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Configurational temperature of multispecies dusty plasmas
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The dust charge of the two species in a binary mixture of particles in a dusty plasma has been measured
using the concept of configurational temperature. There, the dust charge and the respective dust charge ratio are
determined from the comparison of the instantaneous particle positions and the kinetic temperature. For that
purpose, experiments of binary mixtures of melamine-formaldehyde and silica particles have been evaluated.
The configurational temperature approach has also been checked against simulations. From these analyses it is
found that the charge ratio of the two species can be obtained quite accurately, whereas for the determination of
the absolute charge values a good knowledge of the confining potential is required.
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I. INTRODUCTION

Microscopic particles trapped in a plasma become charged
by the electron and ion currents to the particle surface. For
typical low temperature plasma conditions the particle attains
a negative charge of about a few thousand elementary charges.
These particles act as a third plasma component and signif-
icantly alter the plasma and its dynamics and give rise to
structure formation.

For nearly all processes in dusty plasmas the particle
charge is of central importance. However, to measure or cal-
culate the particle charge is by far not trivial. Analytic models
like the famous Orbital Motion Limit (OML) approach [1,2]
make simplifying assumptions: the plasma is assumed to be
isotropic, collisionless, and stationary, and an isolated dust
grain is considered. In experiments, however, the particles are
often confined and levitated in the plasma sheath above the
lower electrode. There, the plasma generally is anisotropic
and not quasineutral. Further, the ions are streaming with
supersonic speed and the electrons are periodically leaving
and entering the sheath region with each rf cycle. Hence, their
distribution functions are usually quite complex. Often, also
ion-neutral collisions play a role [3]. Finally, the dust grains
are not isolated. They form a strongly coupled system where
the interparticle distance is about the screening length [4–6].
Thus, a theoretical prediction of the charge of dust grains is
still an open challenge.

Unfortunately, charge measurements are not trivial either.
For example, the phase-resolved resonance method allows one
to measure the charge-to-mass ratio with very high accuracy
and can yield the absolute particle charge if the charge density
in the sheath and the mass density of the particles are known
[7], but it is limited to systems with a very few particles. For
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extended systems the charge can be measured via an anal-
ysis of the system dynamics. For small systems the normal
modes analysis yields good results [8]. For large systems
the dispersion relation of dust density waves can be utilized
[9,10]. Recently, the dust charge of particles in a monodis-
perse, two-dimensional (2D) plasma crystal was measured
from a comparison of the kinetic and so called configura-
tional temperature [11,12]. The configurational temperature
relies on the positions of the particles and not their dynamics,
i.e., velocities. It was shown that this method allows one to
measure the particle charge with good accuracy. Similarly,
Mukherjee et al. [13] applied this technique to simulated and
experimental data and compared configurational and kinetic
temperatures.

The above mentioned approaches are generally designed
for monodisperse systems, i.e., systems where all particles
have the same size and thus the same charge. A charge mea-
surement in a system with particles of different size is a
difficult task. Tadsen et al. [14] showed that a local disper-
sion relation analysis can be used to determine the charge of
monodisperse particles in an inhomogeneous plasma. From
that, a local charge value could be derived. However, there
the plasma (and thus charge) inhomogeneity is typically
on a scale that is large compared to the interparticle dis-
tance.

In contrast, for binary or multispecies mixtures [15–24]
one would be interested in the charge of the individual parti-
cles. In a binary mixture two species of particles with notably
different charges form a mixed and strongly coupled sys-
tem, where the local neighborhood of each particle contains
particles of both species. So far only a heuristic compari-
son of interparticle distances in experiment and simulation
allowed one to estimate a charge ratio of the two species. In
a binary system of melamine-formaldehyde (MF) and silica
(SiO2) particles a charge ratio of Qd,MF/Qd,SiO2 = 1.2 ± 0.1
was found [25]. Nevertheless, a true charge measurement for
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binary or multispecies mixtures of particles is still an open
issue.

The configurational temperature method is a promising
candidate for binary systems, as it directly exploits the indi-
vidual particle positions and thus can take care of individual,
local particle arrangements. A local, individual approach for
binary or even multispecies complex plasmas would mark a
significant step forward. On the one hand, it would allow one
to directly obtain the charge ratio, which is a key parameter
for binary mixtures with strong influence on structure and
dynamics [26]. On the other hand, a measurement of the indi-
vidual charges is desired for a comparison of local structures
in experiments and simulations.

This paper presents methods which allow one to extend
the configurational temperature approach, previously used in
monodisperse systems [11,12], to binary mixtures. The tech-
nique will be benchmarked with simulation data and applied
to experimental data. From that the charge ratio of the two
species will be derived as well as the absolute particle charges.

II. THEORETICAL BACKGROUND

In a dusty plasma experiment, the full access to positions
and velocities of all particles at all times directly allows one to
determine the temperature from the velocity distribution func-
tion. For a Maxwellian velocity distribution the temperature
can be obtained from the average kinetic energy per particle
using 1

2 md〈v2〉 = d
2 kBT where d is the number of dimensions

of the system, md is the particle mass, and v are the velocities.
Here, the temperature T is defined via the dynamical proper-
ties of the particle ensemble.

A different approach has been suggested in 1997 by Butler
et al. [27], based on prior work of Rugh [28]. This approach
links the temperature to the fluctuations of the positions of
the particles in a given potential and is summarized in the
following.

For an arbitrary Hamiltonian system the temperature can
be defined as

kBT = 〈∇H(�) · B(�)〉
〈∇ · B(�)〉 . (1)

Here, H(�) = K ({pi}) + U ({qi}) is the Hamiltonian of the
system with the kinetic energy K ({pi}) and the potential en-
ergy U ({qi}). Further, � = {q1...q3N , p1...p3N } is the phase
space of the system with the generalized coordinates qi and
generalized momentum pi. B(�) can be any continuous and
differentiable vector function in the phase space.

Choosing specifically B(�) = −∇U ({qi}) yields a defini-
tion of temperature

kBTconf = 〈∇U ({qi}) · [−∇U ({qi})]〉
〈−∇2U ({qi})〉

= 〈∇U ({qi}) · ∇U ({qi})〉
〈∇2U ({qi})〉 , (2)

which is called configurational temperature [27,28]. Accord-
ing to Eq. (2), the configurational temperature depends on the
generalized positions qi only. The generalized momenta pi

and thus the dynamics of the system do not need to be known.
Note that choosing B(�) = (0, . . . 0, p1, . . . pN ) yields the
standard definition of the kinetic temperature.

For conservative forces, we can use F = −∇U to rewrite
gradients in potential energy U as forces. For finite dusty
plasmas basically two conservative forces are important: the
restoring force of the confining trap Fc and the electro-
static interaction forces between the particles F int. Using F =
F int + Fc and Eq. (2) yields

kBTconf =
∑N

j=1

(
F int

j + Fc
j

)2

−[∑N
j=1 ∇ j · (

F int
j + Fc

j

)] . (3)

Note that the sums indicate an average over the N particles in
the system at a given instant. For a harmonic trap with Fc

j =
−mdω

2
0q j = −kq j its divergence simply is ∇ · Fc

j = −d k for
particle j. Here, again d is the dimensionality and k = mdω

2
0 is

the stiffness of the trap where ω0 is the confinement frequency.
Hence, for a 2D system in a harmonic confinement

kBTconf =
∑N

j=1(F int
j + Fc

j )
2

−[∑N
j=1

(∇ j · F int
j

) − 2Nk
] . (4)

To calculate the configurational temperature the divergence
of the interaction force is needed. For Yukawa interaction (i.e.,
a screened Coulomb interaction) this reads

F int
j =

N∑
i �= j

Qd,i Qd, j

4πε0

(
1

r2
i j

+ 1

ri jλs

)
exp

(
− ri j

λs

)
ei j, (5)

with ri j = √
(xi − x j )2 + (yi − y j )2 as the distance between a

particle pair and ei j as the unit vector in direction of the force.
The divergence of the interaction force then is

∇ j · F int
j = ∂F int

j,x

∂x j
+ ∂F int

j,y

∂y j
. (6)

For the x direction

∂F int
j,x

∂x j
=

N∑
i �= j

Qd,i Qd, j

4πε0
exp

(
− ri j

λs

)[
3�x2

r5
i j

+ 3�x2

r4
i jλs

+ �x2

r3
i jλ

2
s

− 1

r3
i j

− 1

r2
i jλs

]
, (7)

with �x = xi − x j . The other directions are calculated alike.
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The full divergence ∇ j · F int
j using �x2 + �y2 = r2

i j yields

∇ j · F int
j = ∂F int

j,x

∂x j
+ ∂F int

j,y

∂y j
=

N∑
i �= j

Qd,i Qd, j

4πε0
exp

(
− ri j

λs

)[
1

r3
i j

+ 1

r2
i jλs

+ 1

ri jλ2
s

]
. (8)

With Eqs. (3) and (8) we can now determine the config-
urational temperature of the system from its positions if the
particle charge Qd, screening length λs, and confinement (e.g.,
in terms of the trap stiffness k) are given. Note that for a
binary system the particle charge of the two species is dif-
ferent and that thus the individual charges Qd,i and Qd, j might
differ.

One can regard the configurational temperature as a mea-
sure of to what extent deviations from the force balance on
the particles, described by the numerator of the right-hand
side of Eq. (3), lead to particle displacements in the effective
confining potential of external confinement and particle inter-
action around equilibrium, as given by the denominator. This
gives us a handle on how to extract the dust charges from the
configurational temperature.

First, we exploit that the system is, on average, in force
equilibrium, i.e.,

〈
N∑

j=1

F int
j + Fc

j

〉
t

= 0, (9)

where 〈·〉t denotes the temporal average.
Second, on the basis of the equipartition theorem, we

can assume that the configurational temperature is a measure
of the dynamical state of the system and, hence, should match
the kinetic temperature of the system, i.e., Tkin = Tconf . Using
the kinetic temperature information in dusty plasmas from the
particle velocities v j and the relation

kBTkin = 1

Nd
md

〈
N∑

j=1

v2
j

〉
t

= kBTconf =
∑N

j=1

(
F int

j + Fc
j

)2

−[∑N
j=1 ∇ j · (

F int
j + Fc

j

)] , (10)

it is possible to determine particle charge Qd (or particle
charges of the two species in a binary mixture) from the
particle positions. The (unknown) screening length λs and the
trap confinement are determined with an iterative approach as
described below.

Finally, it is clear that this method relies on the cor-
rect description of the interaction and confinement forces.
In principle, any conservative force mixture can be used to
compute Eq. (2). In our situation, the interaction between
dust particles in a two-dimensional dust cluster can be very
well described by a screened Coulomb (Yukawa) interaction
[9,29–31], as it is done here and in the previous analysis of
monodisperse systems [11]. In extended systems in the plasma
sheath where wake field effects [32–34] might play a role
probably more sophisticated force models have to be derived
and applied.

III. CHARGE ESTIMATION FROM SIMULATION DATA

A. Monodisperse systems

This section will introduce the scheme that can be used to
determine the dust charge using simulation data. We start here
with a simple monodisperse 2D dust system in a harmonic
confinement. This will then be extended to binary mixtures.

Our simulation code is a standard Langevin dynamics sim-
ulation approach. Although we are preferably interested in
2D systems the code handles positions and velocities in three
dimensions. In the radial (horizontal) direction the particles
are confined in a harmonic trap of stiffness ksim = 2.2 ×
10−11 kg s−2. The third (vertical) dimension has a stronger
confinement to force the system into a single layer. However,
this vertical confinement is finite to address the levitation
condition in a binary mixture correctly. Either monodis-
perse particles or binary mixtures of particles are treated in
the simulation. For binary systems, our simulation reproduces
the mixing and demixing of binary systems. Mixed systems
are observed only if the charge-to-mass ratios of both particle
species are equal, i.e., a charge disparity of the two species
also requires a mass disparity. For the simulations all param-
eters are in absolute values and are chosen similar to the
experimental conditions. More details about the simulation
are found in [25,35].

We now start with the analysis of a monodisperse system:
By definition, all forces on the particles balance on average
in equilibrium, hence 〈Fc + F int〉t = 0. Further, if charge Qd

and screening length λs are known, the interaction force F int

can be calculated and, from that, the confinement force Fc =
−F int can be estimated. Hence, for any meaningful set of pa-
rameters {Qd, λs} we first calculate the interparticle forces F int

from the particle positions. Figure 1(a) shows the calculated
x component of F int as a function of the x coordinate of the
particles for an arbitrary choice of {Qd, λs}. This interaction
force has to be balanced by the trap force to obtain equilib-
rium. In a harmonic trap the trapping force scales linearly with
x and the stiffness of the trap simply is the slope k = mdω

2
0.

This procedure yields an individual trap stiffness for each set
of {Qd, λs}. If {Qd, λs} are chosen as in the simulation, the
confinement force reconstructed from the interaction force
exactly matches the trap stiffness ksim = 2.2 × 10−11 kg s−2

used in the simulation. This is a nice consistency check, but
it should be noted that this first step does not allow one to
determine which is the correct set of {Qd, λs}, yet.

Next, for each pair of {Qd, λs} together with the fitted
trap stiffness k from the force balance we determine the con-
figurational temperature from Eq. (3). This configurational
temperature then is compared with the kinetic temperature
(Nd/2)kBTkin = (1/2)md〈v2〉.

To illustrate the method, the residual

R(Qd, λs) = |Tkin − Tconf (Qd, λs, k)| (11)
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(a) (b)

FIG. 1. (a) Interparticle force as a function of the particles’ x coordinate. The confinement is harmonic with a slope kx = mω2
0. The red

dashed line indicates the confinement force used in the simulation. (b) Map (color-coded) of the residuals R between configurational and kinetic
temperature in the {Qd, λs} plane for a case with moderate coupling (� = 800). � values were determined according to the model of Vaulina
et al. [36]. The region λs(Qd ) of lowest residual indicates where configurational and kinetic temperature are equal. The red cross denotes the
parameters used in the simulations.

is calculated for each parameter pair {Qd, λs} (and fitted k).
An example of such a residual map is shown in Fig. 1(b),
where we used just the particle positions {x1 . . . xN , y1 . . . yN }
from a single time step of the simulation to calculate the
configurational temperature. Generally, any pair of Qd and λs

with a vanishing residual of R is a possible solution (blue line).
In the calculation of the configurational temperatures the

interactions between all particles are taken into account. For a
given particle, the total force is zero in equilibrium. Hence, for
this particle, the contribution to the configurational tempera-
ture is mainly determined from the configurational deviations
from equilibrium positions with respect to its nearest neigh-
bors since there the relative displacements to the given particle
are largest. Moreover, the influence of distant particles is
reduced by the exponential factor in the Yukawa interaction.
As a consequence, the reconstructed particle charge is nearly
independent of the screening length λs. Only when λs be-
comes decisively smaller than the interparticle distance, e.g.,
when λs < 250 μm for our parameters, the electrostatic forces
between particles are effectively screened by the plasma and
the stronger screening has to be compensated by increased
charges on the particles [see Fig. 1(b)]. Since in typical dusty
plasma experiments the screening length is of the order of
the interparticle distance, i.e., of the order of a few hundred
microns [9,29,30], the chosen screening length fortunately has
only little influence on the derived charge.

B. Binary systems

We now extend these findings to binary systems which will
introduce two main changes in the algorithm. First, we have
to account for the fact that now two independent coefficients
ki = md,iω

2
0 for the confinement of two particle species are

necessary as they have different masses. In Fig. 2 we show the
x component of the confinement force against the x position of
the particle for each of the two species. In our simulation data,
the linear dependence of the force with x is very good. The
linear model nicely fits the data. Further, we can calculate the

deviation between the interparticle forces and the confinement
force with the fitted coefficients ki. Figure 3 nicely shows on a
Qd,1/Qd,2 grid that the minimum residual for the force balance
is well fitted by a linear relation (dashed line). Thus, the best
force balance is achieved for fixed charge ratio Qd1/Qd2.

As a second modification, a measure for the total kinetic
temperature of a binary mixture has to be defined, because
the kinetic temperatures of each species obtained from the
velocity distributions, Tkin,1 and Tkin,2, are slightly different.
Hence, since in the simulation we have an equal amount of
particles of each species, we can take the average of Tkin,1 and
Tkin,2 as a measure for the temperature of the binary mixture,
i.e., Tbin = (Tkin,1 + Tkin,2)/2.

With these values of ki and Tbin it is now possible to
compute residual maps of configurational and kinetic temper-
atures. These maps generally depend on three quantities now,
Qd1, Qd2, and λs. Guided by the finding from monodisperse
systems, where the choice of λs had only little influence on
the result and the fact that this influence should be identical
for Qd1 and Qd2, we chose λs being equal to the interparticle

FIG. 2. The interparticle force on the particles for the two simu-
lated species in the binary mixture. The simulated linear confinement
force can be retrieved by the linear fits.
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FIG. 3. Map (color-coded) of the deviation between interparticle
forces and the confinement force with the fitted coefficients ki. The
region of smallest residuals forms a straight line (dashed line) in the
{Qd1, Qd2} plane.

distance. A typical result of such a residual map is shown in
Fig. 4.

Here, the region of smallest residuals is indicated by the
solid curve and is well described by a rotated parabola in
the {Qd1, Qd2} space. Hence, there are in general two pairs
of {Qd1, Qd2} that yield equal kinetic and configurational tem-
peratures, except for the cusp of the parabola. Interestingly,
this is nearly exactly where the simulation input parameters
are found. In addition, this is also the point on the curve that
coincides with the force balance condition 〈Fc + F int〉t = 0
(dashed line).

Having this intersection of the force-balance line and the
parabolalike curve in Fig. 4, the cusp of the parabola on
its own already seems to be sufficient information to extract
the charge ratio and the absolute charge of the two particle
species. The cusp of the parabola shown in Fig. 4 yields the
absolute charges of species 1 and 2 as Qd,1 = 15 725 e and
Qd,2 = 13 000 e, which agree well with the simulation values
of Qd,1 = 15 855 e and Qd,2 = 13 169 e. We did also ensure
that the cusp is a valid guess for a larger range of charge
ratios. From numerous other simulations (see Fig. 5), it is

FIG. 4. Map (color-coded) of the residuals between configura-
tional and kinetic temperature computed according to Eq. (10). The
region of smallest residuals forms a rotated parabola (solid line) in
the {Qd1, Qd2} plane. The charges used in the simulation are found
near the cusp of the parabola (cross). The dashed line indicates the
force balance from Fig. 3.

FIG. 5. The determined charge ratios (Qd,1/Qd,2)fit for different
simulation parameters of (Qd,1/Qd,2)sim. The data points are the av-
erage values for several simulation time steps. The errorbars indicate
the standard deviation.

learned that the cusp of the parabola always yields a very good
estimate for the charge ratio of Qd,1 and Qd,2.

Note that the absolute charge values somewhat deviate
from the expected particle charge. These deviations are caused
by our rough estimation of the screening length. However,
this error is the same for both species. As λs is the effective
screening length provided by the plasma electrons and ions it
should be identical for both particle species and thus cancels
out in the charge ratio. Further, it has to be noted that our
method already works with a single set of particle positions.
Except for Fig. 5 no averaging was used.

IV. CHARGE ESTIMATION FROM EXPERIMENTAL DATA

Now, we apply the above method to experimental data. The
measurements were performed at the LAMA experiment in
Kiel [25]. It is a capacitively coupled asymmetric discharge
which is typically operated at low rf power (Prf ≈ 12W) and
low neutral gas pressure (pAr ≈ 6Pa). In this experiment we
use SiO2 and MF particles. While the SiO2 species is stable
the MF-particle radius changes due to etching by the plasma
components. The etching rate is �aMF/�t ≈ −1.25 nm/min
[37]. Thus, the particle charge of the SiO2 species is constant
and the charge and mass of the MF species decrease as a
function of time. As charge and mass loss depend differently
on particle radius the charge-to-mass ratio of the MF species
changes. This results in a changing levitation height. At the
point of equal levitation height of the two species their charge-
to-mass ratio matches and this way we can create a binary
mixture.

The experiment is started with MF particles of aMF =
4.43μm radius and SiO2 particles of sSiO2 = 3.69μm radius
that are dropped into the discharge and that then, due to
their different masses, settle at different heights in the plasma
sheath. Now, by plasma etching, the MF-particle size reduces
with time until equal levitation heights are reached. From
the etch rate and the time until an equal levitation height is
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(a) (b)

FIG. 6. (a) Trajectories of a strongly coupled binary system consisting of MF (red) and SiO2 particles (black). The image shows a time
interval of t = 2.8 s. (b) The x component of the interparticle force for both particle species (red triangles and black squares). The linear
(dashed line) and the cubic (solid line) fit for a matching confinement force are shown for each species.

reached the MF-particle size can be estimated to be aMF =
4.25 ± 0.06μm when both particle species form a binary
mixture.

The measured particle trajectories in 500 consecutive
frames (the frame rate was 180 fps) are shown in Fig. 6(a).
The binary mixture consists of 56 particles (27 MF and
29 SiO2 particles) and shows particles of both species evenly
distributed in radial and poloidal position. The system is ob-
viously in a strongly coupled state and only thermal motion
around the equilibrium position is observed.

We will now perform the charge analysis for our experi-
mental system. First, the kinetic temperature was measured
for the two different species. Here, from the experimental
data of the particle velocities we derive Tkin,MF = 637 K and
Tkin,SiO2 = 445 K for the two species resulting in the mean
(weighted with particle number) temperature Tkin = 538 K.
The configurational temperature now accounts for the energy
stored in the particle-particle interactions and the confine-
ment. From equipartition these two temperatures are taken
equal [see Eq. (10)].

Hence, as the next step it is necessary to determine the con-
finement force. In Fig. 6(b), we present the confinement force
alongside with a linear (dashed lines) and a cubic (solid lines)
fit of the data. Especially in the outer regions of the cluster, it
is obvious that a linear model results in large deviations of the
data points from the fitted curve. That would result in larger
configurational temperatures and finally in lower charges that
will be determined. We will thus use the cubic force model
(corresponding to a confining potential that is proportional to
x4) in the following, i.e.,

F c
x = −(k1x3 + k2x2 + k3x + k4). (12)

Then, we compute the residual map between configu-
rational and kinetic temperature in a parameter regime of
{Qd,MF, Qd,SiO2} (the screening length was first taken as λs =
500μm, here). The resulting map and the corresponding force
balance condition line are shown in Fig. 7. The force balance
〈Fc + F int〉 = 0 was determined as shown above using a cubic
confinement force model over the particle ensemble. In Fig. 7
one finds, like in the simulation case, the region of smallest

residuals that forms a rotated parabola in the {Qd,MF, Qd,SiO2}
parameter space. And again the force balance condition inter-
sects the parabola at the cusp. For completeness, here we also
added the parabolic curves that are obtained using different
screening lengths λ = 300 and 700μm. The resulting charges
differ with screening length, but for the two larger screening
lengths (λ = 500 and 700μm) the difference is quite small, as
discussed above. Please also note that the charge ratio is unaf-
fected by the choice of λ, as all of the three force balance lines
are nearly indistinguishable. From the intersection of the force
balance with the equality of the two temperatures we derive
Qd,MF = 2500 e and Qd,SiO2 = 2220 e (using λ = 500μm).

In principle, the above analysis can be performed for each
frame individually since it requires only the particle positions.
Hence, the fluctuations of the measured charge ratio could be
analyzed to benchmark the stability and reproducibility of the
method. Therefore, we analyzed a sequence of 1000 images.
For intervals of 20 frames length the kinetic temperature was
measured and compared to the configurational temperature.
In combination with the force balance, for each interval the
charge ratio was determined. The results are shown in Fig. 8.
For our binary mixture we find a charge ratio Qd,MF/Qd,SiO2 =

FIG. 7. The solid lines indicate the region where configurational
and kinetic temperature coincide (solid lines) in the {Qd,MF, Qd,SiO2 }
plane for different values of the assumed screening length λs. The
dashed lines indicate the respective force balance.

045205-6



Configurational temperature of multipecies … PHYSICAL REVIEW E 104, 045205 (2021)

FIG. 8. Charge ratios obtained from the experimental measure-
ment. From a sequence of 1000 frames length, for each interval of 20
frames length, the charge ratio has been evaluated. The right panel
indicates the derived histogram of the charge ratios.

1.137 ± 0.01 (for the fixed chosen screening length λs). Ac-
counting for the uncertainty in the screening length one finds
Qd,MF/Qd,SiO2 = 1.14 ± 0.02, which matches the previously
reported value of Qd,MF/Qd,SiO2 = 1.2 ± 0.1 [25] very well.
In addition, the fluctuations for the charge ratio are very small.
Thus we conclude that the used method yields stable and
precise values for experimental as it did for simulation data. It
is also interesting to note that the particle sizes in the binary
mixture behave very similarly as the dust charges, namely, as
aMF/aSiO2 = 1.15 ± 0.02. This indicates that the dust charges
scale directly proportional to the dust size as expected from
an OML model.

While the so determined charge ratio is reasonable the
absolute values of the dust charges seem quite low. The main
reason of this low charge can be found in the model of the
confinement force. The better our chosen model of Fc fits
the behavior of F int the smaller is the numerator in the de-
termination of the configurational temperature in Eq. (3) and,
consequently, the configurational temperature itself. Thus,
higher dust charges are required to match the kinetic tem-
perature. It should be noted that even for the chosen cubic
model there are notable deviations from the force balance for
individual particles, since the model is an approximation over
all particles of the species. In the denominator of Eq. (3),
the influence of the chosen model for the local confinement
strength is minor. The denominator is mainly determined by
the divergence of the interaction force.

Above, the confinement force Fc was approximated by a
cubic relation that was fitted to the spatial behavior over the
ensemble of MF and SiO2 particles, respectively. As men-
tioned above, on the one hand, this procedure could be done
for each frame since the method only requires the instan-
taneous particle positions {x1 . . . xN , y1 . . . yN }. On the other
hand, the force balance 〈F int〉 = −〈Fc〉 should be fulfilled
as precisely as possible. For simulation data, where the con-
finement potential is accurately known these two conditions
can be fulfilled easily. In experiments, the confinement is
generally not known that precisely.

A possible solution is to take into account temporally av-
eraged particle positions {〈x1〉t . . . 〈xN 〉t , 〈y1〉t . . . 〈yN 〉t } where
the temporal average is taken over the frames of interest. Then,
we assign an individual trap stiffness k j to each of the particles
j by simply setting F c

jx = −k j〈x j〉t (and equivalently for the y

FIG. 9. Map (color-coded) of the residuals between configura-
tional and kinetic temperature in the {Qd,MF, Qd,SiO2 } plane using
individual confinements. The dashed force balance line is the force
balance condition from Fig. 7.

component). The difference to the above situation is that we
have an individual trap stiffness k j for each of the particles
instead of a global k for the entire system (or species).

In doing so, the force balance 〈F int
j 〉 = −〈Fc

j〉 is fulfilled
exactly for each particle (as a temporal average) and now only
the positional fluctuations around this individual equilibrium
play a role for calculating the configurational temperature.
This again reduces the numerator in the determination of the
configurational temperature in Eq. (3) and, consequently, the
configurational temperature itself, leading to higher particle
charges. The result of this approach using the individual trap
stiffness k j is shown in Fig. 9.

It can be seen that the resulting residual map in the
{Qd,MF, Qd,SiO2} space still features a curved region of smallest
residuals, shifted to even higher charge values. As we do not
model a global confinement now, there is no possibility to use
the deviations from it to exploit the force balance condition.
Thus, to find the right point to extract the particle charges in
the graph in Fig. 9, we use the force balance condition from
Fig. 7 again. By keeping the information that the charge ratio
is reliably determined to be around 1.14 we derive Qd,MF =
9400 e and Qd,SiO2 = 8285 e. These absolute charge values
seem much more realistic than the previous, indicating that
it is really necessary to fulfill the force balance as precisely as
possible.

In the combination of the results, we can conclude that
the discussed approach using the configurational temperature
is able to reliably determine the charge ratio as 1.14, in this
case. The absolute values of the dust charges are found in an
expected range if the force balance is fulfilled (in a temporal
average) for each particle individually. The dependence on the
screening length is not very strong.

V. SUMMARY

The configurational temperature has previously been used
for the analysis of monodisperse systems and has now been
extended to binary dusty plasmas. The configurational tem-
perature makes use of the particle positions alone. In addition,
also the force balance has to be utilized. In a first step, this
approach has been tested against simulations.
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In a second step, using experimental data, the configu-
rational temperature has been determined in a binary dust
system. From the comparison of the configurational temper-
ature with the kinetic temperature the dust charge ratio of
the two species has been derived with very high accuracy as
Qd,MF/Qd,SiO2 = 1.14 ± 0.02 in agreement with previous esti-
mations [25] and the dust size ratio indicating a direct propor-
tionality between dust charge and size as expected from OML.

Further, it has been demonstrated that for a reliable
determination of absolute charges of the two species the con-
finement potential has to be modeled as closely as possible.

Best results were obtained by fulfilling the force balance
exactly (as a temporal average) and use only the deviations
from this temporally averaged equilibrium to determine the
configurational temperatures.
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