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Ionization state and dielectric constant in cold rarefied hydrocarbon plasmas
of inertial confinement fusion
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A combined approach to study cold rarefied matter is introduced that includes a semianalytical method based
on the free-energy minimization and ab initio calculations based on the finite-temperature density-functional
theory. The approach is used to calculate the ionization state of hydrocarbon (CH) under the shock-release
conditions in inertial confinement fusion. The dielectric constant of CH is calculated using the Kubo-Greenwood
formulation and contribution from atomic polarizabilities is found to be as important as the free-electron
contribution. Using the ionization state and dielectric constant, the electron density profile in the rarefaction
wave of the shock-release plasma is obtained.
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I. INTRODUCTION

Inertial confinement fusion (ICF) has been an active field
of research for more than 50 years [1–4] because of its ap-
plication as a future energy source. In laser-driven ICF, a
cryogenically cooled thin spherical shell of deuterium-tritium
(DT) fuel is imploded and compressed by material ablation
to form a high-density confinement around a central core
where conditions for thermonuclear ignition can be created.
During the implosion, the ablation pressure launches multiple
shocks through the DT shell and accelerates it inward. Later,
the buildup of the pressure in the compressing vapor region
decelerates the shell, and at stagnation, creates the conditions
in the central core closest to ignition. The pressure buildup
and the temperature and density in the core at stagnation are
strongly affected by the amount of material that is released
from the shell into the vapor region during the implosion.

It is very challenging to measure the material release from
the shell in the imploding capsule. However, in a planar ge-
ometry, one can access similar conditions with a CH foil and
probe it using optical interferometry [5]. It was used for the
first time in recent experiments [6] to diagnose the low-density
part of the rarefaction wave formed when the shock driven by
two OMEGA EP [7] laser beams breaks out of a hydrocarbon
(CH) foil. The optical interferometry produces images in the
focal plane that are determined by the optical path (phase) that
is accumulated by the wavefront of the probe laser propagat-
ing through the region of interest. The images are analyzed to
obtain spatial profiles of the index of refraction. In low-density
and low-temperature conditions, such as in the shock-release
material, the plasma is partially ionized and the index of re-
fraction is expected to have contribution from bound electrons
in atoms and contribution from free electrons. Densities of
atoms and free electrons are connected by the ionization state
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Z . Therefore, the index of refraction and Z are required to
deduce the density profiles from the interferograms.

The index of refraction at low densities and temperatures
of shock release material at a specific wavelength of the laser
probe (λ0 = 263 nm for OMEGA EP interferometry laser)
is not generally expected to be available. While there are
many studies of optical properties of the CH at the solid or
a few times the solid density (see, e.g., Refs. [8–13]), no
experimental data are available for the rarefied CH gas at
(10−4 to 10−2) g/cm3 and few electronvolt temperatures. Re-
cently ab initio simulations became popular and accessible for
calculating optical properties of arbitrary materials (see, e.g.,
Refs. [14,15]) and can be used to obtain the index of refraction
at a desired laser frequency and thermodynamic conditions,
i.e., mass density ρ and temperature T . The ionization state
Z for CH material as a function of ρ and T is tradition-
ally available via numerous Z tables [16–20] used in ICF
radiation-hydrodynamics codes [21–24]. The simulations and
analysis of the shock-release experiments [6] used the Astro-
physical Opacity Tables (AOT) [16] and Collisional Radiative
Equilibrium (CRE) tables [17], which predict somewhat dif-
ferent Z for the release conditions, and used the plasma index
of refraction, which does not have the atomic contribution.
These shortcomings motivated the present investigation.

In this article we calculate the ionization state Z and
the dielectric constant (which we use to obtain the index
of refraction) as a function of density and temperature un-
der conditions relevant to shock release. The conditions
span (10−4to10−2) g/cm3 in density at a few electronvolts
in temperature. We develop an algorithmically transparent,
easy-to-follow method, referred to as the Saha-Fermi-Debye-
Hückel (SFDH) method, for calculating Z which is based
on the free-energy minimization approach [25,26], with free
energy containing nonideal terms accounting for binary col-
lisions [27,28] and Coulomb interactions [26,29]. We also
obtain Z using ab initio calculations based on the Mermin-
Kohn-Sham density-functional theory (DFT) [30–33] and test
it against the semianalytical SFDH method. After verifying
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TABLE I. Approaches used to obtain the ionization state Z , atomic polarizability α of H and C, and dielectric constant ε. εp is the plasma
dielectric constant.

Z α ε

SFDH αH (analytical) DFT (SCAN)
DFT (PBE) αC Refs. [35,36] εp

AOT DFT (SCAN)
CRE

the DFT-calculated Z , we use the electron population states
obtained with the DFT and Kubo-Greenwood formulation
[34] to calculate the dielectric constant. Using the combined
approach outlined above we found that (a) Z calculated with
SFDH method is in good agreement with Z from DFT calcula-
tions and both are within 0.2 of either CRE table or AOT table
Z’s, (b) DFT-calculated atomic polarizabilities are estimated
to be within 20% of the reference data, and (c) a fit to the
DFT-calculated dielectric constant contains an extra term due
to atomic polarizabilities (i.e., contributions from bound states
of electrons in atoms) that dominates the dielectric constant at
low temperatures. For convenience, Table I contains physical
quantities that were compared in the paper and approaches
that were used to obtain these quantities. Based on these
calculations, we revisited the shock-release experiments [6]
and found more accurate electron density profiles, which,
however, have not changed the main conclusions of that paper.

This article is organized as follows: In Sec. II we present
semianalytical SFDH method for calculating the ionization
state Z . In Sec. III we compare Z calculated using the de-
veloped method with the DFT calculations and with AOT and
CRE tables. In Sec. IV we calculate atomic polarizabilities of
H and C atoms. In Sec. V we present DFT calculations of the
dielectric constant of CH. In Sec. VI, we use DFT-calculated
dielectric constant to revisit the shock release experiments [6].
In Sec. VII, conclusions are drawn.

II. FREE-ENERGY MINIMIZATION METHOD

The free energy of a gas consisting of C and H ions of
different ionization states and electrons is written as

F = F0 + Fb + Fc, (1)

where

F0 = −kT
∑
mi j

Nmi j ln

[
eV

Nmi j

(
mmkT

2π h̄2

)3/2

gmi j

]

+
∑
mi j

Nmi jEmi j − kT Ne ln

[
eV

Ne

(
mekT

2π h̄2

)3/2]
(2)

is the free energy of the nondegenerate ideal gas [37] of
a multispecies system that includes free electrons and ions
(neutrals are considered zero charge ions) of different species
(chemical elements) and Fb and Fc are nonideal terms de-
scribed below. Since we are interested in temperatures above
1 eV (11 605 K), we expect the CH material to be fully
atomized, so only atoms of C and H in various excitation and
ionization states and free electrons are included in Eq. (2). The
summation index m denotes species (H or C), index i denotes

ion types (i = 0 denotes neutrals and i > 0 denotes i-times
ionized ions), and j denotes bound states of each ion type
of each species ( j = 0 is the ground state and j > 0 are the
excited states). For a bound state j of ion type i of species m,
Nmi j is the particle number, gmi j is the degeneracy, and Emi j is
the energy defined as

Emi j = E∗
mi j +

∑
i′<i

Imi′ , (3)

where E∗
mi j is the excitation energy of bound state j of ion

type i and Imi′ is the ionization energy of ion type i′ of species
m. In other words, Emi j is the total energy required to bring
a neutral atom, i = 0, of species m from the ground state,
j = 0, to the i-times ionized ion in the excited state j. In
Eq. (2), Ne is the number of free electrons, mm is the mass
of species m, me is the electron mass, k is the Boltzmann
constant, h̄ is the reduced Planck constant, V is the volume,
T is the temperature, and e is the base of natural logarithm,
e = 2.71828. For convenience, Table II shows ion types and
numbers of excitation energy levels (taken from Ref. [38])
included in the sum over mi j in Eq. (2).

To account for short-range, binary interactions between
particles, we add the Fermi’s hard-sphere excluded-volume
term [27,28] to the free energy

Fb = −kT
∑

s

Ns ln

(
1 − b

V

)
≈ kT

b

V
Ntot, (4)

where s is a compound index that runs over all bound states of
all ions of all species plus free electrons, Ntot is the number of
all particles,

Ntot =
∑
mi j

Nmi j + Ne =
∑

s

Ns, (5)

and

b = 4π

3

1

2Ntot

∑
s,t

NsNt (rs + rt )
3, (6)

where the double sum is over compound indexes s and t
and then rs and rt are effective radii of particles s and t ,
respectively. The radius rs of ion type i in bound state j with
excitation energy E∗ is taken to be equal to the radius of the
electron orbit in a classical hydrogen-like atom with charge i
and energy E∗ (see Appendix), which is a good approximation
for highly excited states which constitute the large majority of
all bound states. The radii of free electrons and fully ionized
ions (i.e., particles with no bound states) in Eq. (6) are zero
within the described method. The contribution to the free
energy due to binary interactions between particles [Eq. (4)] is
characterized by quantity b [Eq. (6)] which is an effective total
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TABLE II. Ion types and corresponding numbers of energy states included in Eq. (2). H II (C VII) denotes a fully ionized hydrogen
(carbon) ion.

H I H II C I C II C III C IV C V C VI C VII

40 1 401 85 133 90 100 81 1

interaction volume. The expansion on the right-hand side of
Eq. (4) is valid when b/V � 1. The last term in Eq. (1) is the
contribution to the free energy from the Coulomb interaction
between charged particles given by Debye-Hückel formula
[26,29]:

Fc = − 1

12π

(
e0√
ε0

)3 1√
kTV

(∑
s

Z2
s Ns

)3/2

, (7)

where e0 is elementary charge, ε0 is vacuum dielectric permit-
tivity, and Zs is the charge number of ions i (Zmi j = Zmi = i)
and free electrons (Ze = −1).

By minimizing the free energy from Eq. (1) with respect
to the number of particles, following stoichiometric relations
for excitation and ionization processes (see Refs. [25,26]), one
can obtain a system of equations for the particle numbers of
each bound state of each ion type of each species and for the
number of free electrons. For bound states of ion type i of
species m, the equations that determine the minimum of the
free energy are [27]

∂F

∂Nmi j
− ∂F

∂Nmi j′
= 0, (8)

which includes all combinations of bound states j and j′ of
ion type i of species m. Substituting free energy from Eq. (1)
into Eq. (8) one obtains the following system of equations for
the numbers of particles in bound states [27]:

Nmi j = Nmi

umi
gmi j exp

(
−Emi j

kT

)

× exp

[
−4π

3V

∑
s

Ns(rs + rmi j )
3

]
, (9)

where

Nmi =
∑

j

Nmi j (10)

is the total number of ions of species m in ion state i and

umi =
∑

j

gmi j exp
(
−Emi j

kT

)

× exp

[
−4π

3V

∑
s

Ns(rs + rmi j )
3

]
(11)

is the partition function of bound states of ion type i of species
m. The second exponential term in Eq. (11) is the conse-
quence of addition of Fb [Eq. (4)] to the free energy [Eq. (1)].
This term reduces contribution of higher excited states to the
partition function because of the increase of their radii rs as
∼n2, where n is the main quantum number. This approach
consistently introduces a cutoff to the otherwise divergent sum

(see a detailed discussion in [25]). Term Fc in the free energy
does not contribute to Eq. (8).

The system of equations for the equilibrium condition of
the ionization process has the following form [37]

∂F

∂Nmi j
− ∂F

∂Nm(i+1) j′
− ∂F

∂Ne
= 0, (12)

which includes all combinations of j and j′, where j is a
bound state of ion type i of species m and j′ is a bound
state of ion type (i + 1) of the same species m. Substituting
Eq. (1) into Eq. (12) and using Eq. (9), one obtains a system
of modified Saha equations for the total number of ion types i
of species m, Nmi, and the number of free electrons Ne:

NeNm(i+1)

Nmi
= um(i+1)

umi

[
V

(
mekT

2π h̄2

)3/2]

× exp

(
−4π

3V

∑
s

Nsr
3
s

)
exp

[
�Im(i+1)

kT

]
,(13)

where

�Im(i+1) = Zm(i+1)

4π

(
e0√
ε0

)3 1√
kTV

(∑
s

Z2
s Ns

)1/2

.

Equations (9), (10), and (13) together with equations rep-
resenting conservation of the total number of ions (number of
nuclei) of each species Nm,∑

i

Nmi = Nm, (14)

and conservation of charge,∑
mi

ZmiNmi = Ne, (15)

form a system of nonlinear equations with respect to Nmi j and
Ne. It is solved (see Appendix) to obtain the average ionization
state

Z = Ne

N
, (16)

where

N =
∑

m

Nm (17)

is the total number of ions. The presented method of calcu-
lating the average ionization state is used to calculate Z for
different values of ρ and T and to obtain the function Z (ρ, T ).

To summarize, the SFDH method uses the free-energy
minimization approach to derive modified Saha equations.
Nonideal contributions to the free energy are approximated
with the Fermi’s excluded-volume term to account for short-
range binary interactions and with the Debye-Hückel term to
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FIG. 1. Average ionization state Z as a function of temperature
from four different models: AOT (black dashed lines), CRE (blue
dotted lines), our SFDH method (red solid lines), and the DFT
calculations (yellow circles) for three mass densities (a) 10−4 g/cm3,
(b) 10−3 g/cm3, and (c) 10−2 g/cm3.

account for long-range Coulomb interactions. The approxi-
mations are expected to work well in low-density classical
plasmas when the Fermi’s excluded volume is much smaller
than the total volume and the energy of Coulomb interac-
tions between neighboring particles is much smaller than the
particle thermal energy. The originality and strength of our
approach is that the system of about a thousand of equations
(determined by the number of included excited states of all
species) [Eqs. (9), (10), (13), (14), and (15)] is solved numer-
ically using a robust algorithm described in the Appendix.
The method does not use the low-excitation approximation
(see Ref. [25]) and does not linearize the interaction between
excited states.

III. IONIZATION STATE

In this section we calculate the ionization state of CH for
conditions in the rarefaction wave of shock release experiment
[6], which correspond to partially ionized low-density 50 %C-
50 %H gas of (1 to 8) eV temperature, ionization state Z ∼ 1,
and (10−4 to 10−2) g/cm3 mass density (very low compared
to the solid density of CH of ∼1.0 g/cm3).

Figure 1 shows the average ionization state Z as a function
of temperature T for three mass densities ρ. The ionization
state in Fig. 1 was obtained using four different sources: AOT
[16] tables, CRE tables [17], results of our SFDH method, and
ab initio calculations.

The ab initio calculations of Z used the Mermin-Kohn-
Sham DFT [30–33] and were performed using the Vienna
Ab initio Simulation Package [33] with the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation (XC) functional [39].
The electron-ion electrostatic interaction was modeled with
the standard projector augmented wave data set with the
plane-wave energy cutoff of 800 eV. The real-space cell
size was large enough (12.93 Å or larger) to employ
the Baldereschi’s mean value point sampling of the Bril-
louin zone [40]. We also used more accurate although
more computationally expensive strongly constrained and
appropriately normed (SCAN) metageneralized gradient ap-
proximation (meta-GGA) XC functional [41] implemented in
the KGEC@QUANTUM-ESPRESSO [15,42] package. Values of
Z calculated with SCAN XC functional were virtually identi-
cal to those obtained with the PBE XC functional, so the latter
was used to obtain Z in this section.

The DFT method calculates the electron states and their
occupation numbers for each thermodynamic condition allow-
ing to predict the number of free electrons in the continuum.
At finite temperatures the density of electron states consists
of a discrete part corresponding to bound states followed by
a densely distributed quasicontinuous part corresponding to
free-electron (continuum) states. The energy of the continuum
edge, Ec, can be readily identified from calculated density of
states data (see, e.g., Fig. 7 in Ref. [43] and Figs. 4(b) and
4(d) in Ref. [44]). The number of free electrons is found by
summing up the occupation numbers of states with energies
above Ec, and Z is found by dividing the number of free
electrons by the number of ions in the simulation box.

First we performed molecular dynamics (MD) simulations
with eight atoms (four carbon atoms and four hydrogen atoms)
in cubic supercell for the highest material density (ρ = 10−2

g/cm3) at the lowest temperature T = 1 eV and found that
for such a low density the Z value has negligible dependence
on the MD snapshots (ionic configurations along the MD
trajectory). Then we calculated Z using a simplified scheme
with two atoms placed in the fixed body-centered cubic (bcc)
cell positions and found very small difference (less than 1%)
as compared to the MD snapshot calculations. This approach
is a variation of the single-atom-in-a-cell method introduced
in Ref. [44] and successfully applied to calculation of optical
properties in dense silicon plasmas. The difference for lower
than ρ = 10−2 g/cm3 densities and higher than T = 1 eV
temperatures is expected to be even smaller. Therefore we
performed such simplified two-atom calculations for the rest
of thermodynamic conditions. The number of thermally occu-
pied bands included in the calculation grows very fast as the
density decreases and/or the temperature increases. The num-
ber of bands was varied between 512 (at ρ = 10−2 g/cm3,
T = 1 eV) and 64 000 (at ρ = 10−4 g/cm3, T = 8 eV) mak-
ing these calculations extremely computationally expensive at
densities below 10−3 g/cm3 and T above 5 eV.

Figure 1 shows that DFT calculations (yellow circles) are
in a very good agreement with calculations using SFDH
method (red solid lines) at 3-, 5-, and 8-eV temperatures. The
larger difference of ∼0.07 in Z between the DFT and SFDH at
T = 8 eV and ρ = 10−2 g/cm3 (see Fig. 1) can be explained
by XC thermal effects which are not taken into account by
the ground state SCAN and PBE density functionals. The XC

045207-4



IONIZATION STATE AND DIELECTRIC CONSTANT IN … PHYSICAL REVIEW E 104, 045207 (2021)

FIG. 2. Average ionization state Z as a function of temperature
for mass densities 10−4 g/cm3 (blue lines) and 10−2 g/cm3 (red
lines) with Debye-Hückel term omitted (short-dashed lines), Fermi
term omitted (long-dashed lines), and with both terms retained in
Eq. (1) (solid lines).

thermal effects depend on density and temperature and may
be taken into account by using the XC GGA functional with
explicit temperature dependence [45]. At lower temperatures
(1 eV), the DFT method produces higher Z than SFDH. It
is caused by the self-interaction error inherent in the DFT
local and semilocal approximations for the XC energy [46].
The electron self-interaction decreases the ionization energy
of H and to a lesser degree C atoms and leads to artificial
increase in Z , which is more apparent for temperatures much
smaller than ionization energies. The ionization states from
AOT (black dashed lines) and CRE (blue dotted lines) tables
are both within 0.2 from Z obtained with the DFT.

Figure 2 illustrates the relative importance of the Fermi
short-range interaction term Fb and Debye-Hückel Coulomb
interaction term Fc for the ionization state Z under considered
conditions. At higher density ρ = 10−2 g/cm3 Fermi and
Debye-Hückel terms are both essential to calculate Z (see
red lines in Fig. 2). At lower density ρ = 10−4 g/cm3 only
the Fermi term is essential, while the Debye-Hückel term
contribution is negligible (see blue lines in Fig. 2). The Fermi
term determines the cutoff in the partition function sum, see
Eq. (11), while the Debye-Hückel term becomes unimportant
at high temperatures and at low densities when kT � �Imi ∼√

ρ/T , see Eq. (13).
In ICF experiments CH material can have a range of

different atomic ratios of C and H. Figure 3 compares the
dependence or ionization state Z on temperature for two com-
mon atomic ratios of C and H (50 %C-50 %H for polystyrene
and 42.5 %C-57.5 %H for glow discharge polymer) calculated
with the SFDH method. The difference is within 5% for
the considered densities and temperatures. This is important
because ab initio simulations for arbitrary atomic ratios in
the material composition require large number of atoms in
the simulation box to exactly match the atomic ratios in the
material composition and are prohibitively computationally
expensive. Using SFDH method, we found the following sim-
ple mixing rule that allows one to easily obtain Z for an
arbitrary atomic ratio of C in CH, r, that is between two atomic
ratios r1 and r2 for which SFDH-calculated Z is Z1 and Z2

FIG. 3. Average ionization state Z as a function of tempera-
ture for mass densities 10−4 g/cm3 (blue lines), 10−3 g/cm3 (black
lines), and 10−2 g/cm3 (red lines) for 50%C-50%H (solid lines) and
42.5%C-57.5%H (dashed lines).

respectively:

Z = r2 − r

r2 − r1
Z1 + r − r1

r2 − r1
Z2.

The value of Z found using this formula for any r between
r1 = 42.5% and r2 = 50% considered above is within 0.1%
of SFDH-calculated Z .

IV. DIELECTRIC CONSTANT OF H AND C AT ZERO
TEMPERATURE

In this section, to assess the accuracy of the DFT method
in calculating optical properties of H and C, we compare
the dynamic polarizability of H atom in ground state calcu-
lated exactly from quantum mechanics to that from the DFT
calculations. For a C atom, we compared the static atomic
polarizability calculated with the DFT to the currently rec-
ommended value from the literature.

The DFT polarizabilities of H and C were calculated
using the Kubo–Greenwood formulation [34] implemented
in the KGEC@QUANTUM-ESPRESSO package. Calculations
were performed using the SCAN meta-GGA XC functional
and a single atom placed in the cubic simulation cell. The
size of the simulation cell was large enough to ensure that the
obtained polarizabilities do not depend on the size of the box
and represent the polarizability of an isolated atom.

To compare with DFT, we calculated exactly the dynamic
polarizability α of hydrogen atom in an external electric field
of frequency ω using the following quantum mechanics for-
mula [47]

α = e2
0

me

∑
k

fkl

ω2
kl − ω2

, (18)

where ωkl = (Ek − El )/h̄ and Ek(l ) is the energy of the atomic
state k(l ), the oscillator strength of l → k transition fkl is
given by

fkl = 2meωkl

h̄
|xkl |2, (19)
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FIG. 4. (a) The real (black dashed line) and imaginary (red
dashed line) parts of polarizability of H from exact theory and the
high-frequency limit of polarizability αhf (blue dotted line). (b) The
real (black solid line) and imaginary (red solid line) parts of polar-
izability of H from DFT calculations and the high-frequency limit
of polarizability αhf (blue dotted line). (c) Zoomed-in part of (a) and
(b) showing polarizabilities in the photon energy range of 0 to 5 eV
from the exact theory and DFT calculations.

and xkl are dipole matrix elements of the hydrogen atom.
The oscillator strengths satisfy Thomas-Reich-Kuhn sum rule∑

k fkl = 1 [47], which was verified in our calculations.
Figure 4 shows the real and imaginary parts and high-

frequency limit, αhf = −e2
0/(meω

2), of hydrogen polarizabil-
ity α in an external electric field with frequency ω as a
function of ω. Figure 4(a) shows results of exact calculations
using Eqs. (18) and (19) and the hydrogen energy eigen-
functions of discrete and continuous spectrum [48,49], and
Fig. 4(b) shows the results of our DFT calculations. Static po-
larizability (at ω = 0) of hydrogen from the exact calculations
is 0.667 Å3 (a well-known result, see, e.g., Ref. [48]) which is
15% lower than 0.78 Å3 from the DFT calculations. Here and
below we present polarizabilities in CGS units. At the optical
probe frequency ω0 = 2πc/λ0 (where c is the speed of light),
h̄ω0 = 4.71 eV, the polarizability of hydrogen from the exact
calculations is 0.82 Å3 which is 20% lower than 1.03 Å3 from
the DFT calculations.

Since atom of carbon is a multielectron system, its po-
larizability cannot be calculated exactly as for hydrogen and
must be computed numerically or measured experimentally.
Atomic polarizabilities for many elements from multiple
sources are compiled in the latest CRC Handbook of Physics
and Chemistry [35]. For carbon atom only simulated values
are available and are based on comparison of results from
eight modern computational methods (see Ref. [36]). The
currently recommended in Ref. [35] value for the static po-
larizability of carbon is 1.67 Å3 ± 2%. It is 6% higher than

1.58 Å3 from our DFT calculations. There is no available
reference data at the optical probe frequency for atomic polar-
izability of carbon, which is 2.62 Å3 in our DFT calculations.

Self-interaction error inherent in the Kohn-Sham DFT
local and semilocal approximations for the XC energy effec-
tively increases the bound state energies and decreases the
excited state energies relative to the ground state [46], thereby
producing higher atomic polarizability. However, the effect is
significantly reduced in the case of C with multiple electrons
and the DFT-calculated polarizability is much closer to the
reference data.

Having found atomic polarizabilities of C and H atoms, one
can obtain the dielectric constant εb of a low-density CH gas
at zero temperature using the following formula [47]

εb = 1 + 4π [rαC + (1 − r)αH ]ni, (20)

where ni is the number of C and H ions per unit volume in
Å−3 and r is (as before) the atomic ratio of carbon atoms.
Using DFT-calculated atomic polarizabilities at the optical
probe frequency, αH = 1.03 Å3 and αC = 2.62 Å3, we find
for 50 %C-50 %H (r = 0.5):

εb = 1 + 4π1.8 Å3ni, (21)

From Eq. (20) one can see that the relative error of a method
in calculating (ε − 1) is the same as that in calculating atomic
polarizabilities. So we could estimate the error bound of the
DFT method in calculating (ε − 1) to be about 20%—the
largest of the errors of the DFT method in calculating polariz-
abilities of C and H found above.

V. DIELECTRIC CONSTANT OF CH AT TEMPERATURES
OF FEW ELECTRON VOLTS

In this section, we obtain the dielectric constant of a
few-electronvolt temperature partially ionized CH gas us-
ing the DFT and Kubo-Greenwood formulation. As in the
previous section, the calculations were performed with the
KGEC@QUANTUM-ESPRESSO package and the simplified
scheme with two atoms placed in the fixed bcc positions. We
expect that the use of advanced SCAN meta-GGA XC im-
proves the accuracy of optical property predictions compared
to PBE XC. In these calculations we employed the all-electron
local pseudopotentials [50,51], required for the SCAN XC
implementation in the KGEC@QUANTUM-ESPRESSO compu-
tational package, with the plane-wave energy cutoff of 4.8
keV. A downside of using all-electron pseudopotentials with
such a high energy cutoff is that it makes calculations of opti-
cal properties for densities below 10−3 g/cm3 or temperatures
above 5 eV computationally unfeasible.

Figure 5 shows the dielectric constant of CH (at the
laser probe wavelength of 263 nm) for 10−2 and 10−3 g/cm3

densities from the DFT calculations at 1-, 3-, and 5-eV tem-
peratures (red circles). For comparison, blue solid lines in
Fig. 5 show the dielectric constant of a free-electron gas,

εp = 1 − 4π4.9 Å3ne, (22)

where ne is the density of free electrons in Å−3,

ne = Zni, (23)
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FIG. 5. The real part of the dielectric permittivity in CH as a
function of temperature from DFT calculations (red circles), from
Eq. (25) (red dashed lines), and from Eq. (22) (blue solid lines) for
mass densities of (a) 10−3 g/cm3 and (b) 10−2 g/cm3.

ni is the ion density in Å−3,

ni = ρ

〈A〉 , (24)

and 〈A〉 = 6.5 amu is the average ion mass for 50 %C-
50 %H. Equation (22) is the usual dielectric constant of
plasma εp = 1 − ne/nc [52], where the critical plasma density
nc = ε0meω

2
0/e2

0 = 1/(4π4.9) Å−3. As expected for a free-
electron gas the dielectric constant Eq. (22) is smaller than
1, and it depends on the temperature through Z [see Eq. (23],
which increases with temperature (as in Fig. 1) and makes
(εp − 1) more negative (see Fig. 5).

We fitted the dielectric constant from DFT calculations (red
dashed lines in Fig. 5) adding a positive term proportional to
the number of ions to the plasma dielectric constant [Eq. (22)]
as follows:

εDFT = 1 + 4π (1.7 Å3ni − 4.9 Å3ne). (25)

The positive term is Eq. (25) describes the contribution from
atomic polarizabilities (i.e., contributions from bound states
of electrons in atoms). At low temperatures (T � 1 eV) a
CH gas consists mostly of neutral (albeit excited) atoms and
its dielectric constant approaches that of the zero-temperature
CH gas considered in the previous section [compare Eq. (25)
with ne = 0 to Eq. (21)]. As the temperature increases, the
ionization state Z and the number of free electrons increase
making the dielectric constant smaller (and eventually less

FIG. 6. The experimental setup used two OMEGA EP beams to
drive a CH foil. The 4ω laser interferometry was used to measure the
low-density profile in the rarefaction wave.

than one as in a plasma). Figure 5 shows that the approximate
formula [Eq. (25)] fits well the DFT results especially at lower
density of 10−3 g/cm3 more relevant to the shock-release
experiment considered in the next section.

VI. SHOCK-RELEASE EXPERIMENTS

In this section we evaluate the impact of using a DFT-
calculated dielectric constant on the electron density obtained
from the interferometry measurement in the shock release
experiments [6]. The experimental setup (Fig. 6) used two
OMEGA EP laser beams that illuminated the 37-μm-thick CH
foil with a 5-ns square pulse at 3 × 1014 W/cm2 intensity. The
electron density profiles were obtained from interferometry
images at 1, 2, 3, and 4 ns into the laser drive using the 263-nm
UV laser interferometry as briefly described below.

Interferometry images are formed by interference between
the laser beam propagating through the plasma region of
interest and the reference laser beam propagating through
the vacuum. The interference pattern is determined by the
spatial profile of the plasma index of refraction n(�x). Under
certain simplifying assumptions (e.g., cylindrical symmetry
as in [6]) one can reconstruct spatial profiles of the index
of refraction from the interferometry images. In Ref. [6] the
standard plasma index of refraction np = √

εp, which depends
only on the electron density, was used in equation np = n(�x)
to obtain the electron density ne(p)(�x) = nc[1 − n(�x)2].

In general, the index of refraction depends on two vari-
ables, mass density and temperature, thereby precluding a
unique restoration of the electron density from the index
of refraction. In the low-density region of the shock-release
CH material, which is accessible by the 4ω probe interfer-
ometry [6], the temperature is nearly constant and is about
5 eV consistent with radiation-hydrodynamics simulations
[53], making the index of refraction a function of one variable
and enabling unique restoration of the electron density.

Here we use more accurate DFT-calculated index of re-
fraction nDFT = √

εDFT [where εDFT is given by Eq. (25)]
in equation nDFT = n(�x) to deduce the electron density
ne(DFT)(�x). Since the same index of refraction profile n(�x)
is used to obtain both ne(p)(�x) and ne(DFT)(�x), the equation
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FIG. 7. Electron density profiles obtained from radiation-hydrodynamics simulations (short-dashed lines) and from experiments using
plasma dielectric constant (22) (solid lines) and DFT-calculated dielectric constant (25) (long-dashed lines) at 1 ns (blue), 2 ns (red), 3 ns
(yellow), and 4 ns (green).

connecting them is simply

np = nDFT, (26)

which after substituting Eqs. (25) and (22) gives the equation
for the ion density ni(�x):

1.7ni(�x) − 4.9Z[ni(�x) · 〈A〉, T0]ni(�x)

= −4.9 ne(p)(�x),
(27)

where T0 = 5 eV. Having found ni(�x), one obtains the electron
density from

ne(DFT)(�x) = Z[ni(�x) · 〈A〉, T0]ni(�x).

Figure 7 shows the electron density profiles ne(p) (solid
lines) and ne(DFT) (long-dashed lines) as a function of a dis-
tance from the initial shell position along the center of the
drive for four time moments. Short-dashed lines correspond
to the electron densities from radiation-hydrodynamic simu-
lations from Ref. [6]. To quantify the difference between the
two electron density profiles (solid and long-dashed lines in
Fig. 7), one can write Eq. (26) in the following form:

ne(DFT) = ne(p)

1 − 1.7/(4.9Z )
. (28)

The maximum relative difference between ne(DFT) and ne(p)

is reached at smallest value of Z , which is ∼1.2 for exper-
imental electron densities in Fig. 7. According to Eq. (28),
the electron density ne(DFT) at a given position can be up
to 40% higher than ne(p). Another interpretation is that the
position of the rarefaction wave is farther away from the initial
shell position by ln(1.4)L, where L is the scale length of the
electron density in the rarefaction wave. Since L ∼ 60 μm at
4 ns, the rarefaction wave is at most 20 μm farther away from
the shell, which is comparable to the experimental error bars.

The experimentally measurable electron density range is
(1.4 × 1019to4.3 × 1020) cm−3 and varies depending on the
time of the measurement (see Fig. 7). It corresponds to the
mass density range of (6.3 × 10−5to3.3 × 10−3) g/cm3 ob-
tained from Eq. (24) using ni(�x) from Eq. (27).

In the shock-release experiments that use lower laser-drive
intensities, the temperatures and Z in the rarefaction wave

are lower, and the plasma index of refraction differs more
from the DFT-calculated index of refraction [see Eq. (28)] and
cannot be used for extracting the electron densities from the
interferometry data.

VII. CONCLUSIONS

In this article, we used a combination of semianalytical
SFDH (based on the free energy minimization) and DFT ab
initio approaches to calculate the ionization state Z and the
dielectric constant in rarefied CH material at few electronvolt
temperatures. The ionization state calculated with both SFDH
and DFT methods was compared to that from two widely
used ionization state tables (AOT and CRE). All four methods
produced Z within 0.2 from each other. The SFDH equations
and the algorithm for solving them can be readily used for any
low-density multispecies plasmas.

The accuracy of the DFT method in calculating optical
properties of cold rarefied CH was assessed by comparing the
DFT-calculated atomic polarizabilities for H and C atoms to
an analytical formula for H and the latest reference value for
C from the CRC Handbook of Physics and Chemistry. The
accuracy of DFT polarizabilities was estimated to be better
than 20%. The DFT was used to calculate dielectric constant
of CH for several temperature and density values and fitted
with a simple analytical formula that contains an extra positive
term due to contribution from atomic polarizabilities (i.e.,
contributions from bound states of electrons in atoms). This
term is not present in the formula for the plasma dielectric
constant.

The index of refraction calculated with the DFT method
was used to revisit the interferometry data from Ref. [6].
Electron densities were found to be up to 40% higher and
the position of the rarefaction wave up to 20 μm farther than
reported in Ref. [6]. It is important to note that for a laser
drive of lower intensities than in Ref. [6], the plasma index
of refraction is not valid and a more-accurate DFT index of
refraction must be used in the analysis of the shock-release
experiments.
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APPENDIX

In this Appendix, we outline a simple and robust method to
numerically solve the system of Eqs. (9), (10), (13), (14), and
(15) for the number of bound states of each ion of each species
Nmi j and the number of free electrons Ne in a unit volume.
In addition to the total number of ions of each species (i.e.,
densities of species) Nm and the temperature T , the system
contains as parameters for each bound state of each ion type
of each species its excitation energy, degeneracy, and effective
radius. The effective radius, rmi j , of species m of ion type i
in bound state j with excitation energy E∗

mi j = Emi j − Emi0

is taken to be equal to the radius of the electron orbit in a
classical hydrogen-like atom with charge Zmi and energy E∗

mi j ,

rmi j = a0/Zmi(
1 − E∗

mi j

Imi

) , (A1)

where a0 = 0.529 Å is the Bohr radius and Imi is the ionization
energy of the ion. The excitation energies and degeneracies
of bound states and the ionization energies for hydrogen H
I and types of carbon ions C I,. . . ,C VI were taken from
NIST tables [38]. The system of Eqs. (9), (10), (13), (14),
and (15) includes 932 ion densities Nmi j plus the free-electron
density Ne and is solved by iterations in the following way. We
start iterations setting N0

mi j = Nmδi0δ j0, N0
mi = Nmδi0, N0

e = 0,
where δi j is the Kronecker delta and the upper index denotes
the iteration number. To start the nth iteration, we calculate
un

mi using Eq. (11), then substitute un
mi into Eq. (9) and ob-

tain Nn
mi j , then substitute un

mi and Nn
mi j into right-hand side

of Eq. (13). At this point Eqs. (13), (14), and (15) consti-
tute a system of 10 equations with respect to 10 unknowns:
Nn

H0, Nn
H1, Nn

C0, Nn
C1, . . . , Nn

C6, and Nn
e . Using Eq. (13) we ex-

press Nn
mi with i > 0 via Nn

m0 and Nn
e , then using Eq. (14) we

express Nn
m0, hence all Nn

mi, via Nn
e , After substituting them

into Eq. (15) we obtain a polynomial equation of eighth order
with respect to one unknown Nn

e . We find all eight roots of
this polynomial using Mathematica [54]. Only one of the
roots corresponds to the physical solution Nn

e � 0. Using it
we obtain all Nn

mi and conclude the nth iteration. We repeat
the iterations until

√∑
mi

(
Nn

mi − Nn−1
mi

)2
< δacc

∑
m

Nm

for a desired value of accuracy δacc. After finding the number
of ions Nmi and free electrons Ne, we use Eq. (17) to obtain
the average ionization state Z . Using the outlined above pro-
cedure, we calculate Z for a range of desired CH densities and
temperatures.

The method described in this Appendix is robust because
the system of Saha Eqs. (13), (14), and (15) is transformed
into a single polynomial equation, for which there are standard
reliable algorithms (e.g., the Aberth method [55]) for finding
all roots. This method can be applied to a system with any ion
composition.
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