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We experimentally study the late-time, highly nonlinear regime of the Rayleigh-Taylor instability in a
decelerating phase. A series of laser-driven experiments is performed on the LULI2000 laser, in which the initial
Atwood number is varied by adjusting the decelerating medium density. The high-power laser is used in a direct
drive configuration to put into motion a solid target. Its rear side, which initially possesses a two-dimensional
machined sinusoidal perturbations, expands and decelerates into a foam leading to a Rayleigh-Taylor unstable
situation. The interface position and morphology are measured by time-resolved x-ray radiography. We develop a
simple Atwood-dependent model describing the motion of the decelerating interface, from which its acceleration
history is obtained. The measured amplitude of the instability, or mixing zone width, is then compared with
late-time acceleration-dependent Rayleigh-Taylor instability models. The shortcomings of this classical model,
when applied to high-energy-density conditions, are shown. This calls into question their uses for systems, where
a shock wave is present, such as those found in laboratory astrophysics or in inertial confinement fusion.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) [1,2] is a seminal hy-
drodynamic instability, ubiquitous in the universe, which
pervades at all scales from Bose-Einstein condensates [3]
to astrophysical distances [4,5]. This instability leads to the
growth of the perturbation at the interface between fluids as
soon as the scalar product between pressure and density gradi-
ents is negative. On Earth, this necessary condition is reached
when a denser fluid rests on top of one of lower density, or
in the case of interface acceleration. RTI has therefore a great
impact on fluid dynamics in numerous systems [6–11].

Despite its apparent simplicity, RTI remains nowadays an
active field of study as testified by the recent reviews [12–14].
This is partially due to the complexity of all nonlinear sys-
tems in fluid dynamics. Indeed, strikingly, even the late-time
growth of single-mode RTI is not well understood [15]. After
the linear phase of growth, the instability pattern becomes
asymmetric [16]. The heavy fluid falls as spikes into the
lighter fluid, and the lighter fluid rises as bubbles into the
heavy fluid due to buoyancy forces. A key parameter is the ini-
tial Atwood number At = (ρ1 − ρ2)/(ρ1 + ρ2), ρi being the
i-fluid density. Based on the potential flow theory of Layzer
[17], a terminal bubble velocity was proposed by Goncharov
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for any Atwood number [18]. However, this theory breaks
down for a 3D single mode as numerically evidenced for
various Atwood numbers [19,20]. A reacceleration stage is
predicted to occur for the bubble velocity when the secondary
Kelvin-Helmholtz instabilities develop along the RTI spikes.
Vorticity accumulates inside the RTI bubble inducing its reac-
celeration [21]. A similar phenomenon was demonstrated at
the ablation front in the context of inertial confinement fusion
(ICF) [22]. RTI in the acceleration [10,11] or deceleration
phase [23–25] remains a major challenge towards a burning
plasma in ICF. From an experimental point of view, while
RTI has been widely studied in shock tube experiments [26],
a parametric scan in Atwood numbers requires different gas
mixtures [27,28]. Furthermore, a precise control and knowl-
edge of the initial conditions remains challenging for any
RTI experiments [29,30]. High-energy density (HED) settings
allow one to circumvent these intrinsic limitations [31,32].

In this article, we explore the Atwood-number dependency
of the RTI in HED conditions. This study builds upon the
classical scheme of a laser-produced plasma expanding into
a foam [33–36] with different densities. This HED platform
is much simpler than traditional shock tube RTI platforms.
Due to this simplicity, data sets are obtained, and a parametric
study exploring different initial conditions is performed. Ac-
curate measurements of acceleration and mixing zone widths
are made and compared to classical models, which failed to
reproduce the measurements. Explanations are suggested to
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FIG. 1. Example of obtained radiographies. The experimental
radiographies (a, b, c) show the dynamic of the evolution of a
20 mg cm−3 foam. Similarly panels (d), (e), and (f) correspond to
radiographs of 100, 200, and 500 mg cm−3 foams taken 30 ns after
the laser shot. The initial wavelength λ is 120 μm.

understand the higher than expected RTI growths, a trend
already observed in previous HED RTI settings [37,38].

II. EXPERIMENTAL SETUP

The experiments were performed on the LULI2000 laser
facility using the setup described in [35]. The nano2000 laser
beam (500 J, 2ω, 1.5 ns with a 470 μm super-Gaussian fo-
cal spot) deposits its energy on a multilayer target, with an
intensity of 2 × 1014 W cm−2. The target is composed of a
10 μm parylene ablator, a 1 μm gold x-ray shielding layer,
and a 40 μm modulated pusher (C8H7Br). We employed three
kind of modulations: a sine curve (λ = 120 μm wavelength,
10 μm amplitude), the sum of two sine curves [(70 and 130)
μm wavelengths, (10 and 10) μm amplitudes], and flat tar-
gets. Here we will focus on single-mode data, as no obvious
difference was observed between mono- and bimode [35]. As
a consequence of the target ablation by the laser, a shock wave
is launched into the target and put it into motion. The pusher
expands into an external medium, a resorcinol formaldehyde
(C15H12O4) foam. Four foam densities were used: (20, 100,
200, and 500) mg cm−3, leading to an initial Atwood number
of 0.97, 0.87, 0.75, and 0.47, respectively. Since the ablation
pressure applied by the laser is maintained only for ∼1.5 ns
and since the foam has a non-negligible density, the expanding
pusher decelerates resulting in a RT unstable situation.

To diagnose the interface between pusher and foam x-ray
radiographs were taken (see Fig. 1). Those radiographs were
performed by point projection [39], with an x-ray source
produced by the pico2000 laser (55 J, 10 ps) focused on a
25 μm titanium wire (Kα x-ray emission line: ∼4.5 keV) and
an imaging plate detector. This diagnostic presents a static
� 25 μm resolution [35]. It allows us to distinguish between
pusher and foam, the contrast between the two being enhanced
by the difference in density as well as the bromine doping
of the pusher (∼40% in mass). From those radiographs, two
parameters are measured: the position of the central RTI spike
and position of the central bubble extremities [cf. Fig. 1(f)].

We call the distance between spike and bubble extremities the
mixing zone (MZ) width. In the case of the flat targets, the
only observed variable is the actual interface position, which
is needed to determine the RTI growth. To obtain the overall
dynamics, we combine different single-snapshot radiographs
acquired from similar targets, laser drive, and initial condi-
tions [see Figs. 1(a)–(c)]. To compensate the laser energy
fluctuations, we normalized the time delays with respect to
the laser energy as explained in [35,40]: t̃ = t (E/E0)1/3. Here
we take 500 J as the reference laser drive energy (E0).

To build more confidence in the experiments, we have
conducted a series of radiation-hydrodynamics simulations
using FLASH (v.4.5) [41,42]. We used it in a 2D Cartesian
geometry in a hydrodynamic setup with three temperatures
and an adaptive mesh refinement (paramesh4dev). We em-
ployed an “hllc” Riemann solver, an “mc” slope limiter, with
a second-order data reconstruction (type MUSCL-Hancock)
and a cfl of 0.3 in an unsplit solver scheme. The simulation
domain we employed is a square with a length which varies
between (800 and 1400) μm depending on the simulated case
(far-reaching or not). It is divided in four main blocks, each
subject to adaptive mesh refinement (AMR) up to the sixth
order, and further divided in 16 cells in each spatial direction.
This leads to a maximal resolution varying between (0.8 and
1.4) μm depending on the domain size. The AMR is based
on the variation of density, temperature (electronic and ionic),
and pressure. The laser intensity (�5 × 1013 W cm−2) was
adjusted to reproduce the initial experimental velocity for
the interface between pusher and foam. And the laser pulse
was modeled using 50 temporally equidistant points span-
ning from 0 to 2 ns. All the simulated plastic layers use the
same IONMIX [43] tabulated equation of state (polystyrene)
as well as their respective tabulated opacity calculated with
PROPACEOS [44] with 40 radiation groups. The different
elements of the experiment except the gold layer, which is
too thin, are initialized in accordance with the geometry of
the experiment (vacuum, ablator, pusher, foam, and tube).

In addition to these simulations, 1D simulations in Carte-
sian geometry were performed for the need of the alteration of
the buoyancy-drag model discussed later. These simulations
employed the same parameters as the 2D simulations except
for the initial geometry and the laser intensity, which need to
be lowered to obtain the right initial velocity.

III. INTERFACE MOTION

A. Measure of the position

We focus first on the motion of the interface between
pusher and foam. Here by interface, we mean the position
where the interface would be in the absence of RTI effects.
Indeed, this motion triggers the consequent RTI growth. Since
the interface is warped, due to the development of hydrody-
namic instabilities, we theoretically cannot follow its motion
except for the flat targets. As shown in Fig. 2(a), the movement
of the interface is equal to the movement of the central RTI
spike of the modulated targets. The difference in position is
too small to distinguish between the two with our experi-
mental resolution. This is also observed in simulations. In
Fig. 2(b) the length of the spikes and bubbles is displayed.

045213-2



EXPLORING THE ATWOOD-NUMBER DEPENDENCE OF THE … PHYSICAL REVIEW E 104, 045213 (2021)

FIG. 2. Comparison between RTI spike and interface position.
(a) Temporal evolution of the position of the spike (blue), bubble
(magenta), and interface of a flat target (black) both experimentally
(points data) and in simulation for a 20 mg cm−3 foam. (b) Temporal
evolution of the bubble and spike lengths, which are calculated using
the simulated interface position from (a). (c) Simulated pressure map
taken 25 ns after shock break out around the interface. The interface
between pusher and foam is depicted with a white full line for the
modulated case and a dashed line for a flat target. (d) Map of the
simulated vorticity in the z direction (curl of velocity projected on z
axis) in the modulated case.

Here this length is calculated as the difference between their
respective position and the position of the interface obtained
through simulation (xspike − xinterface and xinterface − xbubble). As
can be seen, the spike length is lower than 100 μm (except
for two out-of-curve experimental points) and has a minimal
error of 25 μm, which is the ideal static case. Thus, the
experimental position of the spike and of the interface can
be hardly distinguished experimentally. This is especially the
case considering the experimental “length of the interface”
(black dots), which should be equal to zero but is of the order
of the length of the spikes. This is mainly due to a defect in
the spike growth resulting from the proximity of the shock
wave [45]. This fact is obvious in simulation as shown in
Fig. 2(c), where the pressure and the interface morphology
are displayed. The RTI spikes are subject to an excessive
pressure, which reduces their growth. Thus, the position of
the spikes corresponds approximately to the interface one. As

FIG. 3. Temporal dynamics of the interface. (a) Evolution of the
interface position for the different foam densities (20, 100, 200, and
500) mg cm−3 corresponding to At = 0.97, 0.87, 0.75, and 0.47. The
scattered data points correspond to the obtained experimental results.
The associated curves correspond to the result of our model (1)
with an initial velocity fixed to 28 μm ns−1. (b) Acceleration of the
interface deduced from the model [ẍ(t )].

for the bubbles, they are easily distinguished from the spikes
and interface.

The experimental data displayed in Fig. 3(a) thus corre-
spond to the interface dynamics for each foam density. Each
dynamics can be divided in two phases: ballistic and de-
celerating. The first phase corresponds to a nearly constant
interface velocity. If we compare our experiment to the clas-
sical model of supernova remnant (SNR) expansion [46,47],
this phase would correspond to the free expansion where the
mass of swept external medium is still too small to influence
the shock and interface dynamics. Here the interface veloc-
ity does not depend on the foam density, but on the ablator
composition and on the momentum transmitted by the laser,
both parameters kept constant. Following the SNR analogy,
this ballistic phase ends as soon as a sufficient mass of foam
is swept by the shock, which obviously happens sooner with
higher foam density. In the following phase, the interface
decelerates triggering the RTI growth. As expected, the decel-
eration increases with higher foam density. This is especially
obvious with the two extreme cases [(20 and 500) mg cm−3]:
for the low-density case, the motion remains ballistic, whereas
it becomes quasistationary for the high one. Varying the initial
foam density induces two opposing effects expected from the
linear approximation of the RTI growth: a high density leads
to a high deceleration, thus a high growth rate (∝ √

g), and a
low Atwood number, thus a low growth rate (∝ √

At ).

B. Analytical model

Before studying in detail the RTI growth, we develop an
analytical approach of the interface motion. The following 1D
analysis is based on two hypotheses: (1) the initial velocity of
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the interface, v0, is the same for every foam density and (2)
the deceleration of the interface depends on the swept mass
of foam and on the interface velocity. The first assumption
is a given since the initial velocity of the interface depends
on the momentum transmitted by the shock wave, which is
the same for every target (same target composition and laser
intensity). The dependence of the acceleration on the swept
mass is not a far stretch in one dimension. Indeed, the shocked
foam accumulates at the pusher front leading to an increased
mass thus inertia. If we suppose the deceleration being pro-
portional to the swept mass, then it will be proportional to the
shock (or interface) position (ẍ ∝ mswept ∝ xρ0). Finally, the
dependence of the deceleration on the interface velocity can
be understood when considering that in a time step the pusher
has to sweep a foam quantity proportional to its velocity
(ẍ ∝ ẋ). Therefore, the interface dynamics should follow the
differential equation: ẍ = −Bxẋ, with B ∝ ρ0 a constant. This
equation admits for solution

x(t ) =
√

2v0

B
tanh

√
Bv0

2
t . (1)

Here t = 0 corresponds to the shock break out (2.5 ns) and
x = 0 to the position of the interface at that time (50 μm).
This coordinate system is a space-time translation of the
experimental coordinates. It is used only in the following para-
graph. We can fit this solution to our experimental results as
shown in Fig. 3(a). If all fitting parameters are unconstrained,
then the initial velocity, v0 = ẋ(t = 0), varies between (25.9
and 29.3) μm ns−1 depending on the data set. Since this
variation is small and since all the initial velocities should be
the same, we impose a v0 of 28 μm ns−1, which corresponds
to our simulated data. B is then equal to (1.7 ± 0.2, 4.3 ±
0.1, 12.2 ± 0.4, and 20.3 ± 1.1) ×10−5 μm ns−1 for foam
density of (20, 100, 200, and 500) mg cm−3 respectively. As
predicted we find that B is nearly proportional to the foam
density [B/ρ0 = (4.3 ± 1.0) × 105 μm2 mg−1 ns−1]. The ob-
served variation might be linked to some inaccuracy on the
foam density or on our experiments process. Given our model,
we can calculate the acceleration of the interface as a function
of time [see Fig. 3(b)]. The temporal position of the maximum
of each deceleration can be calculated [log(2 + √

3)/
√

2Bv0],
thus determining the transition between the two phases (bal-
listic and decelerating). Here the maximal deceleration is
attained at (43, 27, 16, and 12) ns after shot break-through
(2.5 ns) for each respective density. The model was also tested
on experimental results obtained on SACLA (Japanese XFEL)
for the same kind of target (100 mg cm−3) but with a lower
laser intensity, ∼ 1013 W cm2 [36]. Despite the lower initial
interface velocity v0 = 10.5 ± 0.2 μm ns−1, the model fit the
data with the same B parameter as in LULI2000.

We should mention that the deceleration exists from the
beginning of the interface motion according to our model [see
Fig. 2(c)]. In that sense, the first phase of the evolution would
be closer to the ejecta dominated self-similar (we do not know
if there is self-similarity in our experiment) phase of the SNR
dynamic [48,49]. To complete this parallel, we should add
that the subsequent Sedov-Taylor phase should start when the
mass of swept-up foam equal the expanding pusher mass.
Assuming that our problem is monodimensional (no lateral
expansion) and that the whole depth of the pusher is put in

FIG. 4. (a) Evolution of the mixing zone (MZ) width as a
function of time for different foam density: (20, 100, 200, and
500) mg cm−3 corresponding to At = 0.97, 0.87, 0.75, and 0.47.
The vertical dotted lines indicate the time of maximum deceleration
for each density at (45.5, 29.5, 18.5, and 14.5) ns, respectively.
The dashed lines correspond to a modified buoyancy-drag model
[50] using the experimental parameters (initial Atwood number and
modulation) and the deceleration from our model. The full lines
correspond to the addition of 1D expansion to the previous model
[51,52]. (b) Number of e-foldings (with an extrapolation dashed) for
each foam.

motion, then the phase will start (4.1, 10.6, and 21.9) ns after
shock break out for the (500, 200, and 100) mg cm−3 foam
respectively. In the case of the 20 mg cm−3, the mass swept
up in the foam is never equivalent to the mass of the pusher,
the latter being too dense. This assumes, however, that our
model stays true even at long time for this foam density.

IV. GROWTH OF THE RTI

We now consider the actual RTI growth, and measured MZ
width dynamics. As clearly shown by Fig. 4(a), the growth
of the MZ (which here corresponds approximately to the
growth of the bubble) is faster with a high Atwood number.
In Fig. 4(a) we draw with vertical dotted lines the decelera-
tion time for each foam density as calculated previously with
our model. As seen in Fig. 3(b), the deceleration attains its
maximum at this time, and so should the RTI growth rate.
When comparing the different RT growths, we can clearly see
that the instability grows faster with the lower density foam
(20 mg cm−3) than with the higher one (500 mg cm−3). This
shows the preponderance of the effect of the foam density
over the Atwood number compared to the deceleration. Two
main explanations could be envisioned: either the difference
in deceleration is too small to compensate for the difference
in Atwood number, or nonlinear effects affect the growth of
the instability.

Let us consider the first hypothesis. If we take into account
only the extreme foam values, (20 and 500) mg cm−3, their
maximal decelerations are, respectively, (0.33 ± 0.02 and
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1.15 ± 0.03) μm ns−1, according to our model. Now if we
consider their respective Atwood number unchanged (same
compression and relaxation of the pusher and foam), then
the growth rate of the higher density foam should be higher
(At gmax ∼ 0.54 μm ns−2 versus 0.32 for the 20 mg cm−3

foam). This is obviously not the case, even for early times
(their deceleration cross only after ∼35 ns). Thus the first
hypothesis does not hold.

The second hypothesis is much more likely as the defor-
mation of the interface is already well developed after a few
nanoseconds, with an amplitude exceeding 0.1λ, the usual
criteria for the appearance of nonlinear effects [13]. As a result
of nonlinear effects, the RTI growth should become linear
in time (more consistent with our late-time results), and the
bubble velocity should tend to an asymptotic value [17,18]
proportional to [(ρ1 − ρ2)g]0.5. The difference in density is
obviously lower for higher foam density, and the deceleration,
which is initially higher, is quicker to tend towards zero. Since
the deceleration is not sustained for high-density foam, the
RTI cannot quite develop itself.

This asymptotic behavior in the RTI growth encounters a
limit in the form of a reacceleration [53]. Such a phenomenon
should theoretically happen when the amplitude of the insta-
bility reaches the value of its wavelength and the number of
e-folding is around 8 [the e-folding is defined as the integral of
the growth rate n(t ) as a function of time] [19,21]. As shown
in Fig. 4(b), this value is not yet reached. However, those
conditions should be reachable with our experimental design
after 70 to 80 ns for the lighter foams (with the 500 mg cm−3

foam it will never be reached). This fact is also consistent with
our simulations. As shown in Fig. 2(d) the vorticity, as pre-
dicted after 25 ns of evolution, is mostly concentrated around
the spike’s head (so at the bottom of the bubble), yet the
reacceleration phenomenon is believed to be a consequence
of the vorticity accumulation at the tip of the bubble. All
these elements confirm that the reacceleration stage has been
approached but not yet reached.

We also notice that our MZ width measurements do
not match classical buoyancy-drag models as presented in
[13,54,55] nor improved ones taking into account time-
dependent accelerations [50,56]. In every cases taking our
modeled acceleration as an input, the MZ is underestimated
by a factor higher than two. Furthermore, the obtained order
for the MZ growth as a function of the foam density is con-
trary to the experiment: a quicker growth of the 500 mg cm−3

compared to the 20 mg cm−3 is predicted. This can be seen in
Fig. 4(a), where the model which bears the best results [50] is
displayed in dashed line.

The MZ width evolution, however, is not solely due to
RTI growth. Material expansion should also be taken into
account and may represent a large fraction of the MZ [14]. In
contrast, pure, non-HED RTI develops in the absence of shock
waves, so there is no interaction with a shock or expansion
to consider. Following the procedure described in [51,52],
the background decompression contribution is evaluated by
considering the velocity divergence taken from 1D FLASH4
simulations [57]. This leads to values closer to our experimen-
tal observations [see Fig. 4(a), plain lines], but it does not
reorder the curves as needed. In particular, the 20 mg cm−3

remains underestimated. This could be due to inaccuracy in

the foam EOS for this low-density material [58]. However, our
results at At � 1 corroborate recent works showing that RTI
spikes exhibit a strong dependence on the Atwood number in
HED [27,56]. Spikes could enter in a free-fall regime for any
acceleration profile at lower Atwood number than predicted
by all models. The presence of a self-generated magnetic
field (Biermann-battery effects) is also not taken into account
in the models. Magnetic fields wrap around the RTI spikes
[33], laterally confining and sharpening them, enhancing their
growth. The actual bubble morphology, as observed in Fig. 1,
with a thin wedgelike extremity at late time [Figs. 1(b) and
1(c)], is consistent with such interpretation. We can also note
that this structure is more prominent in the lighter foam case.
Investigating further low-density foams (At � 1) in the deep
nonlinear stage is relevant for ICF. A higher than expected RTI
growth was also observed and remains unexplained in highly
nonlinear ablative RTI experiments [37,38].

V. CONCLUSION

In summary, we report on a parametric study of the RTI
in decelerating phase. We performed experiments on the
LULI2000 high-power laser facility using a direct drive ap-
proach to put into motion the modulated rear side of a solid
target. The expansion of this target into a foam, used as a de-
celeration medium, is RT unstable. In these HED experiments,
we changed the foam density, resulting in both a variation of
initial Atwood number across the interface and a variation
interface deceleration. Both effects have an opposite contri-
bution to the RTI growth, leading to a competition between
them. By analogy with SNR case and by proceeding to some
physical consideration, we developed an analytic model to
describe the interface motion. Strikingly, this simple model
reproduces our experimental data reasonably well with regard
to the motion of this interface. Concerning the RTI growth,
we note that the perturbation has a faster growth with a low-
density foam, so in the case of high Atwood number and
low deceleration. However, given the acceleration obtained
by derivation of our model, the obtained growths cannot be
explained using classical RTI models such as the buoyancy-
drag model. We attribute this fact to the specificity of the HED
physical domain. Mainly, the pressure gradient, due to the
proximity of the shock and expansion of the plasma, modifies
the classical RTI growth, in particular by obstructing the spike
growth. We ascertain the role of this gradient, using FLASH4
simulations, and add its effect to the classical RTI growth
model. The result is closer to the experiment, but still the
agreement is not perfect. Other phenomena, such as the effect
of the magnetic field or the reacceleration, might also play a
role and should be considered in future work.

We believe that scaling this platform on a MJ scale laser
facilities [53] in association with high-resolution x-ray imag-
ing diagnostics [36] could provide an accurate tool to study
the heretofore inaccessible role of vorticity in late-time RTI
growth [21].
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APPENDIX A: ERRORS AND UNCERTAINTIES

In this article, error bars and uncertainties appear in several
place, but they do not always hold the same meaning. We
should distinguish between three kind of error bars. The first
one is linked to the measure of different position (spike, bub-
bles) on the radiographs and simulations. Figures 2(a) and 3(a)
possess this kind of error bar. The second kind corresponds
to the error of the value calculated from the data of the first
category. This error is directly derived from the first one and
can be seen as the propagation of the previous error. This
mainly concerns Fig. 4(a). Finally the errors which are linked
to the model and the regression make the third kind.

1. Error on the interface position

The error in the measure position on the experimental x-ray
radiographs has several origins. First, the x-ray radiograph has
some limitation in resolution. This is partly due to the photo-
cascade inside the image plate, which broadens the zone being
illuminated. Another point to consider is the geometry of the
radiography system, a point projection scheme. Due to the
shadow and penumbra geometrical property the resolution is
limited to the size of the source, ∼25 μm. The temporal
deterioration of the resolution due to motion blurring is here
negligible compared to the other phenomena as the exposure
time is of the order of 10 ps for a shock velocity lower than
30 μm ns−1.

To the previous effects, which are intrinsic to the radiogra-
phy technique employed, we should add the possible spatial
variation of the lighting. These variations are due to phenom-
ena of self-shadowing of the back-lighter and other variations
that may affect the x-ray source (interaction of a titanium wire
and a picosecond laser). This leads to spatial nonuniformity is
the lighting, which may be a source of error for our measure in
some specific cases, where an abrupt variation coincides with
the interface position.

Finally the diffusion of the plasma at the interface between
pusher and foam leads to the apparition of absorption gradi-
ents. As a result, there is no sharp interface at late time.

Two approaches, which bear the same results, were em-
ployed to measure the interface position. The simplest one,
described in [40], consists of finding the interface by eye. The
appreciation of each image in its entirety allows surprisingly
good results for this method.

The second method consists of performing a line-out
on the spike and bubble axis (see Fig. 5). On this line-
out the signal above the pusher (Vp) is different from
the one above the foam (Vf > Vp). The interface corre-
sponds to the transition between both. We should mention
here that this transition is not always symmetric. In such
a case, we define the position of the interface (xi) at
the midvalue [V (xi ) = (Vp + Vf )/2], and we measure both
positive [σ+ = x+ − xi, with V (x+) = 0.9Vf + 0.1Vp] and
negative [σ− = xi − x−, with V (x−) = 0.1Vf + 0.9Vp] error
bars. These result in asymmetric errors. Some other methods

FIG. 5. Position of the spike and asymmetric error bars. A line-
out is performed on a x-ray radiograph of a 100 mg cm3 bimode
target, 30 ns after laser shot. This line-out centered on the spike
position shows an asymmetry on its intensity profile. This asymmetry
is used to define the error bars.

exist [32,59], but they could not be employed in the present
experiments.

2. Mixing zone-error composition

To obtain the mixing zone width, we subtracted the bubble
position to the position of the spike. Since both possess asym-
metric error, the error on the mixing zone is a composition
of both error [60]. Here we define the error on the mixing

zone as σ±
MZ =

√
(σ±

spike
2 + σ∓

bubble
2)/2. This formula leads to

an overestimation of the error.

3. Fitting and error

The last type of error previously mentioned are the un-
certainties related to the model and the value of its fitting
parameters. These parameters are obtained by fitting data with
asymmetrical errors. To do so we supposed that the asym-
metric error bars correspond to two half-normal deviation.
We randomly take a value for each data point using such a
probability distribution and proceed to the fitting of the data
using a least square method. We repeat this process 2000 times
and obtain a distribution of possible values for each parameter.
This allows us to define the value of each parameter and their
asymmetric error bars. In this paper we keep only the higher
value for their error, making it symmetric.

APPENDIX B: BUOYANCY-DRAG MODEL APPLICATION

One of the unexpected results of this article is the noncom-
pliance of the experiment to the buoyancy-drag model or as
shown in Fig. 4(a) to an improved version of it. This came
as a surprise since these models can be used to describe the
global growth of the RTI, even though they are more often
used to describe late-time evolution of the instability.

1. Model and method

The model evolution displayed in Fig. 4(a) with dashed
lines is a direct application of the improved buoyancy-drag
model with time-dependent acceleration directly taken from
[50]. In this model, the following equation is solved:

θ̈L − g(t )kLALθL = 0 (B1)

with θL ≡ ekL (η−η0 ), kL ≡ (c(1 + c)(1 + At )k)/(2 + 2c +
2cAt − 2At ), AL ≡ 2At/(1 + c + cAt − At ). Here η is the
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TABLE I. Different physical parameters obtained from the FLASH simulations 30 ns after the laser shot. The shock foam density shows
the variation of density from the shock to the place near the expanding pusher. u.a. is the atomic mass unit.

Parameter Formula 20 mg cm−3 500 mg cm−3

Shocked foam density (ρ, mg cm−3) Simulated 0.4 to 0.6 0.8 to 8.7
Temperature (Te = Ti, eV) Simulated 5.3 4.9
Pressure (Mbar) Simulated 0.05 0.11
Ionization (Z) Thomas-Fermi model 1.16 1.29
Ion density (ni, 1010 μm−3) ρ/mi 3.1 6.2
Electron density (ne, 1010 μm−3) niZ 3.6 8.0
Coulomb logarithm (ln 	) [61] 2.7 2.2
Ion thermal collision frequency (τi, 105 ns) 4.8 × 10−8Z4ni ln 	/[(mi/u.a.)0.5T 1.5

i ] 2.1 5.6
Ion thermal velocity (vi, μm ns−1) 9.79 × 105[Ti/(mi/u.a.)]0.5 7.9 7.6
Ion collisional length (10−5 μm) vi/τi 3.8 1.4
Electron thermal collision frequency (τe, 107 ns−1) 2.91 × 10−6ne ln 	T −1.5

e 2.3 4.6
Electron thermal velocity (ve, 102 μm ns−1) 4.19 × 107T 0.5

e 9.7 9.3
Electron collisional length (10−5 μm) ve/τe 4.2 2.0
Radiative cooling time (104 ns) [62] Eq. (22) 9.9 2.5

the amplitude of the modulation, η0 = η(t = 0) is its initial
value, g is the opposite of the acceleration of the interface
obtained through our model (−ẍ), k is the wave vector of the
perturbation, and At the Atwood number. c is a parameter
which depends on the dimension of the problem being equal
to 2 in two dimensions and 1 in three dimensions. In Fig. 4(a),
c is taken equal to 1, but there is no significant difference
when using its other value. The definition of g as the
opposite of the acceleration is taken in order to be consistent
with the definition of [50] (positive Atwood number and an
acceleration of the interface, g, defined positive when pointing
toward the high-density medium).

To solve this model, a fourth-order Runge-Kutta algorithm
was implemented. The initial parameters were taken to cor-
respond to the experiment. The initial Atwood number was
used as is, not taking into account the compression due to the
shock and the following expansion. The same was done for
the interface perturbation, which was initialized with a 10 μm
amplitude and no initial velocity. On that topic, we should
report the use of other initial parameters whose results are
not displayed in this article. Indeed, we also tried to use for
the initial amplitude and velocity the value obtained in our
simulations after shock breakthrough as well as other values
in between. The addition of an initial velocity allows us to
reproduce the initial RTI growth up to approximately 10 ns
when fine tuned. However, the model gives a result similar to
those displayed in Fig. 4(a) for later time. The initial velocity
just adds a slight concavity at the beginning of the curve
before it transitions to its first convexity.

Classical buoyancy-drag models were also tried without
more success. They were solved using a fourth-order Runge-
Kutta algorithm and used the same initial parameters as
reported above. The only exception is the acceleration, which
should be fixed for this classical model and was thus taken to
its mean value (we also tried a time-dependent one).

2. 1D expansion

As reported in the article, one of the downfalls of the
previous model is its inability to take into account HED

phenomena, such as the pressure gradient resulting from
the presence of a shock and the expansion of the material.
To take into account such an expansion, we followed the
method described in [51,52,57]. This method follows several
steps.

First, at least four simulations should be performed. Two
are 2D simulations, one of which should reproduce the exper-
imental results with the modulated target, and the other one
uses a flat target. The simulation with a modulated target is
both used to fine tune the laser energy used in simulations
and to obtain a better time discretization for the temporal
position of both spike and bubbles. The other simulations are
1D simulations. Since the modulation of the interface cannot
be reproduce in one dimension, three values for the initial
thickness of the pusher can be chosen: the spike (30 μm),
the bubble (50 μm), or the interface in between (40 μm).
Since the simulation code will give slightly different results in
one and two dimensions, we fine tune the laser energy used
in one dimension using the 2D simulation of the flat target
and the 1D one with a 40 μm pusher. Finally, the 1D simu-
lation using a 50 μm pusher is performed. The 30 μm pusher
simulation can also be performed at that point, but it holds less
value in our case, since the RTI growth comes mainly from the
bubbles.

The second step consists of extracting the fluid velocities
at the right position from the 1D simulations. By using 1D
simulations the fluid velocity depends only on the expansion
of the material, and it does not contained the RTI contribution,
contrary to 2D simulations. The “right” position is the position
of the bubbles and spikes interface taken from the 2D simula-
tions and reported for their respective 1D simulations. In other
words, we extract the fluid velocity from the 1D simulations
at the position, where an element characterizing the RTI is
expected to be with more dimensions. Since the time steps
might not match exactly between one and two dimensions, and
since the spatial resolution will also differ due to the AMR, we
proceed to two consecutive cubic interpolations. The first one
for the temporal evolution of the RTI elements is seen in two
dimensions, so we can find its position for each time step of
the corresponding 1D simulation. The second one is for the
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spatial velocity variation of the 1D simulations to obtain its
value at the right position.

From the previously obtained velocities, an expansion
velocity is calculated. It consists of the 1D velocity differ-
ence between interface and bubble or interface and spike.
By integrating this expansion velocity, time-dependent spatial
expansions E (t ) are obtained in both the bubble and spike
direction:

Ebubble(t ) =
∫ t

0
[vinterface(t ′) − vbubble(t ′)]dt ′. (B2)

This spatial expansion is simply added to the results of the
buoyancy-drag model. Thus, the resulting RTI amplitude, η̃,
is equal to η̃(t ) = η(t ) + E (t ) (reusing previous notation).

APPENDIX C: PHYSICAL PARAMETERS

Some physical parameters that characterize this experiment
are displayed in Table I. They were obtained through our 2D
simulations.
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