as well as visual
inspection of their relatively large reconstructed samples. Ad-
ditionally, using relation (16), Ma and Torquato found the
specific Euler characteristic for this class of Debye random
media to be

χ = π (φ1 − φ2)φ1φ2

4a2
. (62)

Prior work suggests that the zeros of the Euler characteristic
can be used to estimate the percolation threshold of a two-
phase system [52–55]. We see from Eq. (62) that χ will vanish
for φ1 = φ2 = 1/2. We numerically estimated the percolation
threshold of 2D YT-DRM to be φc

1 ≈ 1/2 by using a “burning
algorithm” [56] to detect percolating clusters in ten 501×501
pixel samples of YT-DRM at various volume fractions.

While Debye random media approximated by overlapping,
polydisperse spheres has effective phase inversion symmetry
[see Figs. 3(b), 3(d), and 3(f)], we expect that the percolation
threshold for the matrix phase will be lower than 1/2. This
expectation is motivated by analysis of the Euler character-
istic of these systems. Using relation (16) and Eq. (45) we

find that

χ = − ln φ1

2π〈R〉2
(φ1 + φ1 ln φ1), (63)

which has a nontrivial zero for φ1 = 1/e ≈ 0.368. Using the
“rescaled particle method,” a Monte Carlo simulation method
developed by Torquato and Jiao [57,58], we numerically es-
timated the percolation threshold as φc

1 ≈ 0.303. This value
of φc

1 is lower than the zero of χ and is closer to the perco-
lation threshold found for overlapping disks with uniformly
distributed radii which is φc

1 ≈ 0.314 [59]. Our finding is also
consistent with the observation of Klatt et al. that the zero of
χ was always an upper bound on the percolation threshold of
overlapping squares [55].

Given that the pore statistics of CP-DRM are distinct from
those of YT-DRM, we expect that the void phase percola-
tion threshold for this class of Debye random media will not
be equal to 1/2. Notably, using a procedure adapted from
Ref. [60], we numerically determined that the Euler charac-
teristic for CP-DRM is negative for φ1 ∈ [0.05, 0.9], strongly
suggesting that it is only trivially equal to zero for φ1 =
0, 1. Once again using the “burning algorithm,” we numeri-
cally estimated the percolation threshold for CP-DRM to be
φc

1 ≈ 0.39. Interestingly, the Euler characteristic is only an
accurate predictor of the percolation threshold of YT-DRM.
It is likely that the additional constraints placed on the mi-
crostructures of OPS-DRM and CP-DRM alter the ability of
the Euler characteristic to accurately predict the percolation
thresholds of these systems.

IX. COMPARISON OF EFFECTIVE DIFFUSION
AND TRANSPORT PROPERTIES OF YT-DRM,

OPS-DRM, AND CP-DRM

In this section, we treat YT-DRM, OPS-DRM, and
CP-DRM as porous media (with phase 2 being solid and phase
1 being void space) and compare their diffusion and fluid
permeability properties in 2D and 3D.

A. Bounds on mean survival and principal
diffusion relaxation times

Consider a porous medium in which a species diffuses
throughout the pore space with diffusion coefficient D and
can react at the pore-solid interface via a surface with reac-
tion rate κ . The diffusion-controlled limit is obtained when
κ → ∞, while taking κ → 0 corresponds to a perfectly
reflective interface. A quantity of central interest in such dif-
fusion and reaction problems is the mean survival time τ ,
which is the average lifetime of the diffusing species before
it gets trapped. Another important quantity, which is also
pertinent to the description of viscous flow in porous media
[61], is the principal relaxation time T1 associated with the
time-dependent decay of the initially uniform concentration
field of the diffusing particles [1].

Using the pore-size function P(δ) and variational prin-
ciples, Torquato and Avellaneda [61] derived the following
upper bound on τ :

τ � 〈δ〉2

D
+ φ1

κs
. (64)
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FIG. 12. Plots of upper bounds on the scaled mean survival time
Dτ/a2 (a) and scaled principal diffusion relaxation time DT1/a2

(b) as functions of φ1 for the three classes of Debye random media in
2D and 3D in the diffusion-controlled regime (e.g., κ → ∞). τ and
T1 are obtained from inequalities (64) and (65), respectively, and the
length scale a is defined in Eq. (1).

They also computed the following upper bound on T1 using a
similar approach:

T1 � 〈δ2〉
D

+ 3φ1〈δ〉2

4κs〈δ2〉 . (65)

Upper bounds on the mean survival time are plotted in
Fig. 12(a) and those on the principal diffusion relaxation time
in Fig. 12(b) for perfectly absorbing traps (i.e., κ → ∞). In
both 2D and 3D, we see that OPS-DRM has the lowest upper
bounds on τ and T1 which is consistent with our prior observa-
tion that this class of Debye random media has smaller pores
on average than do YT-DRM and CP-DRM (see Sec. VII B).
Interestingly, 2D CP-DRM have slightly higher bounds for τ

and T1 than YT-DRM do for φ1 ≈ 0.83.

B. Bounds on fluid permeability

Here, we present upper bounds on the fluid permeability k,
which is defined in Darcy’s law which describes slow, viscous

flow through a porous medium [32], for YT-DRM and OPS-
DRM. We also estimate k for CP-DRM and OPS-DRM using
an approximation that was recently suggested by Torquato
[62]. Using variational principles, Doi [25], and subsequently
Rubinstein and Torquato [27], derived the following upper
bound on the fluid permeability k of statistically isotropic
porous media:

k � k(2)
U = 2

3

∫ ∞

0
r

[
Fvv (r) − 2φ1

s
Fsv (r) + φ2

1

s2
Fss(r)

]
dr.

(66)
Here, φ1 is the porosity and the void-void correlation function
Fvv (r) is the same as the two-point correlation function for
phase 1, e.g., S(1)

2 (r). Following Rubinstein and Torquato [27],
we refer to Eq. (66) as a two-point “interfacial-surface” upper
bound.

Values of k(2)
U as a function of porosity for the two dif-

ferent classes of Debye random media are computed using
their respective two-point and surface correlation functions
(see Secs. IV and VII A). Note that k(2)

U for overlapping,
polydisperse spheres with various distributions of radii were
computed in Ref. [32]. For Debye random media realized
via the Yeong-Torquato method, one finds that the two-point
interfacial-surface upper bound on permeability to be

k(2)
U = a2

576φ2
2

(16φ1φ2{3 + 4φ2[6φ2

+π2(φ1 − φ2)]} + π2|φ1 − φ2|). (67)

For OPS-DRM, the integral in Eq. (66) must be computed
numerically.

Torquato derived the following approximation for the fluid
permeability [62]:

k ≈ 〈δ2〉
F

, (68)

which describes porous media with well-connected pore
spaces. Note that F is the formation factor, which is a measure
of the tortuosity or “windiness” of the entire pore space and
is a monotonically decreasing function of the porosity [62].
Notably, Eq. (68) was recently confirmed by Klatt et al. [63]
to be highly accurate for models of porous media derived from
overlapping spheres as well as various packings of spheres.

Results for k(2)
U are plotted in Fig. 13(a). We see that the

upper bound on k for YT-DRM and OPS-DRM are similar
for low porosity, but that the bound for YT-DRM is larger
than that of OPS-DRM for φ1 > 0.4 which is consistent with
our observation that, on average, the pores of YT-DRM are
larger than those of OPS-DRM in 2D [see Fig. 8(b)]. Addi-
tionally, our results agree with Torquato’s observation that 3D
Debye random media constructed with the Yeong-Torquato
procedure have “substantially large pore regions” [62]. In
the absence of estimates of the formation factor F for our
models, predictions of approximation (68) of the product F k
are plotted in Fig. 13(b). Similarly, we see that the the fluid
permeabilities for OPS-DRM and CP-DRM are similar for
φ1 < 0.4, while the latter becomes increasingly more perme-
able than the former as the porosity is increased. This result is
consistent with our result where, in 3D, CP-DRM have larger
pores than OPS-DRM do for φ1 > 0.4 [see Fig. 8(b)].
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FIG. 13. (a) Plots of the two-point interfacial-surface upper
bound on the scaled fluid permeability k(2)

U /a2 for OPS-DRM and
YT-DRM, where a is the length scale defined in Eq. (1). For
YT-DRM, k(2)

U is given by Eq. (67). For OPS-DRM, the integral (66)
is computed numerically for each value of φ1. (b) Plots of the scaled
fluid permeability Fk/a2 from the approximation (68) for OPS-DRM
and CP-DRM. Here, 〈δ2〉 is computed numerically from pore-size
function (54) for OPS-DRM, and via Eq. (43) for CP-DRM.

X. CONCLUSIONS AND DISCUSSIONS

In this work, we have investigated and compared three
classes of Debye random media to one another using a variety
of descriptors in order to characterize how the microstructures
of S2-degenerate systems can vary. We specifically considered
the “most probable” class of Debye random media realized
with the Yeong-Torquato procedure, as well as two other
distinct classes of structures that we introduced in this work:
Debye random media realized by certain systems of over-
lapping, polydisperse spheres with exponentially distributed
radii, and Debye random media whose pore-size probability
density function has compact support. To structurally discrim-
inate these systems, we compared their surface correlation,
pore-size, lineal-path, and chord-length distribution functions.
In general, we found that these three classes of Debye random

media are largely distinguished by these microstructural de-
scriptors with the differences in their pore-size statistics and
percolation thresholds being the most profound. Our results
further support the well-known fact that the two-point corre-
lation function is largely insufficient to determine the effective
physical properties of two-phase random media.

Our analysis of the statistical descriptors of these degen-
erate Debye random media also revealed that OPS-DRM are
only phase-inversion symmetric with respect to S2(r), while
CP-DRM are only phase-inversion symmetric with respect to
S2(r) and Fss(r). For OPS-DRM, this lack of symmetry is to
be expected as particle models of two-phase media are gen-
erally not phase-inversion symmetric [1]. Conversely, by the
nature of their construction, YT-DRM are likely truly phase-
inversion symmetric, satisfying condition (6). Furthermore,
the additional constraint on the pore-size statistics in CP-
DRM destroys such higher-order phase-inversion symmetry.
We also determined that the percolation thresholds of these
three classes of Debye random media are quite different which
indicates that disordered, S2-degenerate two-phase random
media can exhibit a variety of topologies. Interestingly, we
found that the Euler characteristic did not accurately predict
the percolation thresholds of CP-DRM and OPS-DRM for
reasons indicated in Sec. VIII.

Lastly, we found that the bounds on the effective mean
survival times, principal diffusion relaxation times, and
fluid permeabilities as well as the approximated fluid per-
meabilities of these degenerate Debye random media are
distinguishably different from one another to varying degrees;
with OPS-DRM having the lowest bounds in 2D and 3D
for all three physical properties, as seen in Figs. 12 and 13.
Moreover, these differences are largely due to the distinct
pore spaces of YT-DRM, OPS-DRM, and CP-DRM. While
we were able to compare statistical descriptors, percolation
properties, and physical properties of the three classes of
Debye random media in 2D, our analysis of 3D YT-DRM and
CP-DRM was limited by the high computational cost of gen-
erating sufficiently large (e.g., 5013 voxel) samples of these
structures with the Yeong-Torquato procedure. Hence, an
outstanding problem for future research is to further acceler-
ate the Yeong-Torquato procedure to efficiently (re)construct
large samples of two-phase media with targeted statistical
descriptors in 3D.

The large computational cost of generating Debye random
media with the Yeong-Torquato procedure underscores an
advantage of being able to effectively realize Debye random
media with overlapping, polydisperse spheres, since the cost
to generate samples of OPS-DRM does not scale appreciably
with system size or dimension. For example, we note that the
sample of YT-DRM in Fig. 9(a) took about 15 minutes to gen-
erate whereas over 2 million samples of OPS-DRM, such as
the one in Fig. 9(b), can be constructed in that time. Moreover,
recall that any microstructural descriptor for OPS systems
can be determined analytically via the canonical correlation
function formalism [33]. Given these computational advan-
tages of overlapping, polydisperse sphere models of random
media, future work could consider using such systems with
different distributions of radii f (R) to realize microstructures
with prescribed statistical descriptors.
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An intriguing extension of the present work is to apply
similar methodologies to study the degeneracies of disor-
dered hyperuniform two-phase media, which are defined by
a spectral density χ̃V (k) that tends to zero as the wave num-
ber k goes to zero [64]. As a result, hyperuniform media
are characterized by an anomalous suppression of large-scale
volume-fraction fluctuations relative to typical disordered
two-phase media. For this purpose, one can employ the
procedure of Chen and Torquato, which is a Fourier space
analog of the Yeong-Torquato procedure to realize disordered
two-phase media with general functional forms correspond-
ing to hyperuniform spectral densities [65]. Notably, it has
been shown that disordered hyperuniform media are endowed

with a variety of novel physical properties [65–78]. There-
fore, characterizing how microstructures with a prescribed
hyperuniform χ̃V (k) are degenerate can aid in the design of
multifunctional composite materials [77,79–82] with sets of
targeted physical properties.
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