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Effects of simulation dimensionality on laser-driven electron acceleration
and photon emission in hollow microchannel targets
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Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of
simulation dimensionality on the laser-driven electron acceleration and the emission of collimated γ -ray beams
from hollow microchannel targets. We demonstrate that the dimensionality of the simulations considerably
influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity
in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons
terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with
planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons.
The photon beam generated in the 3D setup is found to be more diverged accompanied with a lower conversion
efficiency. Our paper concludes that the 2D simulation can qualitatively reproduce the features in 3D simulation,
but for quantitative evaluations and reliable predictions to facilitate experiment designs 3D modeling is strongly
recommended.
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I. INTRODUCTION

The interaction of high-power ultraintense lasers and
structured (both nanostructured [1–7] and microstructured
[8–18]) targets has been a topic of great interest for its capa-
bility of enhancing the laser energy conversion efficiency [1],
high-order harmonics generation [19,20], charged particles
(relativistic electrons and ions [3,4,18]) acceleration, and the
production of x-ray [1,21–23] to γ -ray [15,16,24] radiation.
The produced charged particle and photon beams have a wide
range of applications from medical ion therapy [25,26] and
nuclear physics [27,28] to photon-photon pair production
[29–31]. The microstructured targets with characteristic
size of surface modulation comparable to laser wavelength
are able to extensively absorb laser energy through various
processes, including surface plasmon resonance excitation
[32], multipass stochastic heating [33] in dense clusters,
prolonged acceleration distance in hollow channels [10] and
microwires [11], and relativistic transparency in prefilled
channels [15]. In this paper, we examine the regime involving
hollow microchannels (see Fig. 1).

When ultraintense lasers irradiate hollow microchannels,
strong laser fields directly act on electrons, dragging them
into the channel and forming periodic electron bunches which
then surf along with the laser pulse, gaining energy from
the laser. Additionally, the presence of a channel guides the
propagation of the electromagnetic fields, confines the elec-
tron motion, and as a result leads to a well collimated photon
emission. This setup can serve as a promising electron source
to further stimulate ion acceleration [18] as long as the ion
expansion does not significantly impact electron acceleration
[34]. However, to successfully apply such an electron source
in experiments, careful numerical investigations are needed in

order to determine where the electron energy peaks, i.e., the
location to cut off the channel and collect an electron source
with an optimal spectrum.

To carry out such numerical studies, one can choose
between 2D3V and 3D3V Particle-In-Cell (PIC) simula-
tions. Both two-dimensional (2D) [8–10,35,36] and three-
dimensional (3D) [13,14,17,37,38] numerical simulations
have been widely used to characterize laser interactions with
structured targets. The appeal of 2D simulations is that they
require significantly less computational resources than 3D
simulations, so one is able to perform extensive parameter
scans using 2D simulations. However, the field topology dif-
fers between 2D and 3D setups and it is not immediately
clear how the differences impact the particle dynamics. It is
then important to evaluate the dimensionality effects on a
case-by-case basis. A few publications [5,39–41] have dis-
cussed the influences of simulation dimensionality on ion
acceleration with various target geometries. But, to our knowl-
edge, nobody has examined and explained the physics of
dimensional effects on laser-irradiated hollow microchannel
targets.

In this paper, we show that the chosen dimensionality has a
considerable effect on electron acceleration and the associated
photon emission. First, we provide an analytical solution to a
test problem to demonstrate that the dephasing rate between
the accelerated electron and laser wavefronts strongly depends
on simulation geometry. Later we show numerical evidence
to demonstrate that the dephasing rate differs with simulation
dimensionality and such a difference is the key reason for
the distinguished observation in terms of electron and photon
beam generation. Through collectively evaluating generated
particles and detailed particle tracking, we show that the
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FIG. 1. Laser-irradiated hollow targets in two and three dimen-
sions. (a) 2D setup where a linearly polarized two-dimensional
Gaussian pulse interacts with a two-dimensional hollow plasma
channel. (b) 3D setup where a linearly polarized and cylindrically
symmetric Gaussian pulse interacts with a hollow cylindrical target.

occurrence of high phase velocity in the 3D setup terminates
the electron acceleration process early in space and time, and
leads to a reduction of photon emission.

II. PHASE VELOCITY IN 2D AND 3D WAVEGUIDES

To provide insights into the role of target geometry on
phase velocity, we here consider a simplified waveguide prob-
lem with a perfectly conducting boundary. Previous studies
[10,34,36] have shown that, in a hollow channel without sig-
nificant ion expansion, the dominant contributor to electron
acceleration is the electric field in the direction of the laser
propagation, i.e., the longitudinal field Ex. The correspond-
ing structure of propagating electromagnetic fields can be
characterized as TM (transverse magnetic) modes. The wave
equation of TM modes can be written as(

∂2

∂y2
+ ∂2

∂z2

)
Ex +

(
ω2

c2
− k2

)
Ex = 0, (1)

where ω is the wave frequency, k is the wave number, and
c is the speed of light. For a two-dimensional waveguide
[shown in Fig. 1(a)], Ex is a function of y and ∂Ex/∂z = 0.
Equation (1) then becomes ∂2Ex/∂y2 + (ω2/c2 − k2)Ex = 0.
We choose Ex = E0 sin(πy/R) as the TM-mode solution that
matches the field structure in the incoming pulse (i.e., Ex = 0
on axis) and the boundary conditions, which requires Ex(y =
±R) = 0. Here R represents the radius of the plasma channel.
The dispersion equation in the 2D waveguide is then given by

ω2

c2
= k2 + π2

R2
. (2)

For the 3D cylindrical waveguide [shown in Fig. 1(b)], it is
convenient to rewrite Eq. (1) in cylindrical form as

1

r

∂

∂r

(
r
∂Ex

∂r

)
+ 1

r2

∂2Ex

∂ψ2
+

(
ω2

c2
− k2

)
Ex = 0, (3)

where r is the axial distance and ψ is the azimuth. Assuming
a solution in the form of Ex = f sin(ψ ), the resulting equation
for f then reads

s2 ∂2 f

∂s2
+ s

∂ f

∂s
+ (s2 − 1) = f . (4)

Here s ≡ βr and β2 = ω2/c2 − k2. The solution for f is given
by f = E‖J1(s) = E‖J1(βr) where J1(x) is a Bessel function
of the first kind and E‖ is the amplitude of the longitudinal
field. At the boundary of the cylindrical waveguide, f (r =
R) = 0, which yields βR ≈ 3.8. The dispersion relation of the

3D cylindrical waveguide is then written as

ω2

c2
= k2 + 14.7

R2
. (5)

It is convenient to derive a general expression for vph of a
propagating wave with the dispersion relations given in Eqs.
(2) and (5):

u = vph

c
= ω

kc
=

√
1 + α2

R2k2
≈

√
1 + α2

R2k2
0

, (6)

where we set k ≈ k0 = ω/c, α2 = π2 ≈ 9.9 for the 2D chan-
nel and α2 = 14.7 for the 3D cylindrical channel. Subtracting
the vph from c, in the limit of α2 � R2k2

0 we have

δu = u − 1 ≈ 1

2

α2

R2k2
0

. (7)

δu is a dimensionless parameter used to quantify the degree
of superluminosity [42]; it can be understood as a dephasing
rate, since it illustrates how quickly the local laser wavefront
outpaces the electron in question. The ratio of the dephasing
rate for the case in two dimensions to that in three dimensions
is

δu3D

δu2D
≈ 1.5. (8)

It is worth pointing out that Eqs. (7) and (8) are built on
simplified boundary conditions and the neglect of the influ-
ence of extracted electrons, thus one may find discrepancies in
phase velocity when compared to self-consistent PIC simula-
tions. Nevertheless the difference of dephasing rate in Eq. (8)
motivates us to investigate the role of target geometry on
phase velocity with numerical simulations. In the following
sections we are going to demonstrate via PIC simulations that
the laser phase velocity varies with the dimensionality of the
simulations and the lower dephasing rate in two dimensions
leads to an overestimate of electron acceleration and γ -ray
emission.

III. IMPACT OF DIMENSIONALITY
ON ELECTRON ACCELERATION

We model the electron acceleration through fully rela-
tivistic PIC simulations using the EPOCH code [43], which is
available in both two and three dimensions. The target geome-
tries implemented in the simulations are depicted in Fig. 1.
In two dimensions, the target is a straight empty channel
enclosed by two uniform plasma slabs. In three dimensions,
the channel is enclosed by a cylindrical wall of plasma, with a
channel diameter such that a slice along the target axis would
be identical to the 2D setup. The 2D and 3D simulations share
the same plasma composition, plasma density, laser intensity,
temporal profile, and laser spot size. The laser intensity is
set as 1.37×1022 W/cm2, corresponding to a0 = 100. Here
a0 ≡ |e|E0/(mecω) is the normalized laser amplitude, where
E0 is the peak amplitude of the electric field in the incoming
laser pulse, and me and e are the electron mass and charge.
The laser pulse is always focused at the channel entrance.
We choose gold as the original target material with a density
of 1.5 g/cm3. According to the field ionization model, the
considered laser pulse is capable of ionizing gold atoms to the

045206-2



EFFECTS OF SIMULATION DIMENSIONALITY ON … PHYSICAL REVIEW E 104, 045206 (2021)

TABLE I. Parameters used in 2D and 3D PIC simulations.

Parameters shared by 2D and 3D simulations

Laser pulse
Peak intensity 1.37×1022 W/cm2

a0 100
Polarization Linearly along ŷ
Wavelength λL = 1μm
Location of the focal plane x = 0μm, surface of plasma
Pulse temporal profile Gaussian
Pulse duration
(FWHM for intensity) 30 fs
Pulse width/focal spot
(FWHM for intensity) w0 = 2.8μm

Plasma
Composition Gold ions and electrons
Channel radius R = 4.0μm
Target thickness d = 0.4μm
Electron density ne = 276ncr

Ion mass to charge ratio 197mp : 69
Ion mobility Mobile

Parameters varying in 2D and 3D simulations

Spatial resolution 2D: 100/μm × 100/μm
3D: 50/μm × 50/μm × 50/μm

No. of macroparticles/cell 2D: 100 for e−, 5 for Au+69

3D: 10 for e−, 5 for Au+69

Laser geometry 2D: symmetric about y-axis
3D: cylindrical symmetry

Laser power 2D: 0.82 PWa

3D: 1.24 PW
Target length 2D: L = 350μm

3D: L = 150μm

aTo calculate the laser power, we assume the length of the third
dimension in 2D simulations as 2 μm.

level of Z = 69. In the simulations, the target is preionized ac-
cordingly to a plasma composed of Au+69 (density 4 ncr) and
e− (density 276 ncr) where ncr ≡ meω/(4πe2) is the critical
density. A detailed comparison of parameters used in the 2D
and 3D simulations is listed in Table I. Note that although
the target lengths are set differently, this is done such that
in different dimensionalities the target is long enough for the
electrons to reach their first energy peak.

Figures 2(a) and 2(b) illustrate the time history of the elec-
tron energy spectrum observed in both 2D and 3D simulations.
There exists more than one energy peak in both Figs. 2(a)
and 2(b) and our focus is on the first energy peak which
happens before any deceleration takes effect. It is clear that the
maximum electron energy gain achieved in two dimensions
significantly exceeds the gain observed in the 3D case. In fact,
the first energy peak in two dimensions occurs at t = 500 fs
with εe = 1920 MeV while in three dimensions the peak oc-
curs at t = 255 fs with εe = 1240 MeV. Figure 2(c) gives a
direct comparison of the peak spectra observed in the 2D and
3D simulations. In order to facilitate a comparison between
the two simulations, we added a gray star to Fig. 2(a) that
represents the energy and time of the first peak from Fig. 2(b).
Evidently, the acceleration in two dimensions lasts longer,

which results in a more energetic electron spectrum. Note that
to make a quantitative comparison with the 3D simulations,
we assume a uniform third dimension with a length of 2μm
for the 2D simulation.

To further understand the electron acceleration process, we
tracked energetic electrons in both simulations. Figures 2(d)
and 2(e) illustrate the trajectories of representative electrons
selected from both the 2D and 3D simulations. Plotted in
the space of the transverse location (y or r) and time, the
trajectories are in agreement with the time history of the
electron spectrum given in Figs. 2(a) and 2(b); the electron
energies peak at the corresponding moments. Regardless of
the dimensionality, the electrons surf along the channel wall
while getting accelerated by longitudinal electric fields until
reaching their first energy peak. However, the horizontal surf-
ing of electrons in the 3D simulation terminates earlier due
to its higher dephasing rate, which will be elaborated in the
next section. It is worth noting that the second energy peak
observed in Figs. 2(a) and 2(b) is correlated with the electron
motion of crossing the central axis, indicating an involvement
of the transverse electric field in electron acceleration.

Through evaluating the electron energy spectrum and
tracking individual electron motion, we have shown that the
dimensionality of simulations significantly impacts electron
acceleration. The 2D simulations tend to extend the electron
acceleration process, leading to an overestimate of the max-
imum electron energy when compared to more realistic 3D
simulations.

IV. ELECTRIC FIELD PROFILES AND PHASE VELOCITY

An electron traveling in the laser fields gains energy only
while staying in the accelerating phase of the electric field.
The electron can gain energy from both longitudinal (E‖=Ex)
and transverse (E⊥ = Ey, Ez) electric fields. The total work
done by the electric fields on a given electron can be expressed
as

Wtot = W‖ + W⊥ = −|e|
∫ t

−∞
(E‖v‖ + E⊥v⊥) dt ′. (9)

Figure 3 shows the contributions of W‖ and Wtot to electron
relativistic energy at the first peak by binning all electrons
according to their energies. In the 2D simulation 95% of the
energy of energetic electrons (εe > 500 MeV) comes from the
work done by the longitudinal electric fields and in the 3D
case the quantity is 86%. It is then reasonable to approximate

Wtot ≈ W‖ = −|e|
∫ t

−∞
E‖v‖ dt ′. (10)

This simply allows us to narrow down the investigation of
electron acceleration to a single component of the electric
fields.

At ultrahigh laser intensities, the dephasing rate δu is
approximately (vph − c)/c, since for a relativistic electron
copropagating with a laser c − vx � vph − c. Figures 4(a) and
4(b) describe the temporal profiles of the transverse electric
fields Ey recorded in a moving window. Note that Ey and Ex

share the same wave mode and phase velocity. By tracking
a fixed field segment, we find that vph ≈ 1.0031 c in the 2D
simulation, and vph ≈ 1.0063 c in the 3D simulation. The
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FIG. 2. Time-resolved electron energy spectrum observed in (a) the 2D simulation and (b) the 3D simulation. The colorbar represents the
number of electrons collected onto a certain energy bin dεe. (c) The peak energy spectrum in two and three dimensions which occurred at
t = 500 fs (marked with red circle) and t = 255 fs (marked with gray star), respectively. We define t = 0 fs as the time when the laser pulse
reaches its peak amplitude in the focal plane at x = 0 μm in the absence of the target. Typical electron trajectories are plotted in (d) y-t space
for the 2D simulation and (e) r-t space for the 3D simulation. Here r = √

y2 + z2. The color on the trajectories represents electron relativistic
energy.

dephasing rate in two dimensions is nearly two times lower
than that in three dimensions, explaining the distinction be-
tween the electron energy gain seen in the two simulations.
The duration for electrons staying in an accelerating phase of
electric fields can be estimated by

δt ≈ 0.5λL/(δuc), (11)

where 0.5λL is the width of the accelerating phase. We
find that δt ≈ 540 and 260 fs in two and three dimensions,
matching well with the times found from the simulations,
demonstrating the accuracy of the approximation used to
calculate the phase velocity. The previously derived Eq. (7)
however gives the analytical values of the phase velocity as

FIG. 3. Contributions to the electron relativistic energy by E‖
(W‖, red bars) and the electric fields (including both E‖ and E⊥, Wtot ,
green bars) in (a) the 2D simulation and (b) the 3D simulation. The
snapshots are taken at t = 500 and 255 fs, respectively, correspond-
ing to the first peak of electron energy spectra in Fig. 2. The bar width
in (a) and (b) is set as 75 MeV.

vph = 1.0078 c in two dimensions, and vph ≈ 1.0116 c in
three dimensions. Despite the difference in numerical value,
the same trend of an increase in phase velocity is consistent in
both the analytical treatment and the numerical simulations.
There are a number of factors that can lead to this discrep-
ancy between the analytical calculations and the numerical
simulations, for example, the analytical calculation assumes a
perfectly conducting boundary and so requires the transverse
fields to be zero at the channel edges [36]; sinusoidal waves
are not a perfect match (though close) for the fields observed
in the hollow channels; we have neglected the influence of
the extracted electrons and their heating [44] on phase ve-
locity. Our additional simulations with different target size R
show that as phase velocity varies with R the ratio of δu in
two dimensions to δu in three dimensions is preserved. It is
worth pointing out that the modification on the dephasing rate
brought by the numerical artifacts from the field solver [45] in
our PIC simulations is about two orders lower than the values
we mentioned above.

To further check how the phase velocity influences electron
acceleration, we track representative electrons with respect to
Ex fields sampled by them, as illustrated in Figs. 4(c) and
4(d). It is clear that the electrons remain accelerated when
they stay in the favorable phase of Ex fields (the negative
fields colored in blue). After exiting the accelerating phase,
the electron energy declines. As can be seen from the time
scale in Figs. 4(c) and 4(d) electrons in the 2D simulation are
subject to far longer periods of acceleration than those in three
dimensions, due to the lower phase velocity in two dimen-
sions. The evolution of energy and longitudinal work of the
chosen electrons is shown in Fig. 4(e). At early moments (up
to ≈260 fs), the curves of W‖ 2D and W‖ 3D almost overlap with
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FIG. 4. (a) Temporal profiles of Ey fields on the central axis in (a) the 2D simulation (recorded at y = 0) and (b) the 3D simulation (recorded
at y = z = 0). The Ey fields are plotted in a moving window which moves with the speed of light. Here E0 with a value of 3.2×1014 V/m is the
peak amplitude of the electric field in the incoming laser pulse. The black dashed lines show the segments used to determine vph in each run.
The trajectory of a typical high-energy electron is plotted together with the exact Ex fields sampled by that electron in (c) the 2D simulation
and (d) the 3D simulation. (e) The comparison of relativistic electron energy and the longitudinal work between the electrons tracked in (c)
and (d).

each other, implying that the amplitudes of accelerating fields
in two and three dimensions are similar. It is then clear that the
major cause for the smaller electron energy observed in the 3D
simulation is the early termination of the acceleration process
due to the higher dephasing rate. We note in Fig. 4(c) that,
although the mean phase velocity is superluminal, for short
time intervals (such as t = 190–220 fs) the phase velocity be-
comes subluminal. As shown in the Appendix B, this feature
might be explained by the superposition of the fundamental
TM mode (the one considered in Sec. II) with higher modes.

So far we used the same channel radius in 2D and 3D sim-
ulations, making sure that a slice along the axis of the target
in the 3D simulation is identical to the 2D setup. Since the
phase velocity varies with the channel radius, one may wonder
whether a 2D simulation with a reduced channel radius can
match the electron acceleration regime in the 3D simulation.
Such a comparison that exclusively focuses on matching the
phase velocity overlooks the fact that the electron acceleration
depends on two factors: (1) the magnitude of the longitudinal
electric field and (2) the time that the electron spends acceler-
ating, which is determined by the phase velocity. By adjusting
the channel radius in a 2D simulation, we not only change the
phase velocity, but also the amplitude of the accelerating field.
This makes it impossible to match the acceleration regime in
two dimensions to that in three dimensions via the change in
radius.

In order to elaborate on this, we carried out 2D simulations
with different channel radii (R = 2.0, 3.28, 4.0, and 6.0 μm)
while keeping the laser peak intensity and pulse duration
constant. We use R = 3.28 μm because, according to Eq. (7),
the phase velocity at this radius is equal to the phase velocity
in the 3D channel. We found that the dephasing rate indeed
increases as the channel radius is reduced. For example, as

R is reduced from 6.0 to 3.28 to 2.0 μm, δu increases from
7×10−4 to 5.1×10−3 to 1.27×10−2. However, the reduction
of the channel radius significantly changes the amplitude and
slope of the accelerating field Ex. The field lineouts are shown
in Fig. 7 of Appendix A. Therefore, the adjustment of R
makes it impossible to match both factors that determine the
acceleration regime, i.e., δu and the field structure of Ex.

V. INFLUENCE OF DIMENSIONALITY
ON PHOTON EMISSION

The focus of the discussion in the previous sections was the
impact of simulation dimensionality on the laser-driven elec-
tron acceleration and generation of energetic electrons with
energies of hundreds of MeV to a few GeV. These high-energy
electrons are subject to emitting energetic photons (in x-ray
and even up to the γ -ray range) while accelerating in laser
and channel fields. In this section, we investigate how the pho-
ton emission changes with the dimensionality of simulations.
The emitted power Pγ of synchrotron emission is determined
by the electron acceleration in an instantaneous rest frame.
This acceleration is proportional to a dimensionless parameter
[46] η:

η ≡ γe

ES

√(
E + 1

c
[v × B]

)
2 − 1

c2
(E · v)2, (12)

where E and B are the electric and magnetic fields acting on
the electron, γe and v are the relativistic factor and the velocity
of the electron, and ES ≈ 1.3×1018 V/m is the Schwinger
field. The emitted power from an electron scales as Pγ ∝ η2.
We are interested in photons with energy above 100 keV, a
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FIG. 5. Photon and electron distribution over space. (a) Photon energy distribution along the x axis. Photon number distribution in (x, y)
space for (b) two dimensions and (c) three dimensions. (d) Transverse distribution of photon number in the 3D simulation plotted in (y, z)
space. (e) Transverse distribution of the number of high-energy electrons in the 3D simulation plotted in (y, z) space. The considered photons
are forward-emitted, accumulated up to 1100 and 500 fs for two and three dimensions, respectively. The photon energy threshold is 100 keV.
The energy threshold of the high-energy electrons is 100 MeV.

threshold shown to be critical for photon-photon pair produc-
tion [31].

Collecting all the forward-emitted photons over the du-
ration of the simulations, Fig. 5 compares the spatial
distributions of photons produced in the 2D and 3D simu-
lations. Noting that in the simulations performed here, once
a photon is generated, the emission location is marked as
the photon location for the duration of the simulation. Cor-
responding to the electron acceleration, the first peak of
emission in three dimensions takes place at x ∼ 60 μm, well
ahead of that in two dimensions, which is located at x ∼
140 μm [see Fig. 5(a)]. Up to the first peaks, 38% of laser
energy in two dimensions is transferred to particles (photons,
electrons, and ions) compared to 41% in three dimensions.
Of the transferred energies 0.47% is converted into photons
(εγ > 100 keV) in the 2D simulation in contrast to 0.11%
in the 3D simulation. As shown in Eq. (12), η is directly
proportional to the electron’s relativistic factor, i.e., η ∝ γe.
In the previous section it is noted that the field amplitudes
acting on the electrons are similar in both two and three
dimensions. Thus the primary cause of the lower conversion
rate in three dimensions is due to the lack of electrons at very
high energies. Figures 5(b) and 5(c) illustrate the distribution
of photons in (x, y) space. The common feature of both distri-
butions is that most photons are generated close to the channel
boundary, corresponding to the surfing motion of energetic
electrons depicted in Figs. 2(d) and 2(e). The second peak of
emission in both simulations becomes weaker in amplitude
and accumulates less photon yield following the first peak.
The distribution of the emission in the 3D simulation on the
transverse plane (y, z) is given in Fig. 5(d). It is clear that the
emission is concentrated around the z = 0 μm plane with two
populated lobes formed near the channel boundaries. Due to
the linear polarization of the laser electric field, electrons near
z = 0 μm where the normal component of Ey fields is the
strongest are more susceptible to extraction. Driven by the
laser electric field, more electrons travel close to z = 0 μm
plane [see Fig. 5(e)] and emit photons such that the spatial
distribution of produced photons at the moment of the emis-
sion is aligned with the direction of laser polarization (in
our simulations photons are not allowed to move after their
generation).

Figure 6 compares the angular distribution and energy
spectrum of 2D and 3D simulations. The photon emission
in three dimensions is projected onto a sphere, as illustrated
Fig. 6(a). Though the target is cylindrical, the emission pat-
tern does not preserve the same symmetry. From Fig. 6(b),
the energy distribution along the azimuthal angle dEγ /dθγ

demonstrates a divergence of 10◦ (i.e., the full width at half
maximum of the energy distribution curve), which is more
than two times wider than that in the polar angle direction. The
photon beam in the 2D case is found to be more collimated
with a divergence of 6◦ in dEγ /dθγ . Distributing emission
over θγ and photon energy, Figs. 6(c) and 6(d) manifest
that the photon beam in two dimensions is better collimated
throughout the whole energy spectrum. To further evaluate
the quality of the two photon beams, we compare the beam
brilliance. The source size of the 3D target is easily decided
by its radius while in two dimensions the source size is set
as 4×2 μm2. It is found that the brilliance of γ -ray beams
is 2.9×1021 and 5.8×1020 photons/s mm2 mrad2 0.1%BW
(at 1 MeV) for two and three dimensions, respectively. Here
0.1%BW means photons are collected within a bandwidth
(BW) of 0.1% of the central frequency. In Fig. 6(e) starting
from 1.5 MeV, the number of γ -ray photons in two dimen-
sions surpasses that in three dimensions, projecting a larger
brilliance in two dimensions for energy level above 1 MeV.

In this section, we compared the photon yield with regard
to the simulation dimensionality. Since photon emission is
a direct result of electron acceleration, the emission demon-
strates correlated features as observed for electrons in Sec. III.
The first peak of photon emission in three dimensions arrives
early in space due to the high phase velocity. The lack of high-
energy electrons makes the conversion of laser energy to γ -ray
photons less efficient in three dimensions. Besides the impact
on photon number yield, the dimensionality also affects the
collimation of the photon beam. With a large divergence angle
and a small number of high-energy photons, the 3D γ -ray
beam is less bright than the 2D beam.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated the effects of simulation dimension-
ality on electron acceleration and γ -ray production. There are
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FIG. 6. (a) Photon count per solid angle for the 3D simulation. The solid circles mark polar angles of 5◦ and 15◦. (b) Photon energy distribu-
tion over the azimuthal θγ and polar angles ϕγ for both two and three dimensions, where θγ = arctan(py/px ) and ϕγ = arctan(pz/

√
p2

x + p2
y ).

To make the curve for dEγ /dθγ of the 3D simulation visible, its y axis is multiplied by a factor of 6. The spectral-angular distribution of the
generated γ -ray pulse is shown in the (c) 2D and (d) 3D simulations. Here sγ ≡ log10(εγ /MeV). (e) Photon energy spectra. The considered
photons are forward-emitted, accumulated up to 1100 and 500 fs for two and three dimensions, respectively. The photon energy threshold is
100 keV.

significant distinctions between the results obtained in 2D and
3D setups from both analytical consideration and numerical
calculation. Though in numerical values vph is close to the
speed of light, the dephasing rate (vph/c − 1) which deter-
mines the energy gain varies considerably with simulation
geometry. The higher dephasing rate observable in the 3D
setup terminates the electron acceleration process early in
space and time and leads to a reduction of photon emission
when compared to two dimensions.

A 2D channel target presents a planar geometry while a
3D target has a cylindrical symmetry. Analytically we have
shown that the phase velocity of laser fields propagating in-
side the targets closely depends on the target geometry; the
phase velocity in two dimensions is smaller than that in three
dimensions. To be more specific, the dephasing rate in a 2D
setup is derived to be 1.5 times slower when controlling for the
channel radius and laser wavelength. Through numerical sim-
ulations, it is found that the absolute majority of work done on
energetic electrons comes from the longitudinal electric field,
enabling the investigation of laser-driven particle acceleration
based only on one single component of the electric fields. By
tracking a fixed segment of laser fields the phase velocity in
two dimensions is again shown to be smaller than in three
dimensions, matching the correct trend shown in the analytical
derivation. It is clear that in 2D simulations electrons surf
for a longer period in an accelerating phase compared to 3D
simulations. As a result, electrons in two dimensions have an
elongated acceleration distance and present a more energetic
spectrum, leading to an overestimate of maximum electron en-
ergy and the number of high-energy electrons when compared
to more realistic 3D simulations.

Similar to electron acceleration, photon emission is
strongly impacted by simulation dimensionality. Due to a
lack of high-energy electrons, in three dimensions the pho-
ton (εγ > 100 keV) conversion rate is more than four times
smaller and the emission falls behind on the generation of
energetic photons (εγ > 1.5 MeV). In three dimensions, the
emission is accumulated close to the z = 0 plane with a nar-
row divergence along the polar angle. However, the emission
along the azimuthal angle is far more diverged in three di-
mensions compared to that in a 2D simulation. As a result,
the photon beam produced in a 3D setup is found to be less

bright. It is also worth noting that the subsequent peaks of
photon emission drop sharply in amplitude and duration.

Though 2D numerical simulations are widely applied in the
research of laser and microchannel interactions, one should
not ignore the overestimate and inaccuracy of results caused
by the low phase velocity in 2D simulations. In particular,
when carrying out numerical simulations to predict and opti-
mize the output for laser microchannel experiments, it matters
to accurately know the exact location of the peaked electron
spectrum and therefore 3D simulations are indispensable. We
conclude that the 2D simulations are capable of qualitatively
reproducing the features of 3D simulations, but for quan-
titative evaluations and reliable predictions 3D modeling is
strongly recommended.
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APPENDIX A: Ex FIELD PROFILE

Figure 7 describes the transverse profiles of the peak Ex

fields captured at the same snapshot for varied channel width.
The lineouts of the Ex field for two and three dimensions at
the same channel radius (R = 4.0 μm) are very close to each
other, but there is already a noticeable deviation from the 3D
case when R is reduced to 3.28 μm. In 2D simulations at
R = 2.0 or 6.0 μm, the amplitude and slope of Ex fields
deviate from the 3D case even further.
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FIG. 7. Peak longitudinal electric field profiles with varied chan-
nel width. All the snapshots were taken at t = 100 fs.

APPENDIX B: SUPERPOSITION OF WAVEGUIDE MODES

In Eq. (2), we have chosen the fundamental TM mode
(n = 1) as the solution of propagating electromagnetic fields
in the 2D waveguide. Generally, the dispersion relation of TM
modes in the considered setup can be written as ω2/c2 = k2 +
(nπ/R)2, where n = 1, 2 . . .. Figure 8 shows the temporal

FIG. 8. Temporal profile of Ex fields resulted from the superpo-
sition of the first and second waveguide modes. The fields are plotted
in a moving window which moves with the speed of light.

profile of |Ex| from the superposition of the first (n = 1) and
second (n = 2) modes, where the ratio between the ampli-
tudes of the first mode and the second mode is 4:1. The
superposition of the lowest mode with a higher mode cre-
ates the wiggling of the field segments. The phase velocity
becomes subluminal for a short time period though the mean
phase velocity remains superluminal.
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