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Equilibrium properties of warm dense deuterium calculated by the wave packet molecular
dynamics and density functional theory method
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A joint simulation method based on the wave packet molecular dynamics and density functional theory
(WPMD-DFT) is applied to study warm dense deuterium (nonideal deuterium plasmas). This method was devel-
oped recently as an extension of the wave packet molecular dynamics (WPMD) in which the equations of motion
are solved simultaneously for classical ions and semiclassical electrons represented as Gaussian wave packets.
Compared to the classical molecular dynamics and WPMD simulations, the method of WPMD-DFT provides a
more accurate representation of quantum effects such as electron-ion coupling and electron degeneracy. It allows
studying nonadiabatic dynamics of electrons and ions in equilibrium and nonequilibrium states while being more
accurate and efficient at high densities than WPMD and classical molecular dynamics. In the paper, we discuss
particular features of the method such as special boundary conditions and the procedure of isentrope calculation
as well as the results obtained by WPMD-DFT for the shock-compressed deuterium. The compression isentrope
and principal Hugoniot curves obtained by WPMD-DFT are compared with available experimental data and
other simulation approaches to validate the method. It opens up a possibility of further application of the method
to study nonequilibrium states and relaxation processes.
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I. INTRODUCTION

A combination of the wave packet molecular dynamics
(WPMD) simulation technique and the density functional the-
ory (DFT) called WPMD-DFT was proposed recently [1,2].
The area of applicability of this new method includes equilib-
rium properties and dynamical (nonequilibrium) processes in
electron-ion nonideal (strongly coupled) plasmas and warm
dense matter such as the equation of state, electron-ion re-
laxation, electron and ion plasma waves, plasma conductivity,
reflectivity, diffusion, etc. These properties are of importance
in view of recent experiments with shock-compressed gases
[3,4], laser ablation [5,6], and interaction of femtosecond laser
pulses with nanoparticles [7–9].

The method of WPMD for simulations of nonideal
electron-ion plasmas was developed in [10–12]. This method
was meant as an extension of the classical molecular dynam-
ics (MD) commonly used to study such systems [13–16]. In
both MD and WPMD methods the electrons and ions are
represented as particles for which the equations of motion are
solved. As opposed to the Born-Oppenheimer approximation,
where quantum electrons are treated statically, the full dynam-
ical approach allows one to simulate nonadiabatic processes
such as electron-ion relaxation [14,17], oscillation of elec-
trons in nanoclusters [9,18], electron plasma waves [14,19],
etc. Note that these methods should be distinguished from the
molecular dynamics of atoms typical for simulations of simple
molecules, liquids, solids, polymers, and biological systems
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where the electronic degree of freedom is incorporated in the
interatomic interaction.

In the classical MD models for nonideal plasmas the in-
teraction between particles, including electrons, is described
mostly by the Coulomb potential corrected at short dis-
tances to account for quantum effects (see [20,21]). Thus,
the classical MD requires the choice of a particular form of
electron-ion and electron-electron pseudopotentials describ-
ing interaction at short distances. These pseudopotentials and
their dependence on the thermodynamic temperature are often
the subjects of debate.

The idea of WPMD is to replace pointlike electrons with
Gaussian wave packets. The wave packet is a simple spatially
localized form of a single electron wave function that depends
on a small number of parameters. The WPMD approach relies
more on first principles than the classical MD. For example,
the effective electron-ion and electron-electron pseudopoten-
tials are no longer required because electrons are treated as
quantum particles. However, WPMD is less accurate in de-
scribing atoms and molecules than DFT or first-principles
quantum chemistry. The variational freedom in the wave func-
tion expansion is very restricted in WPMD, as it is usually
limited to eight parameters per electron. In its original formu-
lation, the many-electron wave function in WPMD is given
by the Hartree product so that exchange-correlation effects are
missing as well. In fact, this is the price to pay for numerical
efficiency and the ability to study nonadiabatic processes.

There are several simulation methods which may be re-
garded as extensions of the WPMD approach. In the method
of electron force field (eFF) [22] the effective electron in-
teractions (pseudopotentials) are reintroduced to tune the
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atomic bound state energies and to account for the electron
exchange effects. In the antisymmetrized wave packet molec-
ular dynamics (AWPMD) the many-body wave function for
electrons with the same spin projection is antisymmetrized
using the unrestricted Hartree-Fock approximation [23–25].
Another branch of WPMD methods uses the representation of
a single electron wave function by multiple Gaussian wave
packets which significantly improves the bound state ener-
gies [26–28]. All these modifications of the original WPMD
approach except for eFF reduce the simulation performance
significantly.

In [1,2] a new WPMD modification was proposed where
a single Gaussian wave packet per electron and the Hartree
approximation (nonantisymmetrized) for the many-electron
wave function are used with a complementary term added to
the system Hamiltonian to account for the electron exchange-
correlation effects. This term is calculated as a functional of
the electron density following the idea of DFT. In our case,
the local electron density is obtained from the wave packet
positions and widths. We call this method as WPMD-DFT.
In this paper we discuss mainly the results obtained by this
approach.

The calculation of the exchange-correlation term in
WPMD-DFT reduces the simulation performance but not to
the same extent as for AWPMD. Moreover, the calculation
of the exchange-correlation functional can be efficiently par-
allelized on graphical processing units (GPUs) reducing the
computation time by one or two orders of magnitude. At
present our WPMD-DFT algorithm is implemented as a part
of the open source code LAMMPS [29].

Another feature of the present WPMD-DFT implementa-
tion is the use of reflecting boundary conditions [1,30] instead
of the periodic boundaries typical in the classical MD simula-
tions and WPMD. Reflecting boundaries solve the problem
of the infinite wave packet spreading for weakly coupled
electrons [31]. In this paper, we pay special attention to the
influence of reflecting boundaries and the simulation box size
on the obtained results.

The wave packet method allows creating of two types of al-
gorithms: (i) molecular dynamics for studying nonequilibrium
states, dynamic processes, and relaxation (WPMD-DFT); (ii)
Monte Carlo for studying equilibrium systems using the
Metropolis algorithm (WPMC-DFT). The results of WPMC-
DFT simulations were reported in [1,2]. In this paper, we
focus on the dynamical WPMD-DFT simulations.

We test our WPMD-DFT approach using experimental data
on thermodynamic properties of warm dense hydrogen and
deuterium. These substances have recently been a subject of
application and benchmarking for many quantum simulation
methods. On the one hand, dense hydrogen and deuterium are
very interesting from the theoretical point of view because of
the effects of Coulomb interaction and degeneracy. On the
other hand, hydrogen is the most widespread element in the
Universe that determines the features of different astrophys-
ical objects. That is why the experimental investigation of
warm dense hydrogen and deuterium draws a lot of attention
during the last decades. Shock compression of solid and liq-
uid deuterium [32–37], hydrogen and deuterium metallization
[38–42], and quasi-isentropic compression [43–47] has been
actively investigated by many researchers.

The state of electrons which is both quantum degenerate
and electrostatically strongly coupled requires a simulation
model that accounts for the Pauli exclusion principle and a
treatment of the Coulomb interaction at small interparticle
separations. The most rigorous and ab initio model in this
field is path integral Monte Carlo (PIMC) [48,49]. The lim-
itations of PIMC are large temperature and small number
of particles. Quantum molecular dynamics (QMD) based on
DFT with a plane wave basis can be applied to simulate the
ion dynamics in frames of the Born-Oppenheimer approxi-
mation for electrons. The DFT method with the plane wave
expansion is the most used QMD technique for simulation
of warm dense matter, however it is limited to small tem-
peratures. Orbital-free DFT (OFDFT) approaches [50] extend
to higher temperatures while compromising the accuracy of
electronic orbitals description. Time-dependent versions of
both DFT [51] and orbital-free DFT [52] go beyond the Born-
Oppenheimer approximation for the electrons and treat the
electrons dynamically. In contrast to WPMD, which incorpo-
rates electron dynamics intrinsically, in time-dependent DFT
the dynamics started from the single-determinant eigenstate
wave function requires additional coupling terms.

Numerous computational works are devoted to the hy-
pothetical plasma phase transition or liquid-liquid phase
transition in dense deuterium [53–58]. While for more
complicated substances only DFT-based approaches can be
applied, a variety of Monte Carlo methods are widely used
for hydrogen and deuterium simulations, in particular, path
integral Monte Carlo (PIMC) at relatively high temperatures
[48,49] and quantum Monte Carlo (QMC) at low temperatures
[56,59].

WPMD in its original formulation [11] and WPMD with
antisymmetrization of electrons (AWPMD) [23] were in-
volved in the simulations of deuterium shock Hugoniot and
dissociative phase transition and showed only qualitative
agreement with experiments and more accurate methods [24].
Therefore, the original WPMD and AWPMD methods turned
out to be not practical without serious improvements. In this
work, we demonstrate that our modification, WPMD-DFT,
provides much better agreement with recent experiments on
shock and quasi-isentropic compression of hydrogen and deu-
terium. Special attention is paid to the unique experimental
achievements at pressures higher than 100 Mbar [46]. Aside
from WPMD-DFT we calculate the compression isentrope
of deuterium using the quantum molecular dynamics (QMD)
method. The results given below show that the method of
WPMD-DFT provides reasonable accuracy for thermody-
namic properties at moderate and high temperatures being
capable of simulating dynamic processes in strongly coupled
quantum systems. The ability to study nonequilibrium pro-
cesses was confirmed in [1] by simulations of electron-ion
relaxation.

In Sec. II we briefly describe the method of WPMD-
DFT. A simple evaluation of the accuracy of the method
is performed by comparing the ground state energies of the
hydrogen atom and molecule with the original WPMD cal-
culations and experimental values. The results obtained by
WPMD-DFT and WPMC-DFT are presented in Secs. III
and IV. In Sec. III we analyze simulations of the deuterium
plasma at the maximal densities available in experiments.
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The influence of boundary conditions is discussed and a spe-
cial algorithm is proposed to interpret simulation results in
the case of reflecting boundaries. The deuterium isentrope
obtained by different WPMD-DFT simulation procedures is
compared with QMD calculations and experiments. We also
evaluate WPMD-DFT and QMD performances for these par-
ticular simulations. In Sec. IV we discuss the Hugoniot curve
of shock compressed hydrogen which has been studied for
several decades. The WPMD-DFT results are evaluated with
respect to other simulation approaches and experimental data.
Conclusions and outlook are given in Sec. V.

II. SIMULATION METHOD

A. Basics of the WPMD-DFT simulation algorithm

The details of WPMD method are described in [11,24,25];
here we briefly mention its main principles. In this method
the ions are treated as classical pointlike particles and a
single-electron wave function is represented as a normalized
Gaussian wave packet [10] described by a set of eight scalar
parameters: the wave packet position r, width s, and their
conjugate momenta p, ps:

ϕ(x) =
(

3

2πs2

)3/4

exp

{
−

(
3

4s2
− ips

2h̄s

)
(x − r)2

+ i

h̄
p · (x − r)

}
. (1)

Each quantum mechanical variable enters the quantum Hamil-
tonian together with its conjugate (momentum) counterpart,
so the variable ps is the conjugate for the width s. As seen
from the time evolution equations below, ps enters the wave
packet definition in the way allowing one to interpret it as the
rate of change of the wave packet width.

Within the Hartree approximation a many-body wave func-
tion is given as a product of the single-electron wave functions

�({xk}) =
Ne∏

k=1

ϕ(xk ), (2)

where Ne is the number of electrons.
The resulting equations of time evolution for the wave

packet parameters follow from the variational principle. They
resemble the classical equations of motion in the fact that they
may be derived from the generalized Hamiltonian function,
which is the quantum expectation value of the system energy
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HWPMD = 〈�|Ĥwpmd|�〉
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2
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where me and e are the electron mass and charge, mi and Zk are
the ion mass and charge, Rk and pik are the ion position and
momentum, Ni is the number of ions, Ki is the kinetic energy
of ions, Uii is the Coulomb energy of ion-ion interaction, and
Uext is an external energy related, for instance, to the boundary
conditions (see below).

The idea of WPMD-DFT extension [1,2] is to use an ad-
ditional energy term to account for exchange and correlation
effects

HWPMD-DFT = HWPMD + Ea[n], (4)

where n = n(r) is the total electron density. In WPMD the
density can be evaluated as a sum of the wave packet norms

n(r) =
Ne∑

k=1

ϕk (r)ϕ∗
k (r). (5)

The expression for Ea contains terms that describe exchange
and correlation energy in the local density approximation,
specific for WPMD,

Ea[n] =
(

Ts[n] −
∑

i

Ts[ni]

)
+

(
EXC[n] −

∑
i

EXC[ni]

)
,

(6)
where ni = ϕi(�r)ϕ∗

i (�r) is the electron density contribution
from ith packet.

Note that for the Hartree approximation the single-electron
wave functions in WPMD do not represent the eigenstates of
the one-electron Hamiltonian with the self-consistent field.
Populating of eigenstates according to the Pauli exclusion
principle and the spins of individual electrons can not be
performed in the WPMD case as it is done in the traditional
DFT. We use the following approximation for the exchange
part of the kinetic energy: The first contribution to the ex-
change energy for WPMD-DFT is the kinetic energy term
(Ts[n] − ∑

i Ts[ni]), where Ts[n] is the kinetic energy of the
electron gas at zero temperature.

In WPMD-DFT this term is evaluated in the local den-
sity approximation first for the total electron density. Then
the sum of kinetic energies of single wave packets evaluated
over partial electronic densities is subtracted to maintain zero
exchange energy for the limit of noninteracting electrons.
The same approach is used for the electrostatic part of the
exchange and correlation energy EXC. It is evaluated over the
total density and then the partial electronic contributions are
subtracted.

The subtraction of partial electronic contributions from
both the kinetic and electrostatic parts of the exchange-
correlation energies can be treated as the general compensa-
tion for self-interaction and may be explained in the following
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way. In the traditional DFT, the exchange-correlation func-
tionals EXC include the exchange EX[n] energy that is
evaluated over the total electron density and already contains
a compensation for the Coulomb self-interaction. In WPMD
the Coulomb electron-electron interaction is introduced ex-
plicitly (3). Thus, no self-interaction compensation is needed
for WPMD-DFT in EX[n]. To avoid double counting, the
self-interaction term should be subtracted from the traditional
DFT functionals when they are used in WPMD-DFT.

To compensate for double counting of self-interaction, in
this work we employed the self-interaction correction ap-
proach from [60]. In WPMD-DFT the wave packet parameters
are known and it is possible to evaluate the partial contribu-
tions of EXC[ni] related to the ith packet. These contributions
can be subtracted from the total energy EXC[n] and it gives us
the correct energy limit for a noninteracting system.

In the case of the self-interaction corrected LSDA ap-
proximation [60] used in this work we assign constant spin
projection values to electrons (half of them have spin up and
another half have spin down). Thus, the functionals have the
form

ELSDA
XC [n↑, n↓] =

∫
εXC(n↑, n↓)n(r) dr,

n(r) = n↑(r) + n↓(r), (7)

Ts[n] = 3

10
(3π2)2/3

∫
n(r)5/3 dr. (8)

Analogously to simulations of classical systems, the equi-
librium properties of the wave packet system may be obtained
either by solving the equations of motion (WPMD) with time
averaging or by sampling the phase space using the wave
packet Monte Carlo (WPMC) method. The first method re-
sembles the classical MD with additional degrees of freedom
related to variation of wave packet widths

ṙk = ∂H

∂pk
, ṗk = −∂H

∂rk
, ṡk = ∂H

∂ psk
, ṗsk = −∂H

∂sk
,

(9)
where H is given by (4). The partial derivatives at the
right-hand sides of (9) may easily be obtained as analytical
functions of the parameters rk , pk , sk , psk and are calculated
very efficiently for all components of H , except for Ea.

The Nosé-Hoover thermostat is used to equilibrate the sys-
tem at a given temperature T . Since wave packet degrees of
freedom describe electrons, the WPMD method incorporates
the electron dynamics intrinsically. The WPMD method al-
lows to obtain the temporal evolution of both electrons and
ions so that it is suitable to study nonequilibrium states and
relaxation processes.

The derivative of the Ea over a wave packet parameter q ∈
(rk, sk, pk, psk ) is evaluated using the mesh values of Ts[n]
and EXC[n] as

∂Ea

∂q
=

(
∂Ts[n]

∂n
+ ∂EXC[n]

∂n

)
∂n

∂q
. (10)

For WPMC simulations we use the Monte Carlo sampling
varying the positions of ions Rk and all parameters of the
wave packets (rk , sk , pk , psk). Adaptive steps are used to keep
the mean Monte Carlo acceptance rate at 1

2 . The ionic kinetic

,

FIG. 1. Binding energy of the H2 molecule depending on the
bond length as obtained by simulations using the original WPMD
algorithm (upper dashed red line), the same with corrected energy
of isolated two-atom state (upper solid red line), the eFF method
with correction (lower dashed green line), and WPMD-DFT with
correction (lower solid blue line). The exact value is given by the
black dotted line.

energy is decoupled and assumed to be equal to (3/2)NikBT .
The correction NekBT for extra degrees of freedom is sub-
tracted from the obtained equilibrium energies.

B. Ground states of the hydrogen atom and molecule

In order to demonstrate the effect of the exchange-
correlation term in WPMD-DFT let us consider simple
systems such as the hydrogen atom and molecule. As the hy-
drogen atom has only one electron, its model is not affected by
adding Ea[n]. Thus, the single-Gaussian electron representa-
tion gives the ground state energy of −0.424 Eh, known from
the original WPMD simulations [11], which is lower than the
exact value of −0.5 Eh by 15% (Eh is the Hartree energy).
This result can be improved by using multiple Gaussians per
electron [26].

The binding energy for a two-atom system depending on
the distance between the atoms for WPMD-DFT is shown in
Fig. 1. For all methods shown a single Gaussian per electron
was used so that at large distances the binding energy tends to
the energy of a fully dissociated hydrogen molecule which ex-
ceeds the exact value by 2 × (0.5–0.424) = 0.152 Eh due to
the above-mentioned error of the single-atom representation
(see the red curve). For all other curves we have subtracted
this excess energy (they are marked as corrected).

The result shows that WPMD-DFT provides the best value
of the hydrogen molecule dissociation energy that is 0.155 Eh

compared to the exact value of 0.166 Eh. The original WPMD
and the electron force field (eFF) methods [22] result in
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FIG. 2. The simulation box with a harmonic confining potential
(dark red curves). The mean electron density for uniformly dis-
tributed electrons is shown by the blue dashed line, and the green
dotted line is the sample of an actual electron profile obtained from
simulations.

0.107 Eh. It shows the advantages of including the exchange-
correlation term in WPMD-DFT.

As can be seen from Fig. 1 the hydrogen molecule bond
length is well reproduced by all methods: 1.49 aB for WPMD
(in [10] the bond length for WPMD is reported as 1.47 aB)
and 1.47 aB for WPMD-DFT. The exact value is 1.40 aB.

C. Simulation of an extended system and calculation of pressure

One of the major problems of the original WPMD method
is an unlimited broadening of the wave packets for weakly
bound electrons. On the one hand, this broadening reflects the
quantum nature of electrons and follows from the uncertainty
relation. On the other hand, it constitutes a problem for the
numerical algorithm. When a wave packet width reaches the
size comparable to the simulation box length the correspond-
ing electron ceases to interact with other particles and actually
drops out of the simulation. While in a real system the electron
wave function is limited by the interaction with borders, the
periodic boundary conditions used typically for MD simula-
tions correspond to a formally infinite system so that the wave
packet widths are unlimited too.

There are few ways to overcome this problem (see
[31]). The first of them was proposed in the origi-
nal WPMD algorithm [12] where an additional harmonic
term is introduced into the system Hamiltonian (3) �H =∑Ne

k=1 (9h̄2s2
k )/(8mes4

0); here s0 is a parameter that limits the
wave packet width. A similar approach is used in the eFF
code [22]. As shown in [31] the value of s0 can strongly affect
the simulation results such as the collision frequency, plasma
conductivity, etc.

In [30] it was proposed to replace the periodic boundaries
by a confined system using a three-dimensional confining
potential (wall potential) which not only keeps the particle
positions within the simulation box but also restricts the wave

packet widths (see Fig. 2)

Uwall(x) =
{

k(|x| − L/2)2, |x| > L/2
0, |x| � L/2

(11)

where L = n−1/3
e Ne is the simulation box edge. The wall pa-

rameter k determines the strength of the wall potential, acting
on the wave packets and classical ions. This potential also
disturbs the dynamics of wave packets but only in a small area
close to the borders.

As shown in Fig. 2, on average the wave packet widths are
smaller in the wall area than in the box center. Increasing the
system size can reduce the boundary effects. In that sense,
the influence of k is more controllable than the influence
of the parameter s0 so we prefer the use of the confining
potential as a solution for the broadening problem. Moreover,
a confined system is not fully artificial. It corresponds, for
instance, to a cluster nanoplasma or the plasma in an elec-
tromagnetic trap.

A typical electron density profile along the x axis is shown
in Fig. 2 by the green dotted line. It is calculated using the
expression (5) and time averaging. The effect of boundary
conditions is seen as a density drop near the boundary. Elec-
tron density profiles are discussed in more detail in Sec. III A.

Introducing of the reflecting walls causes other problems.
If the value of k is too high (strong walls), it may lead to large
forces on particles from the walls which destabilizes the time
stepping. The low values of k (weak walls) do not keep the
particles inside the box. This problem is discussed in more
detail in Sec. III A.

At the same time, the use of reflecting boundaries has some
advantages. In most MD simulations with periodic boundary
conditions, the pressure is calculated via the virial expression
from interparticle forces [16]. The confining potential (11)
allows one to calculate the system pressure directly by eval-
uating the confinement forces F wall

α acting on particles along
each axis α,

P = 1

3

〈 ∑
α=x,y,z

∣∣F wall
α

∣∣
Sα

〉
, (12)

where Sα is the area of the corresponding simulation box
face. This method is free from assumptions used to obtain
the pressure from the virial expression so that we used it in
this work. As shown in [2] for low plasma densities and large
system sizes these two methods give close results.

III. ISENTROPE OF HIGHLY COMPRESSED DEUTERIUM

As it was shown in [1,2] the original WPMD simulations
fail at electron densities higher than 1022 cm−3. It is seen from
the drop of the internal energy and unphysical clustering of
electrons inside the simulation box. Adding the exchange-
correlation term extends the applicability of the method to
much higher densities. In this paper we consider WPMD-DFT
simulations for the densities up to 1025 cm−3. To evaluate
the results at high densities we refer to experimental stud-
ies of deuterium plasmas at megabar pressures generated by
quasi-isentropic compression and to the corresponding QMD
simulations.
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,

FIG. 3. The numbered solid lines show electron density profiles
for different values of the wall parameter k (these values are given
in the legend). The mean electron density of ρ = 11.9 g/cm3 (ne =
3.55 × 1024 cm−3) is shown by the dashed line, the temperature is
T = 38 240 K. The solid vertical lines are located at the box bound-
aries −Lx/2 and Lx/2, the dotted-dashed lines outline the half-box
region of −Lx/4 < x < Lx/4.

Performing WPMD-DFT simulations of the highly com-
pressed deuterium plasma revealed two problems. One of
them is caused by the special type of boundary conditions, the
other one is related to the procedure of isentrope calculation.
Both issues are discussed in the subsections below.

A. Influence of boundary conditions

As simulations show [1,2] the confining boundary condi-
tions described in Sec. II allow us to solve the problem of
wave packet broadening. Both the internal energy and the
wave packet width distribution converge with the simulation
box growth. Nevertheless, there arises nonuniformity of elec-
tron density profile within the simulation box (see Fig. 2).

Due to the reflections, the electron density has a peak in
the box center and declines in the area close to the borders.
Unlike classical particles, the wave packets interact with the
wall before they cross it, and therefore the electron density in
the vicinity of the box edge decreases. In contrast, the value
of the electron density in the box center could be greater
than the desired value of Ne/V where V is the simulation
box volume excluding boundaries. Increasing the box size
solves this problem at the cost of a substantial increase of the
simulation time.

This problem becomes even more essential when con-
sidering very high plasma densities. In Fig. 3 the electron
profiles are shown for the electron number density ne =
3.55 × 1024 cm−3 and different values of the wall parameter
k. One can see that for low values of k (weak boundaries)
a large amount of the electron density is located outside the

FIG. 4. The calculated values of pressure for different wall pa-
rameters k versus the number electron density calculated using
there different ways: from the total number of electrons ne = Ne/V
(circles), by integration of the actual electron profile over the full
simulation box (13) (triangles), and by integration over the half-
box (13) (asterisks). The deuterium plasma parameters are ρ =
11.9 g/cm3 and T = 38 240 K. The solid line represents the cor-
responding isotherm. The insertion shows the dependence of the
mean electron density calculated using Eqs. (13) and (14) on the wall
parameter k.

box so that the mean density within the box reduces signifi-
cantly. With the increase of k the mean density returns to its
normal value (dashed horizontal line) but the density becomes
depleted near the walls. Periodic electron profile nonunifor-
mities inside the box with the amplitude increasing with the
increase of k indicate the formation of ordered structures (see
Sec. IV). All these types of electron profile distortions affect
the plasma properties obtained from simulations such as the
pressure or correlation functions and therefore they should be
taken into account.

To illustrate the problem let us consider a fixed-size sim-
ulation box of the volume V filled with Ne electrons (wave
packets). For the periodic boundary conditions the mean elec-
tron density is given by ne = Ne/V . Using this value as a
mean electron density for the confining boundary conditions
gives rise to misleading results. The simulations show that the
pressure P increases with the increase of k while the mean
electron density ne and the temperature T are constant (see
the circles in Fig. 4). In other words, in this case the physical
quantity P depends solely on the computational parameter k.

This problem originates from the fact that the value of
ne = Ne/V is not related to the actual electron density profile
formed in the simulation box. Alternatively, the mean electron
density can be obtained as the integral over the full box

〈ne(r)〉V, t = 1

V

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
n(r)dr, (13)
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FIG. 5. Isotherms of deuterium obtained by WPMD-DFT: (a) internal energy, (b) pressure.

where n(r) is defined in (5), and the index t means time
averaging. The value of 〈ne(r)〉V, t does not exceed ne due to
the exclusion of a part of electron density located outside the
box.

Using the expression (13) as the mean electron density
results in a more physically adequate dependence of P on
the density (see the triangles in Fig. 4) which is close to
the isotherm for T = const except for the high values of
k when the electron profile becomes strongly nonuniform.
As the electron profile nonuniformities are located mainly
near the walls the mean electron density can be calculated
also as the integral over the half-box area located at the box
center

〈ne(r)〉V/8, t = 8

V

∫ Lx/4

−Lx/4

∫ Ly/4

−Ly/4

∫ Lz/4

−Lz/4
n(r)dr. (14)

This integration region is shown in Fig. 3 by dotted-dashed
vertical lines.

As seen from the insertion in Fig. 4, for small values of
k (weak walls) the results of (13) and (14) coincide indi-
cating that the electron density is rather uniform (see also
the lines 1 and 2 in Fig. 3). For large values of k (strong
walls) the integration over that half-box (14) approximates
the density more accurately as the increase of P could be
explained by the corresponding increase of ne (see asterisks
in Fig. 4).

Based on these investigations for the simulations described
below in this section we used the wall parameter of k =
68 keV/Å which is large enough to minimize the amount
of electron density outside the box and small enough for
the electron density profile to be rather uniform. The mean
electron density is obtained using the integration over that
half-box (14) that allows us to get reasonable results without
a significant extension of the simulation box size.

B. Simulation of the isentropic compression

The calculation of a constant entropy curve (isentrope)
from atomistic simulations can not be done straightforwardly.
An extensive study of this problem can be found in [61] where
four different ways to compute the collection of states with the
same entropy are discussed. The most promising approaches
for QMD calculations are successive Hugoniostat and isen-
tropic integration. Earlier, we applied these two approaches
to obtain release isentropes for aluminum and molybde-
num using QMD [62]. Based on our experience [63,64]
the isentropic integration method (also known as the Fermi-
Zel’dovich approach) has proven to be the most convenient
and precise.

In order to verify the WPMD-DFT algorithm we chose
two different methods to obtain the deuterium isentrope. The
first one is based on the Fermi-Zel’dovich approach when the
following equation is solved to obtain an isentrope,

dT

dV

∣∣∣∣
S

= −T

(
∂P

∂E

)
V

, (15)

where P(ρ, T ) and E (ρ, T ) are the pressure and internal en-
ergy as functions of density and temperature.

This method requires the creation of a two-dimensional
mesh for ρ and T and the calculation of mesh values for P and
E . Each of the mesh points corresponds to an equilibrium sys-
tem so that both WPMD-DFT and WPMC-DFT algorithms
can be used. In Fig. 5 the mesh values are presented in the
form of isotherms.

It is worth mentioning that Eq. (15) can be solved “on the
fly” without using a previously computed mesh of values [61].
In this case, some finite-difference scheme is used as well
as an estimator of the right-hand side of Eq. (15). However,
the accuracy of such an approach depends on the volume
increment and the error increases with the number of steps.
To improve the accuracy one should carry out all calculations

045304-7



YAROSLAV LAVRINENKO et al. PHYSICAL REVIEW E 104, 045304 (2021)

FIG. 6. Compression isentropes of deuterium in P-ρ plane ob-
tained by two series of shock-compression experiments [43,44]
(rhombus) and [46,65–67] (circles) as well as calculation results
obtained by different methods: WPMC-DFT with the Fermi-
Zel’dovich approach (brown dotted-dashed line), WPMD-DFT with
the compression-relaxation algorithm started from different points
(upper green and lower red solid lines), QMD with the Fermi-
Zel’dovich approach (dashed black line), WPMC-DFT with density
and temperature input from QMD (squares), ideal Fermi gas for elec-
trons (upper blue dotted line), and ideal Boltzmann gas for deutrons
(lower pink dotted line).

again from the initial point. Moreover, any good estimator of
the right-hand side of Eq. (15) is tedious in case of QMD
simulations. On the other hand, a mesh of values can be
refined so that previously computed points are not wasted.

In this work, to obtain an isentrope the functions P(ρ, T )
and E (ρ, T ) are interpolated with splines and Eq. (15) is
solved numerically. The WPMD-DFT result for the starting
point of ρ = 1.09 g/cm3, T = 6900 K is shown in Fig. 6 by
the purple line. The comparison with experimental points is
given at the end of this section.

In the second method, the isentrope is calculated directly
by compressing the plasma from a given initial state. This
method is much faster as it requires the calculation of only a
single WPMD-DFT trajectory instead of a bunch of trajecto-
ries in the Fermi-Zel’dovich approach. Its drawback is that the
compression should be slow enough to ensure that the system
passes through a series of equilibrium states.

Figure 7 illustrates the staircaselike compression algo-
rithm. Each stair (should not be confused with the time step
for the integration of the equations of motion which is much
smaller) consists of three stages. The compression stage (red)
means the sharp squeezing of the simulation box. It is fol-
lowed by the relaxation stage (blue) where the equilibrium is
restored. The equilibrium stage (green) is used for obtaining
the plasma properties using time averaging.

The overall compression rate r is determined by the box
squeezing ratio and the duration of each step. Figure 8
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FIG. 7. Total energy of plasma as a function of time for the
compression-relaxation algorithm of the isentrope calculation. Col-
ors show the stages of compression, vertical red lines; relaxation,
blue (dark gray) sections; and equilibrium states, green (light gray)
sections.

demonstrates how the compression rate affects the result for
the isentrope calculation. The slower the compression, the
closer the process to an equilibrium one. Simulations show
that the result for P(ne ) converges with the decrease of r and
the relative error in determination of P does not exceed 13%
for r = 0.002 Å/fs.

FIG. 8. Pressure as a function of the electron number density for
different compression rates.
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The results for the deuterium isentrope obtained by the
compression-relaxation algorithm are shown in Fig. 6 by the
green line for the starting point of ρ = 1.09 g/cm3, T =
6900 K related to the QMD simulations (black dashed line)
and by the red line for the starting point of ρ = 1.09 g/cm3,
T = 1000 K related to the experiment [43]. As can be seen,
the first curve is very close to the Fermi-Zel’dovich approach
with the same initial point which validates the compression-
relaxation algorithm.

In addition to the two methods described above, we also
performed WPMC-DFT simulations for a set of plasma den-
sities and temperatures obtained from the QMD simulations
(see squares in Fig. 6). The results agree well with the pure
WPMD-DFT simulations using both the Fermi-Zel’dovich
approach and the compression-relaxation algorithm provided
that they start from the same initial point.

QMD simulations of the compression isentrope (black
dashed line in Fig. 6) were performed using the VASP code
[68]. The following parameters were used: The number of
particles 64–256, one k point in the Brillouin zone, the cutoff
energy for the plane waves varied from 600 to 1200 eV. All
simulations were carried out in the canonical ensemble with
the PAW pseudopotential [69] and PBE exchange-correlation
functional [70]. The typical time step was 0.1 fs, the typical
simulation time was about 10 ps.

Equation (15) was integrated numerically using the in-
terpolation functions P(ρ, T ) and E (ρ, T ) calculated on the
grid of isotherms and isochores. The initial point of the isen-
trope corresponds to the first experimental point from the
paper [43] (ρ0 = 1.09 g/cm3, P0 = 77 GPa), the temperature
(T0 = 6900 K) was fitted iteratively to satisfy the condition
P(ρ0, T0) = P0. In our earlier paper [63] we used 64 deuterium
atoms so the temperature at the initial experimental point was
7600 K. In this work the number of atoms was increased up
to 256, so the corrected value of T0 = 6900 K was obtained in
agreement with [71].

The deviation of the QMD isentrope from the experimental
points at relatively low pressures [43] was discussed earlier
[63,71]. However, the agreement with more recent experi-
ments at pressures higher than 103 GPa (10 Mbar) and up
to 1.8 × 104 GPa (180 Mbar) [44,46,67,72–74] is good. The
experimental point at P ≈ 5500 GPa published in [73,74] was
recently corrected [67] and now agrees with the theoretical
QMD curve.

The WPMC-DFT curve (squares in Fig. 6) calculated us-
ing the QMD temperatures as input parameters demonstrates
higher pressures in comparison with the QMD simulations.
The same is observed for the WPMC-DFT isentrope (green
curve in Fig. 6) which originates from the initial point with
the parameters ρ0 = 1.09 g/cm3, T0 = 6900 K but at higher
pressure than the experimental one. To obtain the experimen-
tal pressure of 77 GPa at the initial point, the temperature
in the WPMD-DFT method should be about 1000 K. The
corresponding isentrope (the red curve in Fig. 6) agrees well
with all points at pressures higher than 103 GPa within the
experimental error and is located slightly above the QMD
isentrope. The dotted blue line shows the pressure of electron
ideal Fermi gas confirming a strong influence of degeneracy
effects along the compression curve.

TABLE I. Main parameters and comparative performances of
WPMD-DFT and QMD codes for calculations of the equilibrium
trajectories discussed in Sec. III B.

QMD WPMD-DFT

Simulation time step 10−16 s 10−18 s
Number of steps per trajectory 104–105 105–106

Model time per trajectory 1–10 ps 1 ps
Number of CPU cores or GPU units 64–128 6–8
Typical runtime 150 h 15 h
Runtime per step 9 s 0.09 s
Typical number of particles 64–256 256–512
Scaling with N O(N3) O(N )–O(N2)

C. Performance of WPMD-DFT and QMD simulations

The calculations considered in this section are good ex-
amples to compare performances of WPMD-DFT and QMD
(DFT) algorithms. Optimizations and parallel efficiency of
the WPMD-DFT code are discussed in [1,2]. This code is
based on the LAMMPS parallel MD simulation package [29]
(release No. 18, Sep 2018). The most time-consuming part
of the algorithm related to the exchange-correlation energy
is implemented for both CPUs (central processing units) and
GPUs (graphics processing units) using NVidia CUDA envi-
ronment. The parallel version of the code involves multiple
GPUs with a single CPU thread per GPU. The benchmarks
of the WPMD-DFT code were run on a hybrid computing
cluster that includes Intel Xeon E5-2620 CPUs and NVidia
GeForce GTX 1070 GPUs. The code was compiled by GCC
10.2 compiler.

The corresponding QMD simulations were performed us-
ing the VASP code [75], version 5.2. The code was compiled
by Intel Fortran compiler (v. 17.0.2) and run on a pure CPU
cluster that contained 64–128 Intel Xeon E5-2630v4 CPUs.

The typical parameters of QMD and WPMD-DFT simula-
tions are presented in Table I. Note that in Table I we refer to
the dynamical version of WPMD-DFT code (not the Monte
Carlo sampling algorithm WPMC-DFT) which is more time
consuming due to the calculation and space integration of the
derivatives of the exchange-correlation term (10).

Although the codes were run in different environments,
this table gives general information about their performances.
One can see that the WPMD-DFT simulations can handle
more particles and the scaling with the number of particles is
much better. The typical runtimes and the runtime per step are
10–100 times smaller for WPMD-DFT. Therefore, in general
the WPMD-DFT algorithm is faster than QMD for a single
time step. On the other hand, explicit electron dynamics in
WPMD-DFT requires time steps approximately 100 times
smaller, so the total model times per trajectory for WPMD-
DFT and the classical Born-Oppenheimer DFT appear to be
comparable, whereas WPMD-DFT provides a much more
detailed picture on the electron dynamics.

IV. DEUTERIUM SHOCK HUGONIOT

The WPMD-DFT method was applied to calculate
the shock Hugoniot of deuterium. Shock-compression
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experiments are used to reconstruct the equation of state of
matter for a given initial state with a known energy, pressure,
and volume (E0, P0, v0). The energy, pressure, and volume of
the substance after shock compression are determined by the
zeros of the Hugoniot function:

H (v, T ) = E (v, T ) − E0 + 1
2 (v − v0)[P(v, T ) + P0] = 0,

(16)
where v is the specific volume, E (v, T ) is the internal energy
per atom, and P(v, T ) is the pressure.

In the calculations performed by the WPMD-DFT method,
we used the initial state of deuterium with density ρ =
0.167 g/cm3 and temperature T = 22 K. Such initial state
was chosen for direct comparison with the experimental
results presented in [32,35,36]. The selected parameters cor-
respond to the pressure of P0 = 1.24 × 10−4 GPa and the
internal energy of E0 = −0.4996 Eh/atom. The value of in-
ternal energy E0 was obtained from WPMC-DFT simulation
of an isolated D2 molecule.

The Hugoniot curve was calculated for the temperature
range of 2000 K � T � 30 000 K and densities from ρ =
0.167 g/cm3 (ne = 5 × 1022 cm−3, rs = [3/(4πne )]1/3 =
3.1821 aB) to ρ = 1.67 g/cm3 (ne = 5 × 1023 cm−3,
rs = 1.47 aB).

To obtain the points of the Hugoniot curve in the parameter
range specified above, a set of molecular dynamics simula-
tions by the WPMD-DFT method was performed. The result
of each simulation was the pressure PMD(v, T ) and the energy
EMD(v, T ) at a given specific volume v and temperature T .
For the calculations, 10 isotherms and 10 isochores were se-
lected to uniformly cover the region of interest. The obtained
values were used to reconstruct the function H (v, T ), which
was approximated by a quadratic polynomial depending on v

at a fixed temperature T . The approximation was further used
to solve the equation H (v, T ) = 0 and determine the points of
the shock Hugoniot.

Each WPMD simulation was organized in the following
way. To obtain the points of the function H (v, T ), the deu-
terium plasma was simulated at the selected density ne and
temperature T . The simulated system consisted of 512 deu-
terium ions and 512 wave packets representing electrons.
Wave packets were divided into two groups of 256 packets
each with different spin projections + 1

2 and − 1
2 . At the initial

moment, the particles of the system were randomly and uni-
formly distributed in the volume determined by the density
ne, and were assigned random velocities corresponding to the
Maxwellian distribution at a required temperature T . Then,
30 000 initial steps of molecular dynamics were performed
with the time step of 0.001 fs with the Nosé-Hoover ther-
mostat controlling the temperature. The thermostat ensured
the initial equilibrium distribution of positions, velocities, and
widths of the wave packets in the simulated system.

Then, 50 000 MD steps were performed with the same time
step, but without using a thermostat. During this time, the
energy and pressure were calculated, as well as their average
values over all these time steps. If the initial value of the
total energy differed from the final one by more than 1%, the
thermostat was restarted and a new microcanonical ensemble
was obtained. This made it possible to keep an error of the cal-
culated observed values at the level of under 7% for pressure

FIG. 9. Hugoniot curve of shock-compressed deuterium: exper-
imental data from Sandia for the plate impact with α quartz [36]
(“Expt. Qtz,” cyan rhombus) and aluminum [35] (“Expt. Al,” green
rhombus) standards, experimental data from LNLL [37] (squares),
PIMC simulations [77] (asterisks), QMC simulations [76] (triangles),
AWPMD simulations [24] (crosses), and the present WPMD-DFT
simulations (circles).

and <1% for energy. The low density and the selected values
of the reflecting potential k = 0.1 KeV/Å made it possible to
obtain a system with an average density in the central region
close to the specified one, and thus no correction of the density
(see Sec. III A) was needed for the Hugoniot simulations.

We compare the results of our calculations of the shock
Hugoniot (Fig. 9 and Table II) with experimental data from
[35–37] and the results of theoretical calculations by DFT
[36], QMC [76], PIMC [77], and WPMD method with anti-
symmetrization [24].

TABLE II. WPMD-DFT simulations of the principal Hugoniot:
compression, deuterium mass density, electron number density, tem-
perature, and pressure (a limited set of states is presented); the states
related to ion-ion pair-correlation functions in Fig. 10(a) and system
snapshots in Fig. 11 are marked with bold.

ρ/ρ0 ρ (g/cm3) ne (1023/cm3) T (K) P (GPa)

3.03 0.51 1.51 2000 25
3.30 0.55 1.65 4000 43
3.63 0.61 1.81 6000 67
4.05 0.68 2.02 8000 103
4.29 0.72 2.14 10000 133
4.38 0.73 2.19 12000 169
4.47 0.75 2.23 14000 205
4.50 0.75 2.25 16000 206
4.40 0.74 2.20 20000 230
4.41 0.74 2.20 25000 292
4.39 0.73 2.19 30000 320
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, ,

FIG. 10. Ion-ion pair correlation function for different densities and temperatures. The plasma parameters correspond to (a) selected points
from the Hugoniout curve (see Fig. 9 and Table II); (b) the parameters of QMC simulations [76]. In (b) the solid lines are the present
WPMD-DFT simulation, dashed lines are the results from [76].

The constructed shock Hugoniot shows the maximum val-
ues of the compression ratio ρ/ρ0 ≈ 4.5, which agrees with
the experimental data from [36] to within 1%. The maximum
compression value obtained by the AWPMD [11] method
is 1.42 times higher than the experimental one. The QMC
method gives 7% higher maximum compression value than
that observed in the experiment. The PIMC method shows
close results to the WPMD-DFT for the compression ratio.

A characteristic feature of the results obtained by WPMD-
DFT is an overestimated pressure in the entire range of
densities and temperatures which is similar to the calculations
of deuterium isentrope (see Sec. III). Possible reasons for
this are insufficient size of the system required to avoid the
boundary effects associated with the reflective potential and
the simple model of the electron wave function.

Also, the shock Hugoniot obtained by the WPMD-DFT
method does not have a pronounced bend in the region close
to the compressibility limit which is observed in experimental
data and theoretical calculations by other methods, except
for PIMC. A possible reason for this is the imperfection of
the used exchange-correlation functional (LDA). The other
theoretical calculations employ generalized gradient approxi-
mation (GGA) functionals. We expect the results to be more
consistent in this region if GGA functionals are used instead
of LDA.

In addition to the Hugoniot curve, pair-correlation func-
tions of deuterium for selected points from the Hugoniot curve
were calculated by the WPMD-DFT method [Fig. 10(a)].
We also compared pair-correlation functions obtained by the
WPMD-DFT method with the data obtained by the QMC
method [76] [Fig. 10(b)].

Figure 10(a) and the corresponding snapshots of the sim-
ulations box (Fig. 11) demonstrate the transition from the
atomic to molecular states along the shock Hugoniot. The

positions of the peaks in Fig. 10(a) coincide with the the-
oretical values corresponding to the interatomic distance in
the deuterium molecule. It is seen that at ρ = 0.51 g/cm3,
T = 2000 K most of electrons are located in molecules.
Moreover, the correlation function shows that the molecules
are partially ordered so that the system is close to an amor-
phous state. The measured self-diffusion coefficient for ions
in this state is 1.7 × 10−4 cm2/s which is quite low but does
not correspond to a molecular crystal. In the next snapshot
at ρ = 0.61 g/cm3, T = 6000 K the molecules are less or-
dered and the ionization rate increases which is visible by a
larger number of free electrons and ionized molecules. For
ρ = 0.71 g/cm3, T = 10 000 K the plasma state is reached
with a small fraction of molecules. For ρ = 0.74 g/cm3, T =
20 000 K the system is fully ionized and disordered, the self-
diffusion coefficient for ions in this state is 5 × 10−3 cm2/s
which is 30 times higher than at T = 2000 K.

The phase diagram of deuterium is discussed in various
publications. In accordance with [57,58] the deuterium phase
state at P = 25 GPa, T = 2000 K is a molecular liquid and the
transition to an atomic liquid occurs roughly at P = 50 GPa,
T = 4000 K. As one can see, the WPMD-DFT method
slightly overestimates the transition temperature although a
more comprehensive study is required to clarify this issue.

V. CONCLUSIONS

The WPMD-DFT method is applied for the calculations of
thermodynamic properties of equilibrium systems. For both
isentropic and shock compression of deuterium, the method
is benchmarked against more accurate theoretical models
(PIMC, QMD) and the experiment. The results are in a good
agreement with both, except for overestimation of pressure.
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FIG. 11. Visualization of the simulation box for different plasma densities and temperatures. The plasma states correspond to Fig. 10(a) and
Table II. Red spheres represent positions of ions, blue spheres are the electrons with the spin projection 1

2 , and green spheres are the electrons
with the spin projection − 1

2 . The size of electron spheres corresponds to wave packet widths.

For the calculation of isentrope, a compression-relaxation
algorithm is proposed for WPMD-DFT that is much faster
than the solution of the Fermi-Zel’dovich’s equation typically
used in QMD. It is shown that these two algorithms give close
results provided that the compression rate is slow enough.

In contrast to the previous AWPMD approach, the WPMD-
DFT simulations result in the correct value for the deuterium
compressibility on the principal Hugoniot curve. They de-
scribe the transition from molecular to atomic liquid, however,
with some overestimation of the transition temperature and
pressure.

The WPMD-DFT method is found to be more compu-
tationally efficient compared to the traditional plane wave
DFT. It has no restrictions on the electron temperature, so its
effectiveness relative to the plane wave DFT is higher for large
temperatures.

Although this paper is concerned with simulations of
equilibrium systems, the main purpose of WPMD-DFT is
to study nonequilibrium states, dynamic and relaxation pro-
cesses which makes this method rather universal. Verification
of the method for equilibrium systems, presented in this work,
opens up the possibility of applying it to simulations of
conductivity, electron-ion relaxation, laser-plasma interaction,
cluster nanoplasmas, etc. These topics are subjects for further
work.

The WPMD-DFT method is one of the few computational
techniques that describe, although qualitatively, the quantum
dynamics of electrons in many-body systems. This opens up
a possibility of extending this method to calculate various
qualitative characteristics of plasma that enter higher level
chemical or hydrodynamic models. At the same time, the
WPMD-DFT method has a certain reserve for the increase of
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complexity and accuracy. For the typical model systems of up
to 1024 particles, that are studied in this work, the dominant
contribution to the total computational time is the grid-based
calculation of the exchange and correlation energy Ea[n]. This
means that introduction of a more detailed description of the
single-electron wave function, for example, multi-Gaussian
expansion or higher momentum state wave packets, that affect
only the basic Hamiltonian, would not lead to a significant
increase in computational time. For larger systems (more than
10 K particles for the current WPMD-DFT) the O(N )-scaled
grid-based Ea[n] computation would overperform the calcu-
lation of the Coulomb interaction in the basic Hamiltonian
which is scaled as O(N2). In the following we discuss possible
applications of the WPMD model extensions.

Degree of ionization is one of the important quantities that
is expected to be calculated on the atomic level and to be pro-
vided to higher level chemical models. Separating electrons
into free and bound ones in the microscopic model is a hard
task with no strict guidelines to be used. The WPMD model
adds an additional criterion to single out free electrons based
on their width parameter. This criterion and the split-WPMD
technique (multiple Gaussians) were applied earlier to simu-
late the excitation of the hydrogen atom by a high energy laser
pulse [26].

Another issue that is left behind in this work is the applica-
tion of WPMD-DFT for many-electron atoms and molecules.
There are different approaches that can be used to handle
multielectron atoms. In eFF, a suitable choice of the binding
parameters allows one to simulate the elements of the second
row of the periodic table. One of the problems here is the
spherical symmetry of wave packets that can describe only
the s-type states of the atoms. The difference is essential at
lower temperatures where the binding energy and geometry
strongly depend on the electron state. A more general DFT-
like approach would include parametrized p- and d-type wave
packets and the use of pseudopotentials to describe filled
atomic shells.
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