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Coupled lattice Boltzmann–large eddy simulation model for three-dimensional multiphase
flows at large density ratio and high Reynolds number
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A coupled lattice Boltzmann–large eddy simulation model is developed for modeling three-dimensional
multiphase flows at large density ratios and high Reynolds numbers. In the framework of the lattice Boltzmann
method, the model is proposed based on the standard Smagorinsky subgrid-scale approach, and a reconstructed
multiple-relaxation-time collision operator is adopted. The conservative Allen-Cahn equation and Navier-Stokes
equations are solved through the lattice Boltzmann discretization scheme for the interface tracking and velocity
field evolution, respectively. Relevant benchmark cases are carried out to validate the performance of this model
in simulating multiphase flows at a large density ratio and a high Reynolds number, including a stationary droplet,
the process of spinodal decomposition, the Rayleigh-Taylor instability, the phenomenon of a droplet splashing
on a thin liquid film, and the liquid jet breakup process. The maximum values of density ratio and Re number are
1000 and 10 240, respectively. The capability and reliability of the proposed model have been demonstrated by
the good agreement between simulation results and the analytical solutions or the previously available results.
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I. INTRODUCTION

Modeling multiphase flows at large density ratios and high
Reynolds numbers has an important guiding significance in
many phenomena such as aerospace propulsion systems, food
processing, and inkjet printing. A practical and efficient mul-
tiphase model under the conditions of large density ratio and
high Reynolds number is imperative and helpful for the related
industries. In the past decades, the lattice Boltzmann (LB)
method has been proved to be a powerful tool in modeling
interfacial phenomena in multiphase flows [1,2]. In the LB
community, some multiphase LB models have been succes-
sively proposed, and they can be divided into four categories:
the color-gradient model [3,4], the pseudopotential model
[5,6], the free-energy model [7,8], and the phase-field model
[9–12]. For the last one, the phase-field theory [13–16] is
introduced into the framework of the LB method, in which
a single variable known as the order parameter is used to
monitor the transition between different phases. The phase-
field-based LB method has become one of the most popular
numerical simulation methods for dynamic multiphase flows
to date [17].

In the phase-field-based LB simulation of dynamic mul-
tiphase flows, there is a significant limitation in simulating
multiphase turbulent flow at a high Re number, which trig-
gers numerical instability for demanding a low relaxation
time. In 1999, He et al. [18] proposed an incompressible LB
model for simulating multiphase flows, in which they used an

*Corresponding author: bodong@dlut.edu.cn

index function to track the interface between different phases.
The preliminary version suffered from numerous drawbacks
including numerical instability at a large density ratio. This
issue was alleviated to a great extent by Lee and Lin [19],
and numerical results showed that Lee and Lin’s model was
capable of simulating multiphase flows at the density ratio
of 1000. Unfortunately, Zheng et al. [20] pointed out that
the two above-mentioned models cannot correctly recover the
Cahn-Hilliard equation. This problem was rectified by Zheng
et al. [20] and Lee and Liu [21] through their modified phase-
field-based LB models. In 2013, Zu and He [9] utilized two
sets of LB equations to recover the Cahn-Hilliard equation and
the divergence-free incompressible Navier-Stokes equations
for interface tracking and hydrodynamic properties, and they
simulated incompressible binary fluid systems with density
and viscosity contrasts. The Rayleigh-Taylor instability was
modeled at a Re number of 3000.

Different from the Cahn-Hilliard equation used in the
above studies, the Allen-Cahn equation was proposed for in-
terface tracking in Geier et al.’s work [22] and Wang et al.’s
work [23]. Although the equilibrium distribution functions
and source terms are different in the above two models,
both models are very comparable in terms of accuracy in
interface tracking. According to the study of Begmohammadi
et al. [24], the additional terms in recovering the conser-
vative Allen-Cahn equation in Geier et al.’s model can be
negligible legitimately, which exactly gives this model an
advantage for high-performance computing and nonuniform
grids processes. Compared with the Cahn-Hilliard equation,
the Allen-Cahn equation contains a lower-order diffusion
term. It has been pointed out that the Allen-Cahn-based model
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theoretically has higher numerical accuracy and stability
in solving the index parameter than the Cahn-Hilliard–
based one [23,25]. Following the above viewpoint, Liang
et al. [26] proposed a two-dimensional phase-field-based
single-relaxation-time (SRT) LB model for large-density-
ratio multiphase flows, in which the Allen-Cahn equation is
adopted to track the interface, and they simulated the phe-
nomenon of a droplet splashing on a thin liquid film in two
dimensions at a Re number of 500. Recently, Zhou et al.
[27] developed a multiple-relaxation-time (MRT) operator
form of the Allen-Cahn-based LB model and investigated the
Kelvin-Helmholtz instability and the Rayleigh-Taylor insta-
bility in wide ranges of density ratio, viscosity ratio, and Re
number. Meanwhile, Zu et al. [28] updated their phase-field-
based LB model for the binary fluid system by adopting the
Allen-Cahn equation for interface tracking, and Liang et al.
[29] performed the coordinate transformation and proposed an
axisymmetric lattice Boltzmann model for multiphase flows.
Using the phase-field-based LB model recovering the Allen-
Cahn equation, despite simplicity, accuracy, and robustness,
the simulation of the multiphase flow at high Re number is
still a great challenge due to the numerical instability triggered
by the large numerical gradient at the interface and a small
relaxation time. Given the application of large eddy simula-
tion (LES) in high-Re number flows, the LES is considered
to integrate within the framework of the phase-field-based
multiphase LB model.

It has already been demonstrated that LES within the LBM
framework not only can accurately describe the turbulence
hydrodynamics but also has distinct computational advantages
in improving the model robustness and adjusting relevant pa-
rameters [30]. Actually, with the increasing popularity of the
LB method, the LES has been widely used in single-phase LB
models [31–35]. While for multiphase LB models, an efficient
coupled LB-LES model capable of simulating multiphase
flows at high Re number is still lacking. A few attempts have
been made in this regard to date, such as the studies of Banari
et al. [36,37], where three-dimensional breaking waves were
investigated. The phase interface was captured by solving the
Cahn-Hilliard advection-diffusion equation, and the LES as
a subgrid-scale turbulence model was applied to the velocity
field for solving the Navier-Stokes equations. Unfortunately,
the third particle distribution function was introduced to solve
the Poisson equation for pressure correction iteratively, which
led to less efficiency and impaired the inherent simplicity of
the LBM, as argued by Lee and Lin [19]. Another is the
two-phase LB-LES model developed by Amirshaghaghi et al.
[38]. The Cahn-Hilliard equation and Navier-Stokes equations
were filtered by the LES approach. Using the proposed model,
they simulated the two-dimensional liquid sheet breakup at
different Reynolds numbers ranging 1000–6000. Considering
the advantages of the Allen-Cahn equation compared with
the Cahn-Hilliard equation in interface tracking as mentioned
above, in this work, an efficient three-dimensional multiphase
flows model is developed to fill this gap by coupling an Allen-
Cahn-based LB model and LES approach.

The proposed model in this work has the following
two innovations. First, the three-dimensional MRT colli-
sion operator is reconstructed for the Allen-Cahn equation
and Navier-Stokes equations, respectively, which has better

accuracy and stability than the SRT operator. Second, the
phase-field-based LB model and LES approach are coupled,
which indicates the feasibility to simulate the multiphase
flows at high Re numbers. The rest of this paper is organized
as follows. In Sec. II, the three-dimensional coupled LB-LES
model for multiphase flows is introduced systematically. Then
the model is verified by several classical numerical examples
in Sec. III. Finally, a brief summary is made in Sec. IV.

II. MATHEMATICAL METHOD

In this section, first, an MRT-LB model for multiphase
flows based on phase-field theory is elaborated. Then, an
essential introduction to the coupling between the LB model
and LES is given.

A. Three-dimensional MRT LB model for the conservative
Allen-Cahn equation

The conservative Allen-Cahn equation can be expressed by
[39,40]

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)], (1)

where M is the mobility and φ is the order parameter used
to capture the interface according to phase-field theory. The
vectors u and n are the fluid velocity and the unit value normal
to the interface, and the latter is written as

n = ∇φ

|∇φ| . (2)

λ is a function of the order parameter, which is defined by

λ = 4φ(1 − φ)

W
, (3)

where W is the interface thickness.
The MRT-LB evolution equation to solve the conservation

Allen-Cahn equation can be written as

fi(x + eiδt , t + δt )

= fi(x, t ) − (
M−1SM

)
i j

[
f j (x, t ) − f eq

j (x, t )
] + δt Fi,

(4)

where fi(x, t ) is the particle distribution function for the order
parameter, and f eq

i (x, t ) is its equilibrium particle distribution
function given by

f eq
i = ωiφ

(
1 + ei · u

c2
s

)
, (5)

where cs is the sound speed, ei are the discrete velocities, and
ωi are the weighting coefficients. In the present study, the
D3Q7 lattice model is adopted for solving the conservation
Allen-Cahn equation, as shown in Fig. 1.
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FIG. 1. D3Q7 lattice model.

The corresponding weighting coefficients, sound speed,
and discrete velocities are

ω0 = 1

4
, ω1−6 = 1

8
, c2

s = c2

4
, (6)

ei =
⎡
⎣0 1 −1 0 0 0 0

0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

⎤
⎦c, (7)

where c = δx/δt is the lattice speed.
The forcing distribution function Fi in the LB evolution

equation is designed as [41]

Fi =
(

1 − 1

2τ f

)
Ri =

(
1 − 1

2τ f

)
ωiei · [

∂t (φu) + c2
s λn

]
c2

s

.

(8)

Here, the explicit Euler scheme is used to compute the tem-
poral derivative ∂t (φu) = [φ(t )u(t ) − φ(t − δt )u(t − δt )]/δt .
This term is used in recovering the conservative Allen-Cahn
equation; it does not affect the precision of the model al-
though it is a first-order scheme [23,28]. τ f is the relaxation
time. For the MRT scheme, the diagonal relaxation matrix S
is given as

S = diag(s0, s1, s1, s1, s2, s3, s3). (9)

Note that when the parameters si (i = 0–3) are equal to
each other, the MRT scheme reduces to the SRT scheme. In
the D3Q7 lattice model, the transformation matrix M is given
by [42,43]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In the execution of the MRT codes, the collision process is
implemented in the moment space and the streaming process
is executed in velocity space. By premultiplying the trans-
formation matrix, one can derive the equilibrium distribution
function in moment space as

meq = M · f eq =
[
φ φux φuy φuz

3φ

4
0 0

]T

.

(11)

In the equilibrium distribution function in moment space,
ux, uy, and uz are the components of macroscopic velocity u.
In the same way; the factor Ri in forcing distribution function
can be presented in moment space as

Rm = M · Ri = [0 ∂t (φux ) + c2
s λnx ∂t (φuy) + c2

s λny ∂t (φuz ) + c2
s λnz 0 0 0]T . (12)

Thus the collision process in the moment space is written
as

m∗ = m − S(m − meq ) + δt (I − 0.5S)Rm, (13)

where I is the unit tensor and m = M · f . Besides, the relation
between the mobility M and the relaxation parameter τ f is also
derived as

M = c2
s (τ f − 0.5)δt , (14)

where τ f = 1/s1. The order parameter φ, the density ρ, and
the kinematic viscosity ν are determined by

φ =
∑

i

fi, (15)

ρ = φ − φv

φl − φv

(ρl − ρv ) + ρv, (16)

ν = φ − φv

φl − φv

(νl − νv ) + νv. (17)

B. Three-dimensional MRT-LB model for the Navier-Stokes
equations

For the incompressible two-phase flows, the fluid velocity
u in the conservative Allen-Cahn equation is governed by the
following Navier-Stokes equations [44]:

∇ · u = 0, (18)

∂ (ρu)

∂t
+ ∇ · (ρuu)

= −∇p + ∇ · [ρν(∇u + ∇uT )] + Fs + G, (19)

where p is the hydrodynamic pressure, G is the external force,
and Fs Fs is the surface tension force, which takes the potential

045305-3



AN, DONG, WANG, ZHANG, ZHOU, AND LI PHYSICAL REVIEW E 104, 045305 (2021)

FIG. 2. D3Q15 lattice model.

form of the phase-field model [45],

Fs = μ∇φ, (20)

where μ is the chemical potential, and it can be expressed as

μ = 4β(φ − φl )(φ − φv )

(
φ − φl + φv

2

)
− k∇2φ. (21)

In this work, φl = 1.0 and φv = 0 represent the liquid
phase and vapor phase, respectively, and the phase interface

is marked by the contour level φ = 0.5. Here β and k are
constants related to the interfacial thickness and the surface
tension coefficient σ as [23]

k = 3W σ

2|φl − φv|2
, β = 12σ

W |φl − φv|4
. (22)

The MRT-LB equation to solve the Navier-Stokes equa-
tions reads as

gi(x + eiδt , t + δt )

= gi(x, t ) − (
�−1��

)
i j

[
g j (x, t ) − geq

j (x, t )
] + δt Gi,

(23)

where gi(x, t ) is the particle distribution function, and
its equilibrium particle distribution function geq

i (x, t ) is
given by

geq
i =

{ p
c2

s
(ωi − 1) + ρsi(u), i = 0,

p
c2

s
ωi + ρsi(u), i �= 0

(24)

with

si(u) = ωi

[
ei · u

c2
s

+ (ei · u)2

2c4
s

− u · u
2c2

s

]
. (25)

In the present study, the D3Q15 lattice model is
adopted, as displayed in Fig. 2. The corresponding weight-
ing coefficients, sound speed, and discrete velocities are
defined as

ω0 = 2

9
, ω1−6 = 1

9
, ω7−14 = 1

72
, c2

s = c2

3
, (26)

ei =

⎡
⎢⎣

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

⎤
⎥⎦c. (27)

The forcing distribution function Gi in the evolution equation is formulated as

Gi =
(

1 − 1

2τg

)
Ti =

(
1 − 1

2τg

)
ωi

(
ei · F

c2
s

+ u∇ρ : eiei

c2
s

)
, (28)

where F = Fs + G is the total force, and τg is the relaxation time. For the MRT operator, the diagonal relaxation matrix � is
adopted:

� = diag(s′
0, s′

1, s′
2, s′

3, s′
4, s′

3, s′
4, s′

3, s′
4, s′

5, s′
5, s′

5, s′
5, s′

5, s′
6). (29)
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In the D3Q15 lattice model, the transformation matrix � is given by [46]

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

16 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

0 0 0 0 0 −4 4 1 1 1 1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1

0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1

0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

The collision process of the MRT-LB equation for Navier-Stokes equations is also carried out in moment space. After
some algebraic manipulations, the equilibrium distribution function qeq and the factor Tm in forcing distribution function in
the moment space can be derived as

qeq = � · geq =
[

0, 3p + ρu2,−(45p + 5ρu2), ρux,−7ρux

3
, ρuy,−7ρuy

3
, ρuz,−7ρuz

3
, ρ

(
2u2

x − u2
y − u2

z

)
,

ρ
(
u2

y − u2
z

)
, ρuxuy, ρuyuz, ρuxuz, 0

]T

, (31)

Tm = � · Ti =
[

(ρl − ρv )u · ∇φ,− (ρl − ρv )u · ∇φ

3
,−7(ρl − ρv )(u∇φ)

3
, Fx,−7Fx

3
, Fy,−7Fy

3
, Fz,−7Fz

3
,

2(ρl − ρv ) · (2ux∂xφ − uy∂yφ − uz∂zφ)

3
,

2(ρl − ρv ) · (uy∂yφ − uz∂zφ)

3
,

(ρl − ρv ) · (ux∂yφ + uy∂xφ)

3
,

(ρl − ρv ) · (uy∂zφ + uz∂yφ)

3
,

(ρl − ρv ) · (ux∂zφ + uz∂xφ)

3
, 0

]T

. (32)

The collision process in the moment space reads as

q∗ = q − �(q − qeq ) + δt (I − 0.5�)Tm, (33)

where q = � · g is the particle distribution function in moment
space. The relation between the kinematic viscosity ν and the
relaxation parameter τg is given by

ν = c2
s (τg − 0.5)δt , (34)

where τg = 1/s′
5. Note that in the simulations, the relaxation

parameter s′
2 is less than 1.0 to avoid divergence. The values of

other relaxation parameters in S and � are set between 0 and
2. The macroscopic quantities such as velocity u and pressure
p are determined by

ρu =
∑

i

eigi + 0.5δt F, (35)

p = c2
s

(1 − ω0)

[∑
i �=0

gi + 0.5δt (ρl − ρv )u · ∇φ. + ρs0(u)

]
.

(36)

The gradient term and the Laplace operator are calculated
via the second-order isotropic central scheme and are ex-
pressed as

∇φ(x) =
∑
i �=0

ωieiφ(x + eiδt )

c2
s δt

, (37)

∇2φ(x) =
∑
i �=0

2ωi[φ(x + eiδt ) − φ(x)]

c2
s δ

2
t

. (38)

It should be noted that the difference scheme not only can
preserve a second-order accuracy in space but also can ensure
the global mass conservation of a multiphase system [47].

C. Large eddy simulation

Numerical studies have shown that the applications of the
LB method for high Reynolds number flows, without mod-
eling unresolved small-scale effects on large-scale dynamics,
result in numerical instability [48]. This is essential because a
high Re number requires a relaxation time close to 0.5. In this
work, the LES is combined with the LB model to capture the

045305-5



AN, DONG, WANG, ZHANG, ZHOU, AND LI PHYSICAL REVIEW E 104, 045305 (2021)

turbulent scale. The main idea behind the LES is to resolve
the large-scale eddies and mimic the presence of small-scale
structures via the modeling of subgrid scales [38]. Using
the LES approach, a filtering operation is applied to the above
phase-field-based LB model and it is defined as

�(x) =
∫

�(x)G(x, x′)dx′, (39)

where � represents the physical quantity under consideration
and G is the filter function, which is given by

Gi(xi, x′
i ) =

{
1/i, |xi − x′

i| � i/2

0, |xi − x′
i| > i/2

(40)

with i being the filter width in the direction i.
Note that the filtering operation is not directly applied to

the calculation of the density and kinematic viscosity, and
both of them are obtained from the filtered value of the order
parameter,

ρ = φ̄ − φv

φl − φv

(ρl − ρv ) + ρv, (41)

ν = φ̄ − φv

φl − φv

(νl − νv ) + νv. (42)

1. Filtered conservative Allen-Cahn equation and Navier-Stokes
equations

When the filtering operation is applied to Eq. (1), it can be
written as

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)]. (43)

Considering the incompressibility hypothesis ∇ · u = 0,
the filtered form of the conservative Allen-Cahn equation can
be further rearranged as

∂φ

∂t
+ ∇ · (φu) + τφ = ∇ · [M(∇φ − λn)] (44)

with τφ = ∇ · (φu) − u∇ · φ the interfacial subgrid term. Ac-
cording to Chesnel et al. [49], except for the atomization area,
the contribution of the interfacial terms to the total subgrid
scale terms of the LES transport equation is very small. Thus,
one can simply omit this term without considerable loss of
accuracy, and the filtered conservative Allen-Cahn equation
can be written as

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)]. (45)

In addition to the conservative Allen-Cahn equation for
interface capturing, the momentum equation including the
surface tension and body force can be filtered as

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT )]

− ρ∇ · τSGS + μφ∇φ + G, (46)

where τSGS = uu − uu = −2νt (∇u + ∇uT ) is the Reynolds
stress with νt being the subgrid kinematic viscosity.

2. Filtered form of discrete Boltzmann equations

When the filtering operation is employed, the filtered parti-
cle distribution function is assumed to approach a local filtered
equilibrium distribution, which can be chosen to depend only
on local filtered mean quantities. Here, the filtered form of
discrete LBE corresponding to the Navier-Stokes equations is
written as

gi(x + eiδt , t + δt ) − gi(x, t )

= −(�−1�+�)i j
[
g j (x, t ) − geq

j (x, t )
] + δt (I − 0.5�+)Ti,

(47)

where geq
j and Ti are the filtered equilibrium distribution func-

tion and filtered force distribution function, and �+ is the
updated diagonal relaxation matrix considering the eddy kine-
matic viscosity due to the coupling of LES. Thus according to
Eq. (34), the updated relaxation parameter s′

5 can be calculated
as

s′
5 = 1/τg,total = 1

/(
ν + νt

c2
s δt

+ 0.5

)
. (48)

In the calculation of viscosity in Eq. (48), the first term ν is
the physical kinematic viscosity and the second term νt is the
eddy kinematic viscosity. Adopting the standard Smagorinsky
approach [50], the eddy kinematic viscosity is determined by

νt = (Csx)2|S|, (49)

where Cs is the Smagorinsky constant, x is the filter width,
namely grid spacing, and |S| is the magnitude of strain rate
tensor, which is calculated by

∣∣S∣∣ =
√

τ 2
g + 18

√
2Q(Csx)2

ρ
− τg

6(Csx)2 , (50)

where Q is the nonequilibrium stress tensor, which is given as

Q = �i j�i j (51)

with

�i j =
∑

α

eαieα j
(
gα − geq

α

)
. (52)

In the same way, the filtered form of the discrete Boltz-
mann equation of the conservative Allen-Cahn equation is
written as

fi(x + eiδt, t + δt ) − fi(x, t )

= −(
M−1SM

)
i j

[
f j (x, t ) − f eq

j (x, t )
] + δt (I − 0.5S)Ri.

(53)

Except for the kinematic viscosity and density, other
macroscopic quantities such as order parameter, velocity, and
pressure are filtered by

φ =
∑

i

f i, (54)

ρu =
∑

i

eigi + 0.5δt (μ∇φ + G), (55)
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FIG. 3. Numerical validation by Laplace’s law.

p = c2
s

1 − ω0

[∑
i �=0

gi + 0.5δt (ρl − ρv )u · ∇φ + ρs0(u)

]
.

(56)

III. SIMULATIONS AND DISCUSSIONS

Three-dimensional simulations require massive computa-
tional resources. Considering the efficient parallel perfor-
mance, the three-dimensional model has been coded with
the Message Passing Interface (MPI) parallel library in the
following simulations.

In this section, four benchmark cases, including stationary
droplet, spinodal decomposition, Rayleigh-Taylor instability,
and droplet splashing on a thin liquid film, are simulated to
validate the present three-dimensional LB-LES multiphase
model. Attempts have been made to conduct detailed com-
parisons between the simulation results and the analytical
solutions or the available results in previous studies. Finally,
the jet-breakup phenomenon is investigated and different
breakup regimes are presented and discussed.

A. Stationary droplet

At the initialization, a droplet suspends in the vapor phase
in an 80 × 80 × 80 lattices system. The periodic boundary is
applied in all directions. The density ratio of the liquid phase
to the vapor phase is set to be 1000. The distribution of the
order parameter is given as

φ(x, y, z) = φl + φv

2
+ φl − φv

2
tanh

[
2

W

(
R0 −

√
(x − LX /2)2 + (y − LY /2)2 + (z − LZ/2)2

)]
, (57)

where R0 is the initial radius of the droplet and W is the width of the phase interface. When the system reaches a steady state,
the pressure difference across the interface of a three-dimensional droplet can be calculated as

p = 2σ

R
, (58)

where σ is the surface tension coefficient and R is the droplet radius.
Three surface tension coefficients at different droplet radii of 20, 25, and 30 are considered. Figure 3 quantitatively compares

the present numerical results with the analytical solutions. It can be seen that the numerical results agree well with the linear fit
denoted by the solid lines.

According to Eqs. (57) and (16), one can drive the corresponding density profile as

ρ(x, y, z) = ρl + ρv

2
+ ρl − ρv

2
tanh

[
2

W

(
R −

√
(x − LX /2)2 + (y − LY /2)2 + (z − LZ/2)2

)]
. (59)

Thus, the analytical density distribution can be obtained.
Figure 4 depicts the density distribution as a function of the
distance from the droplet center. The solid line is the values
corresponding to the analytic solution; two different symbols
are the numerical results obtained by adopting the MRT op-
erator and SRT operator for comparison. To quantitatively
describe the accuracy of the two models, the following relative
error is used:

Eρ =
∑

x

∣∣ρn
x (x) − ρa

x (x)
∣∣

∑
x

∣∣ρa
x (x)

∣∣ , (60)

where the superscripts n and a denote the numerical and ana-
lytical solutions. The values of Eρ for MRT and SRT models
are 0.25% and 0.49%, respectively. In addition, the changes
of the maximal kinetic energy obtained by the MRT and SRT

operators at early times are compared in Fig. 5. Here, the
maximal kinetic energy is calculated as Emax = ρ|u|2/2, and
the dimensionless time t∗ is defined as t∗ = tσ/(ρvνvR). As
shown in Fig. 5, for the MRT model, the Emax varies from
10–13 to 10–11 at the initial stage and reaches a steady value
with a magnitude of 10–12, while for the SRT model, it ranges
10–12–10–10 and reaches a steady value with a magnitude of
10–10.

The spurious velocity around the interface is a commonly
concerned problem in LB approaches for two-phase flows.
In the current study, the spurious velocity is computed by

us =
√

u2
x + u2

y + u2
z , where ux, uy, and uz are the maximum

velocity value in three dimensions. The numerical experi-
ments indicate that the spurious velocities are 1.51 × 10–7 and
3.36 × 10–6 for the MRT and SRT models with a density ratio
of 1000. It has been reported that the maximum amplitude
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FIG. 4. Density profiles at y = LY/2 and z = LZ/2.

of spurious velocities in an improved Shan-Chen model [5]
has the order of 10–3. Recently, Ba et al. [51] developed
an improved color-gradient-based LB model for high density
ratios, which produced spurious velocities with the order of
10–5. As for the Cahn-Hilliard type of LB model [10], they can
obtain spurious velocities at the level of 10–6. From the above
discussion, it can be concluded that the present LB model can
produce relatively small spurious velocities.

B. Spinodal decomposition

Spinodal decomposition, also referred to as the separation
of phases and components, is an important property of mix-
tures of immiscible fluids [9]. This example focuses on the
demonstration of the capability of the model in simulating
phase separation, and the growth of the domain size with
time is investigated quantitatively. The phase separation is
divided into nucleation growth and spinodal decomposition in
the classical dynamic theory of phase separation. The dynamic
behavior of spinodal decomposition is scaled by the domain
size. If the inertial term in the Navier-Stokes equation domi-
nates the viscous term (the viscosity is small), a t2/3 growth

FIG. 5. Maximum kinetic energy versus time.

FIG. 6. Separation of binary fluid: distribution of order parame-
ters shown in grayscale.

law can be obtained to describe the growth of the domain
size [52–54]. The t2/3 growth law has been reported in sev-
eral numerical simulations, such as GinzburgLandau models
[55], dissipative particle dynamics [56], and lattice Boltzmann
models [57,58].

In this section, the separation of mixed fluid is simulated in
an 80 × 80 × 80 lattice system by using the present model.
At the initial state, the order parameter is treated as a random
distribution with perturbation of 1‰ around 0.5, which reads
as

φ(x, y, z) = 0.5 +
(

0.001 − rand%10

10 000

)
, (61)

where rand%10 is the remainder obtained via a random num-
ber divided by 10. The surface tension coefficient is set as 0.1
for a fast separation. The interface width is fixed at W = 3.
The velocity is zero in the whole domain, and the viscos-
ity ratio and the density ratio are 1 and 1000, respectively.
Figure 4 shows the evolution process of the spinodal de-
composition, in which the separation of different phases can

FIG. 7. The domain size R versus time step t.
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FIG. 8. Schematic diagram for the Rayleigh-Taylor instability.

be observed. Here, the dimensionless time is normalized by
t∗ = tσ/(ρlνlW ). The spinodal decomposition process takes
a pretty long time cycle for complete phase separation in three
dimensions. And it takes more time in the late period than the
beginning. The order parameter is almost 1.0 and 0 for the two
phases at the time of 46.67, as presented in Fig. 6. Foreseeably,
the final form of separation should be expressed as a sphere
suspending in another phase.

To quantify the domain coarsening rate succinctly and ef-
fectively, the time evolution of the domain size is calculated
using the standard “broken bond” method [58–60]. Using this
method, the domain size is calculated as

R(t ) = V

Nx + Ny + Nz
, (62)

where V is the volume of the system and Ni (i = x, y, z)
is the total number of pairs of nearest neighbor sites with
one order parameter larger than 0.5 and another smaller than
0.5 in the i direction. Figure 7 shows the logarithm of the
domain size R(t) as a function of the logarithm of the time
steps. The dotted line corresponds to a growth exponent
2/3 and it serves as a guide to the eye only. The simu-
lation result shows a good agreement with the R(t) ∼ t2/3

growth law.

FIG. 9. Snapshots of the interface evolution at Re = 1024 (left)
and Re = 10 000 (right).

FIG. 10. Comparison of the bubble, saddle, and spike front po-
sitions at Re = 1024 between present results and those of He et al.
[61].

C. Rayleigh-Taylor instability

In this section, a benchmark problem of the Rayleigh-
Taylor instability (RTI) is simulated. The RTI is a classical and
common instability phenomenon, which involves complex
interfacial interactions [61]. Figure 8 sketches the schematic
diagram for RTI and the positions of bubble, saddle, and spike.
As shown in Fig. 8, a layer of heavy fluid with density ρl

is located on the top of the light one with density ρv . As
stated in Ref. [18], any disturbance at the interface can be
accelerated by gravity to produce downward-moving spikes
of heavy fluid and upward-moving bubbles of light fluid.
This is the so-called RTI, a crucial type of instability that
is responsible for interface destabilization. The simulation
is implemented in a three-dimensional (3D) domain of size
d × d × 4d with periodic and no-slip boundary conditions
in the streamwise and normal-wall directions, respectively.
The characteristics of this phenomenon are governed by two
nondimensional parameters of the Reynolds number and the
Atwood number, which can be defined as Re = d3/2g1/2/ν

and At = (ρl − ρv )/(ρl + ρv ), respectively. Here, d is the
characteristic length or wavelength, and g is the gravity ac-
celeration, as depicted in Fig. 8. The time is normalized as
t∗ = t/

√
d/g.

At the initial time, the order parameter profile, that dis-
tributes smoothly across the interface with an amplitude of
0.05d , is given as

FIG. 11. Evolution of the fluid interface at the planes of x = 0,
x = 0.5d , and x = y (t ∗ = 1.0, 2.0, 3.0, and 4.0 from left to right).
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FIG. 12. Schematic diagram for a droplet splashing on a thin
liquid film.

φ(x, y, z) = φl + φv

2
+ φl − φv

2
tanh

{
2

W

[
z − 0.05d

×
(

cos
2πx

d
+ cos

2πy

d

)
− 2d

]}
, (63)

where the interface width W is fixed at 4. In the simulation,
the computational domain is 128 × 128 × 512, and the key
parameters are fixed as At = 0.5 and

√
gd = 0.04. The surface

tension coefficient is set to be 10–4, and the viscosity ratio is
1.0. To incorporate the gravitational effect, the following body
force G in the z direction is applied to the fluids:

G =
[
0 0 −

(
ρ − ρl + ρv

2

)
g
]
. (64)

Figure 9 gives the evolution of the fluid interface at Re =
1024 and Re = 10 000. It can be seen that when the Re
number is 1024, the heavy fluid and the light one penetrate
into each other early and then the bubble, saddle, and spike
are formed due to the gravity effect. After that, the heavy
fluid rolls up along the flank of the spike, and a mush-
roomlike structure appears, which can be attributed to the
Kelvin-Helmholtz instability providing the rolling motion of
the interface [27]. When the Re number is 10 000, the ba-
sic morphology of the interface at t∗ = 1.0 and 2.0 is the
same as those of Re = 1024, while at t∗ = 3.0 and 4.0 the
interface tends to disintegrate and liquid ligaments and small
droplets appear. The pattern of the liquid interface obtained
by the present model compares well with the previous results
[62,63]. In Fig. 10, the front positions of the bubble, sad-
dle, and spike at Re = 1024 are plotted, and the curves are
compared with the results of He et al. [61]. It can be seen
that the two results are in good agreement, which verifies
the ability of the current coupled LB-LES model to simulate
three-dimensional unsteady multiphase flows.

To track more closely the interface evolution, Fig. 11 fur-
ther presents the evolution of the fluid interface at the diagonal
vertical plane x = y and the vertical planes x = 0 and x =
0.5d at Re = 1024. The interfaces in the vertical planes x = 0
and x = 0.5d are similar to those in the two-dimensional RTI
[12,27]. The heavy-fluid stem and roll-up at the plane of x = 0
is smaller than those at x = 0.5d . However, the interface at
the plane of x = y is quite different. The two-layer roll-up
phenomenon can be seen in this plane, which is caused by
the instabilities at the spike tip and saddle point [61].

TABLE I. Parameters for four breakup regimes of liquid-liquid
system.

Case 1 2 3 4
Regime dripping varicose sinuous atomization

Re 50 200 2048 8192
Oh 0.019 0.0067 0.0063 0.022

D. Droplet splashing on a thin liquid film

In this section, the three-dimensional simulation of a
droplet splashing on a thin liquid film is performed to validate
the proposed model. A spherical droplet of diameter D with
velocity U hits against a thin liquid film of height H in an am-
bient vapor field, as sketched in Fig. 12. Two nondimensional
parameters are introduced to describe this phenomenon: the
Reynolds number and the Weber number, which can be de-
fined as Re = ρlUD/μl and We = ρlU 2D/σ , respectively,
where σ is the surface tension coefficient. In the simulation,
the density ratio and viscosity ratio are ρl/ρv = 1000 and
μl/μv = 40, respectively. The dimensionless time is normal-
ized by t∗ = t/(D/U ).

According to Rieber and Frohn [64], the radial growth
of the splashing lamella can be described by the following
formula:

r

D
=

(
6H

D

)−1/4√
t∗. (65)

Note that in the above relation, t∗ = 0 is the time of the
first contact between the droplet and the liquid film, and D is
the droplet diameter.

In the following, two cases are simulated and the results
are compared with the above relationship. The computational
domain is set to be 256 × 256 × 128 lattices. For case 1,
nondimensional parameters Re and We are set to be 500 and
12 800, respectively. For case 2, Re and We are set to be
1000 and 8000, respectively. Figure 13 shows the evolutions
of interface morphology for the droplet splashing on a thin
liquid film for two cases. The dimensionless time t∗ is 1.0,
1.5, 2.0, 2.5, 3.0, and 3.5 for each of these subgraphs. As can
be seen from the evolution of interface morphology for case
1, a surface wave moves outwards from the impact center, and
a circle of neat splashing lamella arises after the impact, while
the secondary droplets are not founded. For case 2, a splashing
lamella, thinner and higher than case 1, is ejected from the
impact center immediately and grows radially outwards. On
the top of the lamella, some breakup can be observed at
t∗ = 2.5. After, some small droplets separate from the lamella
and splash away.

Figure 14 depicts the evolution process of the vertical cross
sections at x = LX/2 of the splashing lamella for case 2.
The horizontal and vertical coordinates, namely the y and z
directions, are scaled by droplet diameter. The time interval
between two adjacent phase interface outlines is half of the
dimensionless time. As can be seen from the changes of the
outlines, the secondary droplets are produced symmetrically.
The lamella tends to disintegrate under the action of the inertia
and three-dimensional synechia effect. Figure 15 plots the
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FIG. 13. Evolution of interface morphology for droplet splashing on a thin liquid film (time t∗ is 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 from left to
right for both cases).

evolutions of the radial distance of the splashing lamella for
case 1 and case 2. The square and triangle points are the
simulation results of case 1 and case 2, respectively, and the

FIG. 14. Vertical cross sections of the splashing lamella for case 2.

solid line is the radial growth curve proposed in Ref. [64].
The variation trends of the simulation results conform to the
relation curve.

E. Liquid jet breakup

A liquid injected into another fluid is a typical multiphase
flow, while the breakup of the liquid jet is essentially three-
dimensional flow and possesses multiscale phenomena such
as droplet pinch-off and atomization. According to Ohnesorge
[65], the breakup regimes of the injected liquid are classified
into four types: (0) dripping, (I) varicose, (II) sinuous, and
(III) atomization.

In this section, different breakup regimes of the liquid-
liquid system and liquid-gas system are simulated using the
proposed LB-LES coupled model, respectively. Figure 16 il-
lustrates the schematic diagram for liquid jet simulation. In
the initial state, the computational domain is filled with still
continuous phase. The dispersed phase in the circular area
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FIG. 15. Evolutions of the radial distance of splashing lamella
for case 1 and case 2.

at the upper boundary is injected into the continuous phase
from the inlet with the diameter of D, and the jet velocity
is set as U. In the simulations, the horizontal and longitude
directions are set to be the periodic boundary, and at the
lower boundary, the convection outlet boundary is used [66].
Two nondimensional parameters of the Reynolds number and
the Ohnesorge number are used to characterize this jet flow,
which can be defined as Re = ρlUD/μl=UD/νl and Oh =
μl/

√
ρlσD, respectively. It is noted that in the present study,

time is nondimensionalized by the inlet diameter D and the
inlet velocity U as t∗ = t

D/U .

1. Liquid-liquid system

In this section, the liquid jet breakup of the liquid-liquid
system is simulated in a 120 × 120 × 450 lattice system by
using the proposed model. The density ratio is fixed at 2.0, and
four breakup regimes are produced and located on the Oh-Re
map, as depicted in Fig. 21. Nondimensional parameters of

FIG. 16. Schematic diagram for liquid jet simulation.

FIG. 17. Simulation results of case 1 in the dripping regime of
the liquid-liquid system.

Re number, Oh number, and morphological structure of liq-
uid phase are taken as the references to distinguish different
regimes; so it is with the liquid-gas system.

Table I lists the parameters for four cases, corresponding
to different breakup regimes. Case 1 is the simulation in the
dripping regime, as given in Fig. 17. As t∗ is about 16, the first
droplet is almost formed. Under the action of gravity and sur-
face tension, the droplet disconnects from the liquid column
and falls downward. The pinch-off effect can be observed at
the joint, which is caused by surface tension [67]. After the
first droplet falls off, the second droplet begins to form and
falls eventually at about t∗ = 30. Figure 18 shows the liquid
jet breakup in the varicose regime labeled by case 2. Different
from case 1, the liquid column in case 2 is very long. In the
process of the liquid column growth, some droplets separate
from the end of the liquid column constantly. As can be seen
from Fig. 18, the dispersed phase shows a distinct asymmetry,
and velocities perpendicular to the vertical direction appear.
Furthermore, this asymmetry and instability are obvious in
sinuous and atomization regimes.

Figure 19 displays the interface evolution of case 3 in the
sinuous regime. It is found out that a mushroomlike head
shape appears at the beginning. At t∗ = 15, a significant in-
terface instability emerges at the front of the liquid column.

FIG. 18. Simulation results of case 2 in the varicose regime of
the liquid-liquid system.
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FIG. 19. Simulation results of case 3 in the sinuous regime of the
liquid-liquid system.

Part of the dispersed phase falls off and forms liquid filament
or droplets. At t∗ = 26, a further breakup occurs at the top
of the liquid column, and many droplets are generated due to
interface instability. According to Saito et al. [68], this interfa-
cial instability is triggered by the return flow of the mushroom
head generated in the initial stage of jet injection, although no
artificial spatial or temporal perturbation has been assumed in
the initial or boundary conditions. The atomization regime is
exhibited in Fig. 20. Similar to case 3, a mushroomlike head
appears at the early stage, then the dispersed phase begins to
break. A mass of tiny droplets and irregular liquid silk peel
away from the dispersed phase. Compared with case 3, more
and smaller tiny droplets with a wider jet scope are produced.
And in detail, the liquid column is mainly composed of many
deformed liquid filaments, and its surrounding and internal
clearance are filled with many small droplets.

In Fig. 21, the locations of four cases in different regimes
are pointed out on the Oh-Re map, which is proposed by
Saito et al. [69]. Case 1 and case 2 are in the dripping
or varicose area, case 3 and case 4 are in the sinuous and
atomization area, respectively. Different areas are separated
by dashed lines. The characteristics of dripping (regime 0),
varicose breakup (regime I), sinuous breakup (regime II), and
atomization (regime III) are successfully simulated.

FIG. 20. Simulation results of case 4 in the atomization regime
of the liquid-liquid system.

FIG. 21. Locations of four cases on the Oh-Re map of the liquid-
liquid system proposed by Saito et al. [69].

2. Liquid-gas system

In this section, the liquid jet breakup of the liquid-gas
system is simulated in a 120 × 120 × 450 lattice system.
The density ratio is fixed at 200.0, and different cases in the
varicose regime, sinuous regime, and atomization regime are
produced and pointed out on the Oh-Re map. Table II lists
the parameters used in the simulations. The maximum Re
number in this study reaches 104, which fully confirms the
performance of this three-dimensional multiphase LB-LES
model at a high Reynolds number.

Figures 22–24 present the three cases in different breakup
regimes, respectively. As can be seen from Figs. 22 and 18,
the two cases in the varicose regime of the liquid-gas sys-
tem and the liquid-liquid system are similar. For the cases in
the sinuous regime and atomization regime of the liquid-gas
system, as shown in Fig. 23 and Fig. 24, the mushroomlike
head no longer appears at the early stage. More and smaller
independent droplets are produced compared with cases in
the liquid-liquid system, and the head of the liquid column
shows a complete decomposition state. By comparing the
liquid phase structure of case 3 in the atomization regime and
case 2 in the sinuous regime, some details are different. First,
the liquid column obtained in the former is shorter than that
in the latter, which means the liquid phase disintegrates early
in the former. Second, there are more and smaller droplets
produced in the former than in the latter. Third, the atomiza-
tion angle is larger in the atomization regime than that in the
sinuous regime. The liquid phase structure combined with the
parameters Re and Oh is important proof to distinguish the
above two regimes.

Analogously, the locations of the above three cases on
the Oh-Re map of the liquid-gas system are displayed in

TABLE II. Parameters for different breakup regimes of liquid-
gas system.

Case 1 2 3
Regime varicose sinuous atomization

Re 1000 6000 10240
Oh 0.002 0.007 0.02
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FIG. 22. Simulation results of case 1 in the varicose regime of
the liquid-gas system.

Fig. 25, which is obtained by Kolev [70]. Two dashed lines
are outlined to be the boundaries of regime 0/I, II, and III,
and the phase interface contour maps of the three cases are
pasted beside. A conclusion can easily be drawn that a large
density ratio or a high Re number enhances the breakup pro-
cess. The liquid jet disintegrates more thoroughly at a larger
density ratio compared with the liquid-liquid system. More
and smaller tiny droplets can be produced at a higher Re
number in the atomization regime compared with the sinuous
regime.

On the Oh-Re map of the liquid-liquid system, as shown
in Fig. 21, the ranges of Re and Oh are 10–104 and 10–3–1.
For the liquid-gas system, the ranges of Re and Oh are
50–105 and 5 × 10–4–0.2, as displayed in Fig. 25. There is
no direct correlation between Re number, Oh number, and
different breakup regimes. Compared with the liquid-liquid
system, the value of the Re number is larger in the liquid-
gas system, while for the Oh number, its value is smaller
than that in the liquid-liquid system. Different physical prop-
erties of the continuous phase show different shear forces

FIG. 23. Simulation results of case 2 in the sinuous regime of the
liquid-gas system.

on the dispersed phase. In general, for the liquid-gas sys-
tem, a higher Re number and a smaller Oh number are
needed to achieve different regimes than in the liquid-liquid
system.

Given the difficulty for the simulation of liquid jet breakup
in two-phase flow, this case is used to examine the stability
of the present model. As summarized in Table III, the density
ratios and Re numbers used in the studies of Saito et al. [68]
and Amirshaghaghi et al. [38] are listed, and their values in
the stability test of the present 3D MRT model only and the
present coupled LB-LES model are given. In the study of
Saito et al. [68], the density ratio is 1.4, and the maximum
Re number is 3400. In the study of Amirshaghaghi et al. [38],
the Re number can reach 6000 when the density ratio is 100,
and the Re number is set 2000 at the density ratio of 250.
While in our tests for the present coupled LB-LES model, the
Re number can reach more than 10 000 at the density ratio of
200. Consequently, the present coupled LB-LES model has a
significant improvement in stability at large density ratios and
high Re numbers compared with the present 3D MRT model
only and the previous studies.

TABLE III. Comparison of model stability among the previous studies, the present MRT model only, and the present coupled LB-LES
model at different density ratios and Re numbers.

Work Density ratio Re number Stability

Numerical results of Saito et al. [68] 1.4 3400
Numerical results of Amirshaghaghi et al. [38] 40 3000

100 6000
250 2000

The present results obtained by the 3D MRT model only 1 8000 convergent
200 1000 convergent

2500 divergent
600 500 convergent

1500 divergent
1000 100 convergent

500 divergent
The present results obtained by the coupled LB-LES model 200 15 000 convergent

600 5000 convergent
10 000 divergent

1000 3000 convergent
8000 divergent
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FIG. 24. Simulation results of case 3 in the atomization regime
of the liquid-gas system.

IV. CONCLUSIONS

In this work, a coupled three-dimensional LB-LES model
is proposed for modeling multiphase flow at large density
ratios and high Re numbers. The MRT collision operator is
applied for the LB scheme, and the Smagorinsky approach
is used to perform the filtering operation. The conservative
Allen-Cahn equation is discretized to track the phase inter-
face in the framework of the LBM. Then the Rayleigh-Taylor
instability and the phenomenon of droplet splashing on a thin
liquid film are carried out. The simulation results are in good
agreement with the previous studies and the analytical solu-
tions, respectively. Finally, different regime cases in the liquid

FIG. 25. Locations of three cases on the Oh-Re map of the
liquid-gas system proposed by Kolev [70].

jet breakup process of the liquid-liquid system and liquid-gas
system are simulated, respectively. The maximum value of
the Re number can reach 10 240, and the proposed model
shows a good performance in simulating three-dimensional
multiphase flows at a high Re number.
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