
PHYSICAL REVIEW E 104, 045303 (2021)

Evolutional deep neural network

Yifan Du and Tamer A. Zaki *

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 27 March 2021; accepted 13 September 2021; published 4 October 2021)

The notion of an evolutional deep neural network (EDNN) is introduced for the solution of partial differential
equations (PDE). The parameters of the network are trained to represent the initial state of the system only and
are subsequently updated dynamically, without any further training, to provide an accurate prediction of the
evolution of the PDE system. In this framework, the network parameters are treated as functions with respect
to the appropriate coordinate and are numerically updated using the governing equations. By marching the
neural network weights in the parameter space, EDNN can predict state-space trajectories that are indefinitely
long, which is difficult for other neural network approaches. Boundary conditions of the PDEs are treated
as hard constraints, are embedded into the neural network, and are therefore exactly satisfied throughout the
entire solution trajectory. Several applications including the heat equation, the advection equation, the Burgers
equation, the Kuramoto Sivashinsky equation, and the Navier-Stokes equations are solved to demonstrate the
versatility and accuracy of EDNN. The application of EDNN to the incompressible Navier-Stokes equations
embeds the divergence-free constraint into the network design so that the projection of the momentum equation
to solenoidal space is implicitly achieved. The numerical results verify the accuracy of EDNN solutions relative
to analytical and benchmark numerical solutions, both for the transient dynamics and statistics of the system.

DOI: 10.1103/PhysRevE.104.045303

I. INTRODUCTION

The capacity to approximate solutions to partial differential
equations (PDEs) using neural network has been an excit-
ing area of research. A key challenge remains the prediction
of the dynamics over very long times, that far exceed the
training horizon over which the network was optimized to
represent the solution. In this study, an alternative view is
adopted whereby the parameters of an evolutional deep neural
network (EDNN, pronounced “Eden”) are viewed as functions
in the appropriate coordinate and are updated dynamically, or
marched, to predict the evolution of the solution to the PDE
for any extent of interest.

Recent machine learning tools, especially deep neural
networks, have demonstrated growing success across com-
putational science domains due to their desirable properties.
First, a series of universal approximation theorems [1–3]
demonstrate that neural networks can approximate any Borel
measurable function on a compact set with arbitrary accuracy
provided sufficient number of hidden neurons. This powerful
property allows the neural network to approximate any well
defined function given enough samples and computational
resources. Furthermore, Ref. [4] and more recent studies [5,6]
provide the estimations of convergence rate of approximation
error on neural network with respect to its depth and width,
which subsequently allow the neural network to be used in
scenarios with high requirements of accuracy. Second, the
development of differentiable programming and automatic
differentiation allow efficient and accurate calculation of gra-
dients of neural network functions with respect to inputs
and parameters. These back-propagation algorithms enable

*t.zaki@jhu.edu

the neural network to be efficiently optimized for specified
objectives.

The above properties of neural networks have spurred
interest in their application for the solution of PDEs. One
general classification of such methods is into two classes: The
first focuses on directly learning the PDE operator [7,8]. In the
deep operator network (DeepONet), the input function can be
the initial and/or boundary conditions and parameters of the
equation that are mapped to the output which is the solution
of the PDE at the target spatiotemporal coordinates. In this
approach, the neural network is trained using data that are of-
ten generated from independent simulations, and which must
span the space of interest. The training of the neural network
is therefore predicated on the existence of a large number of
solutions that may be computationally expensive to obtain,
but once trained the network evaluation is computationally
efficient [9–11].

The second class of methods adopts the neural network as
basis function to represent a single solution. The inputs to the
network are generally the spatiotemporal coordinates of the
PDE, and the outputs are the solution values at the given input
coordinates. The neural network is trained by minimizing the
PDE residuals and the mismatch in the initial and/or boundary
conditions. Such approach dates back to Ref. [12], where neu-
ral networks were used to solve the Poisson equation and the
steady heat conduct equation with nonlinear heat generation.
In later studies [13,14] the boundary conditions were im-
posed exactly by multiplying the neural network with certain
polynomials. In Ref. [15], the PDEs are enforced by minimiz-
ing energy functionals instead of equation residuals, which
is different from most existing methods. In [16], a unified
neural network methodology called physics-informed neural
network (PINN) for forward and inverse (data assimilation)

2470-0045/2021/104(4)/045303(14) 045303-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1979-7748
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.045303&domain=pdf&date_stamp=2021-10-04
https://doi.org/10.1103/PhysRevE.104.045303

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 1. Schematic representation of PINN and EDNN. (a) PINNs are trained to minimize a cost function comprised of equation residual
and data over space and time. (b) The evolution of EDNN, where the network is updated with a direction γ calculated from the PDE. The
update of neural network parameters represents the evolution of the solution.

problems of time-dependent PDEs is developed. PINNs utilize
automatic differentiation to evaluate all the derivatives in the
differential equations and the gradients in the optimization al-
gorithm. Since automatic differentiation consists of analytical
derivatives of the activation functions applied repeatedly in a
chain rule, gradients in PINNs are evaluated efficiently. The
time-dependent PDE is realized by minimizing the residuals
at selected points in the whole spatiotemporal domain. The
cost function has another penalty term on boundary and ini-
tial conditions if the PDE problem is forward, and a penalty
term on observations for inverse data assimilation problems.
A schematic representation of the structure and training of
PINN is shown in Figs. 1(a) and 2(a). The PINN represents the
spatiotemporal solution of a PDE as a single neural network,
where the behavior in all of space and time is amalgamated
in the neural network weights. As a result, the causality
implicit in the temporal evolution that is inherent to most
time-dependent PDEs cannot be explicitly specified in PINNs.
In addition, the neural network complexity and the dimension
of the optimization space grow as the time horizon increases.
As a result, PINNs become computationally expensive for
long-time predictions, which motivated the development of
time-parallel PINNs [17] and high-order time-discrete PINNs
(e.g., Runge-Kutta 500 [16]). Nonetheless, for applications
to long-time multiscale problems such as chaotic turbulent
flows, the storage requirements and complexity of the opti-
mization can become prohibitive. It is also important to note
that the solution of PDEs using PINNs relies on a training, or
optimization procedure, where the loss function is a balance

between equation residuals and initial and/or boundary data,
and the relative weighting of the two elements as well as the
time horizon can frustrate the optimization algorithm [18].

In the present effort, a new framework of solving time-
dependent PDEs, which we term EDNN, is introduced and
demonstrated. The spatial dependence of the solution is rep-
resented by the neural network, while the time evolution is
realized by evolving, or marching, in the neural network pa-
rameter space. Various time-dependent PDEs are solved using
EDNN as examples to demonstrate its capabilities. In Sec. II,
the method of network parameter marching is described in
detail, accompanied with a method to embed various con-
straints into the neural network including boundary conditions
and divergence-free constraints for Navier-Stokes equations.
In Sec. III several time-dependent PDEs are solved with
the newly established EDNN. Various properties of EDNN
are investigated, including temporal and spatial convergence
and long-time predictions. Conclusions are summarized in
Sec. IV.

II. METHODOLOGY

Consider a time-dependent general nonlinear partial differ-
ential equation,

∂u
∂t

− Nx(u) = 0, x ∈ � ⊂ Rd (1)

where u(x, t) = (u1, u2, ..., um) is a vector function on both
space and time, the vector x = (x1, x2, ..., xd) contains spatial

FIG. 2. Physical domains of PINN and EDNN. (a) PINN is trained and represents the solution on the whole spatiotemporal domain.
(b) EDNN only represents the solution on space at one time instant. The time evolution of a single network produces the solution trajectory.
The network can be evolved indefinitely.

045303-2

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

coordinates, and Nx is a nonlinear differential operator. In
conventional PINNs, a deep neural network representing the
whole time-space solution is trained as shown in Figs. 1(a)
and 2(a). For larger time horizons, the network complexity
must scale accordingly both in terms of its size and also
in terms of training cost which involves optimization of the
network parameters. Thus, for very-long-time horizons, the
computational complexity increases appreciably and parallel-
in-time algorithms are needed [17]. The PINN structure is
also not designed for making predictions beyond the training
horizon, or forecasting. In other words, given a trained PINN
for a specific time window, further training is required if the
solution is required beyond the original horizon.

In another approach to predict the evolution of differential
equations [19–22], the network inputs and outputs are the
solutions at two successive time steps, and the network is thus
trained to learn the increment. In this respect, the governing
equations are fully or partially learned from training data
rather than explicitly enforced.

Here a different approach is introduced: the neural network
represents the solution in space only and at a single instant in
time, rather than the solution over the entire spatiotemporal
domain. Predictions are then made by evolving the initial neu-
ral network using the governing equation (1). This new frame-
work of using neural network to solve PDEs is called Evo-
lutional deep neural network (EDNN, which is pronounced
“Eden”). A schematic of the structure of EDNN and its solu-
tion domain are shown in Figs. 1(b) and 2(b). In this method,
the neural network size need only be sufficient to represent
the spatial solution at one time step, yet the network has the
capacity to generate the solution for indefinitely long times
since its parameters are updated dynamically, or marched,
using the governing equations to forecast the solution. This
method is equivalent to discretizing Eq. (1) using neural net-
work on space and numerical marching in time. It should be
noted that the same approach is applicable in any marching
dimension, for example along the streamwise coordinate in
boundary-layer flows or solving for time-dependent fluid par-
ticle positions in Lagrangian formulations of fluid mechanics.
A key consideration in this new framework is that boundary
conditions are no longer enforced through training; instead
they must be strictly enforced during the evolution.

In Sec. II A, we introduce the detailed algorithm for evolv-
ing the neural network parameters. In Sec. II B, the approach
for enforcing linear constraints on the neural network is dis-
cussed, with application to sample boundary conditions. The
method of enforcing the divergence-free constraint is also
introduced, which will be adopted in the numerical examples
using the two-dimensional Navier Stokes equations.

A. Evolutional network parameters

Consider a fully connected neural network defined by

gl+1(gl) = σ (Wlgl + bl), (2)

where l ∈ {0, 1, ..., L} is the layer number, gl represents the
vector containing all neuron elements at the lth layer of the
network, Wl and bl represent the kernel and bias between
layers l and l + 1, and σ (·) is the activation function acting
on a vector element-wise. Inputs to this neural network are

the spatial coordinates of the PDE (1),

g0 = x = (x1, x2, ..., xd).

In this method, we consider the neural network parameters as
functions of time Wl (t) and bl (t) so that the whole network is
time dependent, and we denote as W (t) the vector containing
all parameters in the neural network. The output layer gL+1

contains the approximation û of the solution to the PDE (1),

gL+1 = û[x,W (t)] = (û1, û2, ..., ûm).

The dependence of û on time is implicitly contained in the
neural network parameter W (t). The time derivative of solu-
tion û can be calculated according to

∂û
∂t

= ∂û
∂W

∂W
∂t

.

At each time instant, we seek to approximate the time deriva-
tive ∂W/∂t by solving

∂W
∂t

= argminJ (γ),

where J (γ) = 1

2

∫
�

∥∥∥∥ ∂û
∂W γ − N (û)

∥∥∥∥
2

2

dx, (3)

and ‖ · ‖2 is the vector 2-norm in Rm. The first-order optimal-
ity condition of Eq. (3) yields

∇γJ (γopt) =
(∫

�

∂û
∂W

T ∂û
∂W dx

)
γopt

−
(∫

�

∂û
∂W

T

N (û)dx
)

= 0. (4)

The optimal solution γopt is approximated by γ̂opt which is the
solution to

JT Jγ̂opt = JT N. (5)

In the above, J is the neural network gradient and N is the
PDE operator evaluated at a set of spatial points,

(J)i j = ∂ui

∂W j
, (N)i = N (ui), (6)

where i = 1, 2, ..., Nu is the index of the collocation point, and
j = 1, 2, ..., NW is the index of the neural network parameter.
The elements in J and N are calculated through automatic dif-
ferentiation. It can be shown that as the number of collocation
points Nu → ∞, the following holds:

1

Nu
JT J → 1

�

∫
�

∂û
∂W

T ∂û
∂W dx,

1

Nu
JT N → 1

�

∫
�

∂û
∂W

T

N (û)dx. (7)

The solution of Eq. (5) is an approximation of the time
derivative of W . Two methods that can be utilized to solve
Eq. (5) are direct inversion and optimization. By using the
solution from last time step as initial guess, using optimization
method accelerates the calculations compared to direct inver-
sion. Both methods give numerical solutions with satisfactory
accuracy. An explicit time discretization scheme can be used

045303-3

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

to perform time marching, for example, forward Euler,

Wn+1 − Wn

�t
= γ̂ n

opt, (8)

where n is the index of time step, and �t is the time step size.
For better temporal accuracy, the widely adopted fourth-order
Runge-Kutta scheme can be used,

Wn+1 = Wn + (
1
8 k1 + 3

8 k2 + 3
8 k3 + 1

8 k4
)
�t, (9)

where k1 to k4 are given by

k1 = γ̂opt(Wn)

k2 = γ̂opt

(
Wn + k1

�t

3

)

k3 = γ̂opt

(
Wn − k1

�t

3
+ k2�t

)

k4 = γ̂opt(Wn + k1�t − k2�t + k3�t). (10)

The initial condition W (0) = W0 is evaluated through
training the neural network with initial data. The cost, or loss,
function of this training is

J0(W0) = 1

2Nu

Nu∑
i=0

‖û(xi,W0) − u(xi, t = t0)‖2
2, (11)

where i = 1, 2, ..., Nu represents the index of collocation
points. After minimizing Eq. (11), the initial condition W (0)
is used in the ordinary differential equation (3) to solve for
the solution trajectory W (t). The solution of Eq. (1) then
can be calculated at arbitrary time t and space point x by
evaluating the neural network using weights W (t) and input
coordinates x.

B. Embedded constraints

In this section we discuss a general framework to embed
linear constraints into neural networks. Denote by U and A
Banach spaces, and M ⊂ U as the neural network function
class that is to be constrained. A general linear constraint on
u ∈ M can be written as follows:

Au = 0, u ∈ M , (12)

where A : U → A is a linear operator on U . In most
existing deep-learning frameworks for solving PDEs, this con-
straint is realized by minimizing the following functional:

JA = ‖Au‖A , u ∈ M , (13)

where ‖ · ‖A represents the norm corresponding to space A .
Such method only enforces linear constraint Eq. (12) approx-
imately, and the accuracy of the realization of the constraint
depends on the relative weighting between the constraint and
other objectives of the training, such as satisfying the govern-
ing equations or matching of observation data.

Instead of minimizing Eq. (13), a general approach is
sought to enforce linear constraints exactly. Consider another
linear operator G : V → U as an auxiliary operator for the
realization of constraint Eq. (12). The operator G satisfies

A ◦ G(v) = 0, v ∈ M ′, (14)

where v is the auxiliary neural network function for the re-
alization of constraint A. The function space M ′ ⊂ V is the
neural network function class corresponding to v. A sufficient
condition of Eq. (14) is

imag(G) ⊆ ker(A). (15)

The problem of enforcing linear constraint Eq. (12) is thus
transformed to the construction of operator G and the neural
network function class M ′ that satisfies Eq. (15). The newly
constructed function

û = G(v) (16)

satisfies the linear constraint A(û) = 0. In this way, the linear
constraint could be enforced exactly along the solution tra-
jectory. Three examples are given below: periodic boundary
conditions, homogeneous Dirichlet boundary conditions and
a divergence-free condition.

1. Periodic boundary conditions

The treatment of periodic boundary conditions for the so-
lution of PDE using neural network has been investigated in
previous research [23]. In most of existing methods, input
coordinates x are replaced with sin(x) and cos(x) to guarantee
periodicity. This method is an example of the general frame-
work discussed here for linear constraints on neural networks.

Consider a one dimensional interval � = [0, 2π]. The
aim is to construct a class of functions that exactly satisfies
periodicity on �. The linear operator Ap corresponding to
periodicity on � is

Ap(f) = f (0) − f (2π). (17)

Choose v ∈ M 2,1 as the auxiliary function, where M d,q is
the neural network function class with input dimension d and
output dimension q. We construct the auxiliary operator Gp as

Gp(v)(x) = v[sin(x), cos(x)]. (18)

It can be easily verified that Ap ◦ Gp(v) = 0.
Note that when the initial condition or the solution of

the PDE has the same harmonic dependence as the feature
expansion x �→ [sin(x), cos(x)], this compatibility improves
the network representation of the initial condition and, when
relevant, also the solution. For more general fields, one could
include multiple harmonics in the input feature expansion,
x �→ [sin(nx), cos(nx)], for n = 0, 1, 2, · · · [23], to improve
the compatibility with the solution. Here we only consider n =
1 for simplicity, and examples that involve periodic boundary
conditions will be discussed in Secs. III B, III C, and III D.

2. Dirichlet boundary conditions

The homogeneous Dirichlet boundary condition is com-
monly adopted in the study of PDEs and in applications. A
construction of boundary conditions as embedded constraints
on a network was achieved in Refs. [14,24] by multiplying
the network with certain polynomials or by another pre-
trained network. Here, a new method for enforcing Dirichlet
boundary conditions is introduced. The approach guaran-
tees machine-zero level of error for homogeneous Dirichlet
boundary condition on arbitrary geometry and can be trivially
extended to higher dimensions.

045303-4

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 3. Schematics for Dirichlet boundary conditions. (a) Geometric quantities including xe, xw , xn, xs and ae, ae, ae, ae corresponding to
point x. (b) Geometrical quantities are used to construct a network that satisfies Dirichlet boundary condition.

To state the problem precisely, the constraint operator A
is the trace operator T : H1(�) → L2(∂�), which maps an
H1(�) function to its boundary part. In this context, H1 is
chosen so that the trace operator T is well defined. According
to the trace theorem [25], there is a natural extension of the
trace operator from W 1,p(�) ∩ C(�) to W 1,p(�). The specific
choice of p = 2 is to make sure that all the L2 integrations
mentioned previously in Sec. II A are well defined. The cor-
responding auxiliary operator GT is not unique. For example,
the following construction of GT not only guarantees that the
homogeneous Dirichlet boundary condition is satisfied but
also provides smoothness properties of the solution,

GTv = v −
∫

∂�

∂�

∂n
(x, y)v(y)dy, (19)

where � is the Green’s function of Poisson equation on the
domain �, and n is the outward unit normal to the boundary.
The operator GT maps any function f ∈ H1(�) to a function
with zero values on the boundary. Intuitively, the integration
with Green’s function in Eq. (19) provides smooth transition
from the boundary values T (v) to the interior. However, this
construction of GT is not ideal. If v is a neural network
function, then any single evaluation of v(x0) at point x0 ∈ �

requires computing the integral
∫
∂�

∂�
∂n (x0, y)v(y)dy, which is

computationally expensive. Instead, we propose a computa-
tionally efficient method to enforce the Dirichlet condition on
a domain with arbitrary boundary, which we demonstrate us-
ing a two-dimensional example but the construction is easily
extended to higher dimensions.

The main idea is that a neural network with homogeneous
boundary conditions can be created from an inhomogeneous
network by canceling its boundary values. For illustration,
Fig. 3(a) shows a two-dimensional arbitrary domain �. An
arbitrary point in � is denoted x ∈ � ⊂ R2. Horizontal and
vertical rays emanating from x intersect the boundary ∂� at
xe, xw, xn and xs, with corresponding distances ae, aw, an

and as, which are all functions of x. Figure 3(b) shows the
structure of the neural network that enforces the boundary
conditions. The output uh(x, t) is a neural network function
with homogeneous Dirichlet boundary conditions,

uh(x) = GTv(x) = v(x) + cev(xe) + cwv(xw)

+ cnv(xn) + csv(xs), (20)

where v is a neural network that has nonzero boundary values.
The coefficients ce, cw, cn, and cs are

ce = − awanas

awanas + ae
, cw = − aeanas

aeanas + aw

,

cn = − awaeas

awaeas + an
, cs = − awaean

awaean + as
. (21)

The choice of the above construction can be motivated by
considering, for example, ce(ae, aw, an, as), which satisfies

ce(0, aw, an, as) = −1,

ce(ae, 0, an, as)

= ce(ae, aw, 0, as) = ce(ae, aw, an, 0) = 0,

∀ae, aw, an, as. (22)

Equation (21) is one example that satisfies such conditions.
Once uh(x, t) is obtained, an inhomogeneous Dirichlet condi-
tion can be enforced on the network by adding ub(x) which
may be an analytical function or provided by another neural
network. The final û(x, t) is the neural network solution that
satisfies the Dirichlet boundary conditions.

It is worth noting the limitations of this specific con-
struction of the homogeneous network uh(x, t). The domain
boundary should be sufficiently regular so that the homo-
geneous network satisfies the differentiability requirements
of the differential equation. The current construction can
be applied on all convex domains and some nonconvex
domains on which the mapping x �→ (xn, xs, xe, xw) is con-
tinuous. For other nonconvex domains with discontinuous x to
(xn, xs, xe, xw) mapping, the construction of a homogeneous
network may lead to difficulties in training and marching of
the network. Another strategy can be to introduce a relax-
ation term into the governing equations, thus enforcing the
boundary conditions in a soft manner by driving the network
boundary values towards the physical boundary condition.
In this work, we adopt the construction Eq. (20) above and
examples will be discussed in Sec. III A.

3. Divergence free

The divergence-free constraint is required for enforcing
continuity in incompressible flow fields. For this constraint,
the operator A is the divergence operator div : H1(�;Rm) →

045303-5

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 4. Schematics for imposing divergence-free constraint. The
shaded regions show the auxiliary network v and û = G(v) which
satisfies the divergence-free constraint.

L2(�). The domain of divergence operator is chosen
as H1(�;Rm) because the existence and integrability of
first-order derivatives should be guaranteed for divergence
to be well defined. The dimension of the solution domain
dim(�) = d is assumed to be the same as the dimension m
of the solution vector. We also denote by M d,q the neural
network function class with input dimension d and output
dimension q. The operator Gdiv corresponding to A can be
constructed in different ways depending on d:

(1) d = 2: v ∈ M 2,1 ⊂ H2(�,R) is the auxiliary neural
network function. The auxiliary operator Gdiv is constructed
as

Gdiv(v) =
(

∂v/∂y

−∂v/∂x

)
, (23)

In the fluid mechanics context v is the stream function, Gdiv

is the mapping from stream function to velocity field for two-
dimensional flow. The function space H2 is assumed because
the above construction of a divergence-free field requires tak-
ing second-order derivatives.

(2) d = 3: v ∈ M 3,3 ⊂ H2(�,R3) is the auxiliary neural
network function. The auxiliary operator Gdiv is constructed as

Gdiv(v) = ∇ × v. (24)

A schematic of the above construction is shown in Fig. 4,
and an example of incompressible two-dimensional flow will
be presented in Sec. III D.

III. NUMERICAL RESULTS

In this section, different types of PDEs are evolved us-
ing EDNN to demonstrate its capability and accuracy. In
Sec. III A the two-dimensional time-dependent heat equation
is solved, and the convergence of EDNN to the analytical
solution is examined. In Sec. III B, the one-dimensional lin-
ear wave equation and inviscid Burgers equation are solved
to demonstrate that EDNN is capable to represent transport,
including the formation of steep gradients in the nonlinear
case. In both Secs. III A and III B, we examine the effect
of the spatial resolution, and correspondingly the network
size, on the accuracy of network prediction. The influ-
ence of the time resolution is discussed in connection with
the Kuramoto-Sivashinsky (KS, Sec. III C) and the incom-
pressible Navier-Stokes (NS,Sec. III D) equations, which are
nonlinear and contain both advection and diffusion terms. The
KS test cases (Sec. III C) are used to examine the ability
of EDNN to accurately predict the bifurcation of solutions,

relative to benchmark spectral discretization. For the incom-
pressible NS equations (Sec. III D), we compare predictions
of the Taylor-Green flow to the analytical solution and pro-
vide a comprehensive temporal and spatial resolution test. We
also simulate the Kolmogorov flow starting from laminar and
turbulent initial conditions. EDNN can predict the correct tra-
jectory starting from the laminar state, and accurately predict
long-time flow statistics in the turbulent regime.

In all the following tests we use “tanh” activation function
except for the Burgers equation where we adopt “relu” activa-
tion. The neural network parameters are initialized using the
default initializer of TensorFlow, which is Gaussian random
number for the kernel and zero values for the biases. The
cost functions for learning the initial conditions are defined
by the discrete L2 norm in Eq. (11), on a set of collocation
points. The collocation points used in the initial condition
are generated from regular uniform grids with number of grid
points defined in Tables I–V. The initial network weights are
optimized to represent the initial condition using stochastic
gradient descent, with inverse time decay learning rate. Be-
yond the initial training, EDNN parameters are updated using
the governing equations as described in Sec. II A, on the same
set of collocation points.

A. Parabolic equations

Using the methodology introduced in Sec. II, we solve the
two-dimensional heat equation

∂u

∂t
= ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (x, y) ∈ � = [−π, π]2, (25)

with boundary and initial conditions

u(x, y, t = 0) = sin(x) sin(y),

u = 0 on ∂�. (26)

By appropriate choice of normalization, the heat diffusivity
can be set to unity, ν = 1.

The parameters of two tests, denoted 1h and 2h, are pro-
vided in Table I. In both cases, the network is comprised
of L = 4 hidden layers, each with nL neurons. The smaller
number of neurons is adopted for a lower number of col-
location points, while the higher value is for a finer spatial
resolution. Both networks were trained to represent the initial
condition until their loss functions reduced by seven orders of
magnitude, and subsequently evolved using the algorithm in
Sec. II.

The predictions of EDNN from case 1h is compared to the
analytical solution in Fig. 5. The two-dimensional contours
predicted by EDNN display excellent agreement with the the
true solution at t = 0.2. Figure 5(c) shows a comparison of
the EDNN and true solutions along a horizontal line (y = 1) at

TABLE I. Parameters for linear heat equation calculations using
EDNN.

Case L nL Nx Ny �t ν�t/�x2

1h 4 20 65 65 1 × 10−3 0.10
2h 30 129 129 1 × 10−3 0.42

045303-6

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 5. Numerical solution and error evaluation for 2D heat equation using EDNN. (a), (b) Contours of true and EDNN solution (case
2h) at t = 0.2. (c) Comparison between true and EDNN solutions (case 1h) at different times and y = 1.0, true solution, EDNN
solution.

different time instances. Throughout the evolution, the EDNN
solution shows good agreement with the analytical result.
Two definitions of the instantaneous prediction errors were
evaluated,

ε = ‖û(t) − u(t)‖2

‖u(0)‖2
, δ = ‖û(t) − u(t)‖2

‖u(t)‖2
, (27)

and are reported in Figs. 6(a) and 6(b). The three curves corre-
spond to one simulation using network 1h and two simulations
using network 2h starting from different initial errors. We start
by considering the general trend of the curves. In all cases, ε

decays monotonically with respect to time, which indicates
that the EDNN solutions are stable. When ‖u(t)‖2 is adopted
for normalization, the errors δ amplify since the EDNN so-
lutions accrue errors as they are marched in time, which is
consistent with the behavior of conventional discretization
schemes.

For case 1h, the change in the decay rate of ε at early time
can be explained by the initial network not belonging to a
typical solution trajectory; it is only trained on the initial data.
Once evolved, and after a short transient (t > 0.2), the predic-
tion error decays exponentially as expected. The results from
the larger network 2h with spatial refinement of collocation
points are more accurate throughout the evolution. For the
first of these cases (2h, dashed line), we deliberately started
from a value of the initial error, associated with training the

FIG. 6. Error evaluations of numerical solution for 2D heat
equation using EDNN. (a) Error of EDNN solution versus time,
normalized by L2 norm of initial condition. (b) Error normalized by
L2 norm of instantaneous true solution u(t). case 1h, case
2h, case 2h with lower initial error.

network to learn the initial condition, that is similar to case
1h. In this manner, we can highlight the improved accuracy of
the predicted solution during its development. Lowering the
error associated with the initial state of 2h (solid line) further
reduces the error throughout the time history.

B. Hyperbolic equations

In this section, EDNN is applied to solution of the
one-dimensional linear advection equation and the one-
dimensional Burgers equation in order to examine its basic
properties for a hyperbolic PDE. The linear case is governed
by

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ [−1, 1], c = 1. (28)

The initial condition is a sine wave,

u(x, 0) = −sin(πx), (29)

and periodicity is enforced in the streamwise direction. EDNN
predictions will be compared to the analytical solution

u = −sin[π (x − ct)]. (30)

The parameters of the calculations are provided in Table II
(cases 1lw and 2lw). In both cases, the EDNN architecture
is comprised of four layers (L = 4) each with either 10 (case
1lw) or 20 (case 2lw) neurons. The number of solution points
is increased with the network size, while the timestep is held
constant.

The EDNN prediction (case 2lw) and the analytical so-
lution are plotted superposed in Fig. 7, and show good
agreement. The root-mean-squared errors in space ε are plot-
ted as a function of time in Fig. 7(b), and demonstrates that
the solution trajectories predicted by EDNN maintain very
low level of errors. Note that the errors maintain their initial
values, inherited from the network representation of the initial

TABLE II. Parameters for linear wave equation calculations us-
ing EDNN.

Case L nL Nx �t

1lw 4 10 500 1 × 10−3

2lw 20 1000 1 × 10−3

1b 4 20 1000 1 × 10−3

045303-7

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 7. Numerical solution of linear wave equation using EDNN.
(a) Spatial solution from case 2lw every 0.2 time units. Symbols:

true solution, EDNN solution. (b) Relative error:
case 1lw, case 2lw.

condition, and are therefore smaller for the larger network that
provides a more accurate representation of the initial field. In
addition, the errors do not amplify in time, but rather oscil-
late with smaller amplitude as the network size is increased.
This trend should be contrasted to conventional discretizations
where, for example, diffusive errors can lead to decay of the
solution and an amplification of errors in time.

The same EDNN for the linear advection equation can
easily be adapted for the nonlinear Burgers equation. The for-
mation of shocks and the capacity of NN to capture them (e.g.,
using different activation functions) is a topic that warrants
a separate dedicated effort [26]. For the present scope, one
option is to introduce a viscous term to avoid the formation
of discontinuities in the solution [see, e.g., Ref. 7]; Since
we have already simulated the heat equation, here we retain
the inviscid form of the Burgers equation and simulate its
evolution short of the formation of the N-wave. We therefore
solve

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ [−1, 1], (31)

with the initial condition

u(x, 0) = −sin(πx), (32)

with periodic boundary conditions on the given interval
[−1, 1]. The analytical solution is given implicitly by the
characteristic equation,

u = −sin[π (x − ut)]. (33)

This expression is solved using a Newton method to obtain a
reference solution.

The parameters of the EDNN used for the Burgers equa-
tion is shown in Table II (case 1b). The EDNN prediction
is compared to the reference solution in Fig. 8 at different
stages. At early times [Fig. 8(a)], the gradient of solution is not
appreciable and is therefore resolved and accurately predicted
by the network. At the late stages in the development of the
N-wave [Fig. 8(b)], the solution develop steep gradient at
x = 0 and becomes nearly discontinuous. The prediction from
EDNN continues to accurately capture the reference solution.

FIG. 8. Numerical solution of N-wave formation using EDNN.
(a) Solution at t = {0.0, 0.1, 0.2}. (b) Solution at t = 0.32. Symbols:

true solution, EDNN solution.

C. Kuramoto-Sivashinsky equation

In this section, the Kuramoto-Sivashinsky (KS) equation
is solved using EDNN. The nonlinear fourth-order PDE, is
well known for its bifurcations and chaotic dynamics, and has
been subject of extensive numerical study [22,27,28]. We will
focus on the ability of EDNN to predict bifurcations of the
solution, and reserve the discussion of chaotic solutions to
simulations of the Kolmogorov flow and its long-time statis-
tics (Sec. III D 2). We consider the following form of the KS
equations:

∂u

∂t
+ u

∂u

∂x
+ ∂2u

∂x2
+ ∂4u

∂x4
= 0, (34)

with periodic boundary conditions at the two end points of the
domain, and the initial condition,

u(x, t = 0) = sin

(
πx

10

)
, x ∈ [−10, 10]. (35)

The parameters for solving Eq. (34) using EDNN are pro-
vided in Table III. All three cases adopt the same EDNN
architecture, with four layers (L = 4) each with 20 neurons
nL = 20. The spatial domain is represented by Nx = 1000
uniformly distributed points, although the method does not
impose any restriction on the sampling of the points over the
spatial domain which could have been, for example, randomly
uniformly distributed. Cases 1k and 2k adopt the same time-
step �t , and are intended to contrast the accuracy of forward
Euler (FE) and Runge-Kutta (RK) time marching schemes for
updating the network parameters. Case 3k also uses RK but
with a finer time-step.

Figure 9(a) shows the behavior of a reference solution,
evaluated using a spectral Fourier discretization in space

TABLE III. Parameters for the numerical solution of Kuramoto-
Sivashinsky equation using EDNN

Case L nL Nx �t Time discretization

1k 1 × 10−2 FE
2k 4 20 1000 1 × 10−2 RK
3k 1 × 10−3 RK

045303-8

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 9. Numerical solution of one-dimensional Kuramoto Sivashinsky equation using EDNN. (a) Numerical solution from spectral
discretization; (b) case 2k; (c) case 3k.

and exponential time differencing fourth-order Runge-Kutta
method [29] with �t = 10−3. Figures 9(b) and 9(c) show the
predictions from cases 2k and 3k using EDNN. The solution
of case 2k diverges from the reference spectral solution for
two reasons. First, the time step size �t in case 2k is large
compared to the spectral solution, which introduces large dis-
cretization errors in the time stepping. In case 3k, the step size
�t is reduced to 10−3 and the prediction by EDNN shows
good agreement with the reference spectral solution. Second,
the trajectory predicted by solving the KS equation is very
sensitive to its initial condition. That initial state is prescribed
by training to set the initial state of EDNN, and therefore the
initial condition is enforced with finite precision, in this case
O(10−3) relative error. The initial error is then propagated
and magnified through the trajectory of the solution, as in any
chaotic dynamical system.

The errors between the reference spectral solution and the
three cases listed in Table III are evaluated,

ε = ‖û(t) − u(t)‖2

‖u(0)‖2
, (36)

and shown in Fig. 10, both in linear and logarithmic scales.
The Euler time advancement of the network parameters shows
the earliest amplification of errors, or divergence of the trajec-
tories predicted by EDNN and the reference spectral solution.
At the same time-step size, the RK time marching has lower
error and reducing its time-step size even further delays the

FIG. 10. Temporal evolution of errors in KS solution using
EDNN relative to Fourier spectral method. case 1k; case
2k; case 3k. Errors ε are reported in (a) linear and (b) logarith-
mic scale.

amplification of ε. Despite this trend, since the equations are
chaotic, even infinitesimally close trajectories will ultimately
diverge in forward time at an exponential Lyapunov rate.
Therefore, when plotted in logarithmic scale, the errors all
ultimately have the same slope, but the curves are shifted to
lower levels for RK time marching and smaller time step.

D. Incompressible Navier-Stokes equations

In this section we simulate the evolution of the two-
dimensional Taylor-Green vortices and of Kolmogorov flow
using EDNN. Both cases are governed by the incompressible
Navier-Stokes equations,

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇P + ν∇2u + f ,
(37)

where u and P represent the velocity and pressure fields, and f
represents a body force. An alternative form of the equations
[30,31],

∂u
∂t

= P[−u · ∇u + ν∇2u + f], (38)

replaces the explicit dependence on pressure by introducing
P which is an abstract projection operator from H1(�) to its
subspace H1(�)div. This form, Eq. (38), of the Navier-Stokes
equation can be solved directly using EDNN, where the pro-
jection operator P is automatically realized by maintaining a
divergence-free solution throughout the time evolution.

The minimization problem (3) corresponding to the
Navier-Stokes equations (38) is

JP(γ) = 1

2

∫
�

∥∥∥∥ ∂û
∂W γ − P[−û · ∇û + ν∇2û + f]

∥∥∥∥
2

2

dx.

(39)

When the methodology from (II B 3) is adopted to constrain
û to the solenoidal space, the above cost function can be re-
written without the project operator,

J (γ) = 1

2

∫
�

∥∥∥∥ ∂û
∂W γ − [−û · ∇û + ν∇2û + f]

∥∥∥∥
2

2

dx, (40)

The implementation and minimization of Eq. (40) does not
requires any special treatment and the projection, which is per-
formed explicitly in fractional step methods, is automatically
realized in EDNN by the least square solution of the linear

045303-9

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

system Eq. (5) associated with Eq. (40). The equivalence
between Eqs. (39) and (40) can be formally verified,

∇γJ =
(∫

�

∂û
∂W

T ∂û
∂W dx

)
γopt −

[∫
�

∂û
∂W

T

NNS(û)dx
]

=
(∫

�

∂û
∂W

T ∂û
∂W dx

)
γopt−

[∫
�

(
P ∂û

∂W

)T

NNS(û)dx
]

=
(∫

�

∂û
∂W

T ∂û
∂W dx

)
γopt −

[∫
�

∂û
∂W

T

PTNNS(û)dx
]

=
(∫

�

∂û
∂W

T ∂û
∂W dx

)
γopt −

[∫
�

∂û
∂W

T

PNNS(û)dx
]

= ∇γJP, (41)

where NNS = −û · ∇û + ν∇2û + f is the right-hand side
of Navier-Stokes equations (38) without the projection op-
erator P . The second equality above holds because the
columns of ∂û/∂W are all divergence-free, ∇ · (∂u/∂W) =
∂ (∇ · u)/∂W = ∂ (∇ · ∇ × v)/∂W = 0. The fourth equality
in Eq. (41) uses the fact that P is an orthogonal projection
operator. The validity and accuracy of this approach will also
be demonstrated empirically through comparison of EDNN
and analytical solutions of the incompressible Navier-Stokes
equation.

1. Taylor-Green vortex

Two-dimensional Taylor-Green vortices are an exact time-
dependent solution of the Navier-Stokes equations. This flow
has been adopted extensively as a benchmark to demonstrate
accuracy of various algorithms. The initial condition is

u(x, y, t = 0) = U0cos(x)sin(y),
(42)

v(x, y, t = 0) = −U0sin(x)cos(y),

and in absence of external forcing (f = 0) the time-dependent
velocity field is

u(x, y, t = 0) = U0cos(x)sin(y)e−2νt ,
(43)

v(x, y, t = 0) = −U0sin(x)cos(y)e−2νt ,

where (x, y) ∈ [0, 2π]2 and periodicity is enforced on the
domain boundaries.

FIG. 11. Analytical and EDNN solution of Taylor-Green vortex
at t = 0.2. Color contours show the vorticity, and lines are the
streamfunction. (a) Analytical solution. (b) Case 6t using EDNN.

TABLE IV. Parameters for the numerical solution of Taylor-
Green Vortex using EDNN

Case L nL Nx Ny �t

1t 4 10 33 33 1 × 10−2

2t 1 × 10−3

3t 1 × 10−4

4t 1 × 10−5

5t 20 65 65 1 × 10−2

6t 1 × 10−3

7t 1 × 10−4

8t 1 × 10−5

9t 30 129 129 1 × 10−4

A comparison of the analytical and EDNN solutions is
provided in Fig. 11. The contours show the vorticity field
ω = ∇ × u and lines mark streamlines that are tangent to
the velocity field. The prediction by EDNN shows excellent
agreement with the analytical solution at t = 0.2, and satisfies
the periodic boundary condition.

In order to quantify the accuracy of EDNN predictions,
a series of nine test cases, denoted 1t through 9t, were per-
formed and are listed in Table IV. All EDNN architectures
are comprised of L = 4 layers, and three network sizes were
achieved by increasing the number of neurons per layer nL =
{10, 20, 30}. The three values of nL were adopted for three res-
olutions of the solution points (Nx, Ny) in the two-dimensional
domain, and at each spatial resolution a number of time-steps
�t were examined.

Quantitative assessment of the accuracy of EDNN is pro-
vided in Fig. 12. First, the decay of the domain-averaged
energy of the vortex E = (1/|�|) ∫

�
u2d� is plotted in

Fig. 12(a) for all nine cases which all compare favorably to
the analytical solution. The time-averaged root-mean-squared
errors in the solution,

ε = 1

T

∫ T

0

‖u(t) − û(t)‖2

‖u(t)‖2
dt, (44)

are plotted in Fig. 12(b). For any of the time-steps considered,
as the number of solution points (Nx, Ny) is increased, and
with it the number of neurons per layer nL, the errors in the

FIG. 12. Quantitative assessment of EDNN solution for Taylor
Green vortex. (a) Decay of kinetic energy from EDNN and analytical
solutions. (b) Relative error in EDNN prediction versus the time-step
�t . cases 1t to 4t; cases 5t to 8t; case 9t.

045303-10

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

TABLE V. Parameters for Kolmogorov flow simulations using
Fourier spectral methods and EDNN.

Case L nL Nx Ny �t Re n I.C.

Spectral 1kfS 128 128 1 × 10−3 33 4 L
2kfS 2 T

EDNN 1kfE 4 20 65 65 1 × 10−2 33 4 L
2kfE 2 T

EDNN prediction is reduced. In addition, as the time-step is
reduced from �t = 10−2 to 10−4, the errors monotonically
decrease. Below �t = 10−4, the error saturates which is in
part due to errors in the representation of the initial condition
and from spatial discretization using the neural network. We
have also verified that the solution satisfies the divergence-free
condition to machine precision, which is anticipated because
of the contraint was embedded in the EDNN design and
derivatives are computed using automatic differentiation.

2. Kolmogorov flow

The final Navier-Stokes example that we consider is the
Kolmogorov flow, which is a low dimensional chaotic dy-
namical system that exhibits complex behaviors including
instability, bifurcation, periodic orbits and turbulence [32,33].
The accurate simulation of long-time chaotic dynamical sys-
tem is important and also a challenge to the algorithm, thus
we choose it as a numerical example.

Our objective here will be to demonstrate that EDNN can
accurately predict trajectories of this flow in state space when
starting from a laminar initial condition, and also long-time
statistics when the initial condition is within the statistically
stationary chaotic regime. The latter objective is extremely
challenging because very-long-time integration is required for
convergence of statistics, and will be demonstrated here using
EDNN.

The incompressible NS equations (37) are solved with
forcing in the horizontal x direction, f = χsin(ny)ex where
χ = 0.1 is the forcing amplitude and n is the vertical
wave number. Simulations starting from a laminar condition
adopted the initial field,

u(x, y, t = 0) = 0,
(45)

v(x, y, t = 0) = −sin(x),

FIG. 14. Instantaneous (a) horizontal and (b) vertical velocities
in the turbulent state at t = 105 withe forcing wave number n = 4,
simulated using EDNN.

The spatial domain of the Kolmogorov flow is fixed on
[−π, π]2. The Reynolds number is defined as Re = √

χ/ν

consistent with [32]. Independent simulations were performed
using Fourier spectral discretization of the Navier-Stokes
equations (see Table V), at high spectral resolution and with
a small time-step because these are intended as reference
solutions. Two forcing wave numbers were considered: Case
1kfS with n = 4 generates a laminar flow trajectory starting
from Eq. (45); Case 2kfs with n = 2 adds random noise to
the initial field Eq. (45) to promote transition to a chaotic
turbulent state, and flow statistics are evaluated once statistical
stationarity is achieved.

The EDNN simulations parameters are also listed in Ta-
ble V, all using the same network architecture, number of
spatial points and time-step. The laminar case (1kfE, n = 4)
shares the same initial condition Eq. (45) as the spectral
solution; The turbulent case (2kfE, n = 2), however, was sim-
ulated starting from a statistically stationary state extracted
from the spectral computation, and therefore statistics were
evaluated immediately from the initial time.

The laminar cases 1kfs and 1kfE are compared in Fig. 13.
Contours of the vorticity field ω = ∇ × u are plotted using
color for the EDNN solution and lines for the spectral ref-
erence case, and their agreement demonstrates the accuracy
of EDNN in predicting the time evolution. If noise is added
to the initial condition, these cases transition to turbulence.
A snapshot of such turbulent velocity field obtained using
EDNN at very long time, t = 104, is shown in the Fig. 14 to
confirm that transition to turbulence can indeed be achieved.

FIG. 13. Comparison of instantaneous vorticity ω in Kolmogorov flow using EDNN and spectral method. Colored contours are from case
1kfE (EDNN) and line contours are from 1kfS (spectral). (a) t = 0.25, (b) t = 0.50, (c) t = 0.75, and (d) t = 1.0.

045303-11

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

FIG. 15. Instantaneous snapshots and long-time statistics of the chaotic Kolmogorov flow with forcing wave number n = 3. (a) Horizontal
and (b) vertical velocities in the turbulent state at t = 105 simulated using EDNN. (c), (d) Statistics of horizontal and vertical velocities,
respectively, evaluated from spectral simulation (solid line, case 2kfs) and EDNN (dashed lines, case 2kfE). Black lines are the mean velocities,
and blue lines are the root-mean-squared fluctuations.

It is well known, however, that convergence of first- and
second-order statistics when n = 4 is extremely challenging,
and requires sampling over a duration on the order of at
least 106 time units [33]. We therefore adopt n = 2 for the
computation of turbulent flow statistics, where convergence
is achieved faster, but nonetheless still requiring long chal-
lenging integration times. A realization of the statistically
stationary state from EDNN (case 2kfE) is shown in Fig. 15.
The velocity field shows evidence of the forcing wave number,
but is clearly irregular. Long-time flow statistics from both
EDNN and the spectral simulation (2kfs) also shown in the
figure. The black curves are the mean velocity and blue ones
show the root-mean-squared perturbations as a function of
the vertical coordinate. Agreement of EDNN prediction with
the reference spectral solution is notable, even though the
spatiotemporal resolution in EDNN is coarser. We also note
that these simulations were performed over very long times
(6 × 105 for spectral and 4 × 105 for EDNN). Performing
such long-time evolutions of turbulent trajectories has never
been demonstrated with existing neural-network approaches,
and was here demonstrated to be accurately achieved with
EDNN.

IV. CONCLUSIONS

A new framework is introduced for simulating the evo-
lution of solutions to PDEs, ∂u/∂t = Nx(u), using neural
network. Spatial dimensions are discretized using the neural
network, and automatic differentiation is used to compute
spatial derivatives. The temporal evolution is expressed in
terms of an evolution equation for the network parameters,
or weights, which are updated using a marching scheme.
Starting from the initial network state that represents the initial
condition, the weights of the EDNN are marched to predict
the solution trajectory of the PDE over any time horizon of
interest. Boundary conditions and other linear constraints on
the solution of the PDE are enforced on the neural network by
the introduction of auxiliary functions and auxiliary operators.
From the perspective of numerical methods for partial differ-
ential equations, EDNN can be viewed as a nonlinear version
of finite-element methods, where the finite-element ansatz

spaces are replaced by neural network function classes with
certain structural design. The EDNN methodology is flexible,
and can be easily adapted to other types of PDE problems. For
example, in boundary-layer flows, the governing equations are
often marched in the parabolic streamwise direction [34–36].
In this case, the inputs to EDNN would be the spatial coordi-
nates in the cross-flow plane, and the network weights would
be marched in the streamwise direction instead of time.

Several PDE problems were solved using EDNN to
demonstrate its versatility and accuracy, including two-
dimensional heat equation, linear wave equation and Burgers
equation. Tests with the Kuramoto-Sivashinsky equation
focused on the ability of EDNN to accurately predict bifurca-
tions. For the two-dimensional incompressible Navier-Stokes
equations, we introduced an approach where the projection
step which ensures solenoidal velocity fields is automati-
cally realized by an embedded divergence-free constraint. We
then simulated decaying Taylor-Green vortices. In all cases,
the solutions from EDNN show good agreement with either
analytical solutions or reference spectral discretizations. In
addition, the accuracy of EDNN monotonically improves with
the refinement of neural network structure, and the adopted
spatiotemporal resolution for representing the solution. For
Navier-Stokes equations, we also considered the evolution of
Kolmogorov flow in the early laminar regime as well as its
long-time statistics in the chaotic turbulent regime. Again the
predictions of EDNN were accurate, and its ability to simulate
long-time horizons was highlighted.

The overall accuracy of EDNN predictions depends on a
number of factors: Errors in the initial condition arise due
to the finite representation capability of the network and
the optimization procedure to learn the initial data. During
marching, the differential operator Nx(u) is evaluated with
machine precision since automatic differentiation adopts an-
alytical derivatives coupled with the chain rule. The temporal
discretization of dW/dt to update the network weights in-
troduces an error, which converges to zero with the time-step
size at a rate that depends on the specific marching scheme.
Last, the solution update may in general have a component
pointing outwards from the neural network function class,
which is again due to finite representation capability of a

045303-12

EVOLUTIONAL DEEP NEURAL NETWORK PHYSICAL REVIEW E 104, 045303 (2021)

neural network, and the update of W is evaluated using L2

projection of the solution on the neural network function class.
EDNN has several noteworthy characteristics. Previous

neural network methods for time-dependent PDE perform an
optimization on the whole spatiotemporal domain. In contrast,
the state of EDNN only represents an instantaneous snapshot
of the PDE solution. Thus, the structural complexity of EDNN
can be significantly smaller than other approaches for a spe-
cific PDE problem. Second, EDNN maintains explicit time
dependency and causality, while most of other methods only
try to minimize the penalty on equation residuals. Thirdly,
EDNN can simulate very-long-time evolution of chaotic so-
lutions of the PDE, which is difficult to achieve in other NN
based methods.

The main computational cost of EDNN involves automatic
differentiation of the network outputs to evaluate the equation
operator Nx(u), the formation of the Jacobian matrix J, and
inverting the linear system JT J. The key difference to con-
ventional, structured finite-difference methods for example is
that the linear system is not sparse which incurs computational

cost. This relative weakness is outweighed by the flexibility
of EDNN, where the method is simple to implement for
any differential operator, complex geometric grids are not
required and dynamic refinement of collocation points can
be trivially performed during the evolution of the solution.
The cost of solving the dense linear system can be mitigated
in future work by domain decomposition: deploying small
networks on subdomains with interface boundary conditions
(e.g., enforced using the approach in Sec. II B) would lead to
a block-sparse system matrix, and lends itself to parallelism
for computational acceleration. Noteworthy is that for the
incompressible Navier-Stokes equations, the EDNN design
guarantees that the flow is divergence free without an explicit
projection step that requires solution of a separate elliptic
pressure equation.

ACKNOWLEDGMENT

The authors are grateful to Prof. Charles Meneveau for his
comments on an initial draft of this work.

[1] K. Hornik, Approximation capabilities of multilayer feedfor-
ward networks, Neural Netw. 4, 251 (1991).

[2] G. Cybenko, Approximation by superpositions of a
sigmoidal function, Math. Control Signals Syst. 2, 303
(1989).

[3] K. Hornik, M. Stinchcombe, H. White et al., Multilayer feed-
forward networks are universal approximators, Neural Netw. 2,
359 (1989).

[4] A. R. Barron, Universal approximation bounds for superposi-
tions of a sigmoidal function, IEEE Trans. Inf. Theory 39, 930
(1993).

[5] D. Yarotsky, Optimal approximation of continuous functions by
very deep ReLU networks, in Proceedings of the Conference on
Learning Theory (PMLR, 2018), pp. 639–649.

[6] J. Lu, Z. Shen, H. Yang, and S. Zhang, Deep network approxi-
mation for smooth functions, arXiv:2001.03040.

[7] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K.
Bhattacharya, A. Stuart, and A. Anandkumar, Fourier neu-
ral operator for parametric partial differential equations,
arXiv:2010.08895.

[8] L. Lu, P. Jin, and G. E. Karniadakis, DeepOnet: Learn-
ing nonlinear operators for identifying differential equations
based on the universal approximation theorem of operators,
arXiv:1910.03193.

[9] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis,
Deepm&mnet: Inferring the electroconvection multiphysics
fields based on operator approximation by neural networks,
J. Comput. Phys. 436, 110296 (2021).

[10] Z. Mao, L. Lu, O. Marxen, T. A. Zaki, and G. E. Karniadakis,
DeepM&Mnet for hypersonics: Predicting the coupled flow
and finite-rate chemistry behind a normal shock using neural-
network approximation of operators, J. Comput. Phys. 447,
110698 (2021).

[11] P. C. D. Leoni, L. Lu, C. Meneveau, G. Karniadakis, and T. A.
Zaki, DeepONet prediction of linear instability waves in high-
speed boundary layers, arXiv:2105.08697.

[12] M. Dissanayake and N. Phan-Thien, Neural-network-based
approximations for solving partial differential equations,
Commun. Numer. Methods Eng. 10, 195 (1994).

[13] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural
networks for solving ordinary and partial differential equations,
IEEE Trans. Neural Netw. 9, 987 (1998).

[14] J. Berg and K. Nyström, A unified deep artificial neural network
approach to partial differential equations in complex geome-
tries, Neurocomputing 317, 28 (2018).

[15] W. E. and B. Yu, The deep Ritz method: A deep-learning-
based numerical algorithm for solving variational problems,
Commun. Math. Stat. 6, 1 (2018).

[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep-learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, J. Comput. Phys. 378, 686
(2019).

[17] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, Ppinn:
Parareal physics-informed neural network for time-dependent
PDEs, Comput. Methods Appl. Mech. Eng. 370, 113250
(2020).

[18] S. Wang, Y. Teng, and P. Perdikaris, Understanding and mitigat-
ing gradient pathologies in physics-informed neural networks,
arXiv:2001.04536.

[19] R. Rico-Martinez, K. Krischer, I. Kevrekidis, M. Kube, and J.
Hudson, Discrete-vs. continuous-time nonlinear signal process-
ing of Cu electrodissolution data, Chem. Eng. Commun. 118,
25 (1992).

[20] R. González-García, R. Rico-Martìnez, and I. G. Kevrekidis,
Identification of distributed parameter systems: A neural net
based approach, Comput. Chem. Eng. 22, S965 (1998).

[21] R. Rico-Martinez, J. Anderson, and I. Kevrekidis, Continuous-
time nonlinear signal processing: A neural network based
approach for gray box identification, in Proceedings of the IEEE
Workshop on Neural Networks for Signal Processing (IEEE,
1994), pp. 596–605.

045303-13

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/18.256500
http://arxiv.org/abs/arXiv:2001.03040
http://arxiv.org/abs/arXiv:2010.08895
http://arxiv.org/abs/arXiv:1910.03193
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.jcp.2021.110698
http://arxiv.org/abs/arXiv:2105.08697
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.cma.2020.113250
http://arxiv.org/abs/arXiv:2001.04536
https://doi.org/10.1080/00986449208936084
https://doi.org/10.1016/S0098-1354(98)00191-4

YIFAN DU AND TAMER A. ZAKI PHYSICAL REVIEW E 104, 045303 (2021)

[22] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems From
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[23] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, Systems
biology informed deep learning for inferring parameters and
hidden dynamics, PLoS Comput. Biol. 16, e1007575 (2020).

[24] T. Luo and H. Yang, Two-layer neural networks for partial
differential equations: Optimization and generalization theory,
arXiv:2006.15733.

[25] C. Evans, Lawrence, Partial Differential Equations, 2nd
ed. (American Mathematical Society, Providence, RI, 1998),
Vol. 19.

[26] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, Physics-informed
neural networks for high-speed flows, Comput. Methods Appl.
Mech. Eng. 360, 112789 (2020).

[27] J. M. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky
equation: A bridge between PDEs and dynamical systems,
Physica D 18, 113 (1986).

[28] J. Page, M. P. Brenner, and Rich R. Kerswell, Revealing the
state space of turbulence using machine learning, Phys. Rev.
Fluids 6, 034402 (2021).

[29] A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping
for stiff PDEs, SIAM J. Sci. Comput. 26, 1214 (2005).

[30] R. Temam, Navier-Stokes Equations: Theory and Numeri-
cal Analysis (American Mathematical Society, Providence, RI,
2001), Vol. 343.

[31] R. Temam, Remark on the pressure boundary condition for the
projection method, Theor. Comput. Fluid Dyn. 3, 181 (1991).

[32] G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions
embedded in a turbulent two-dimensional Kolmogorov flow,
J. Fluid Mech. 722, 554 (2013).

[33] D. Lucas and R. R. Kerswell, Recurrent flow analysis in spa-
tiotemporally chaotic two-dimensional Kolmogorov flow, Phys.
Fluids 27, 045106 (2015).

[34] L. C. Cheung and T. A. Zaki, Linear and nonlinear instability
waves in spatially developing two-phase mixing layers, Phys.
Fluids 22, 052103 (2010).

[35] L. C. Cheung and T. A. Zaki, A nonlinear PSE method for two-
fluid shear flows with complex interfacial topology, J. Comput.
Phys. 230, 6756 (2011).

[36] J. Park and T. A. Zaki, Sensitivity of high-speed boundary-
layer stability to base-flow distortion, J. Fluid Mech. 859, 476
(2019).

045303-14

https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1371/journal.pcbi.1007575
http://arxiv.org/abs/arXiv:2006.15733
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/0167-2789(86)90166-1
https://doi.org/10.1103/PhysRevFluids.6.034402
https://doi.org/10.1137/S1064827502410633
https://doi.org/10.1007/BF00271801
https://doi.org/10.1017/jfm.2013.122
https://doi.org/10.1063/1.4917279
https://doi.org/10.1063/1.3425788
https://doi.org/10.1016/j.jcp.2011.05.007
https://doi.org/10.1017/jfm.2018.819

