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Reflection and absorption of electromagnetic radiation by inhomogeneous photoionized plasma,
produced by multiphoton ionization of inert gas atoms
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The interaction of electromagnetic radiation with inhomogeneous plasma formed by multiphoton ionization of
inert gas atoms has been studied. In high-frequency and normal skin effects modes the field structure in plasma
is described and reflection and absorption coefficients are found. It is shown that as the thickness of the plasma
region, in which the photoelectron density grows linearly, increases, both the depth of field penetration and the
absorption coefficient increase, too. It is found that, due to the Ramzauer-Townsend effect, there is a relative
increase in the effective frequency of photoelectron collisions with atoms, which is accompanied by a significant
increase in the absorption coefficient.
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I. INTRODUCTION

The study of the interaction between electromagnetic radi-
ation and inhomogeneous plasma has attracted the specialists
attention for a long time. A large number of works devoted
to the study of the plasma inhomogeneity effect on various
electromagnetic phenomena have been carried out only in
recent years. Let us highlight some of them. In Refs. [1,2]
the stimulated Raman scattering of inhomogeneous plasma
has been studied. The reflection features of powerful radiation
by a dense plasma layer are investigated [3,4]. Multidimen-
sional numerical calculations of laser absorption and electron
acceleration in inhomogeneous plasma have been performed
[5]. The theory of Thomson scattering of electromagnetic
radiation by an inhomogeneous plasma is developed [6]. The
effect of radial plasma inhomogeneity on collision absorption
of electromagnetic field in a silicon discharge is studied [7].
In the above papers fully ionized plasmas with relatively
high electron temperatures were investigated. This commu-
nication deals with an inhomogeneous photoionized plasma
with qualitatively different properties. A photoionized plasma
with a strong nonequilibrium electron velocity distribution
is formed when femtosecond laser pulses effect on gas. In
particular, in multiphoton ionization of atoms the energy elec-
trons distribution is characterized by the presence of narrow
peaks at energies on the order of one electron volt [8–13].
In this case, the ionization degree of the relatively dense gas
is low and the produced plasma properties are mainly deter-
mined by the collisions of photoelectrons with neutral atoms
[14–18]. The photoionized plasma is localized in the focusing
region of the laser pulse and the density of photoelectrons
decreases from the center of focus to the periphery.

We consider the interaction of a probe electromagnetic
wave with a photoionized plasma produced by multiphoton
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ionization of dense inert gas atoms. Assuming that the pho-
toelectron density increases linearly from zero to a constant
value at distances greater than L as one moves away from the
boundary, several modes of probe radiation penetration deep
into the plasma have been studied. In each mode the field
structure in the plasma is described and the absorption and
reflection coefficients are found. First, the field penetration
in high-frequency skin effect mode is studied, when the field
frequency ω is much smaller than ωL—the plasma frequency
of electrons in the constant density region but much larger
than ν—the collision frequency of photoelectrons. If the vari-
able density layer width L is smaller than δ (the depth of
the skin layer at high frequency skin effect mode), then the
absorption and reflection of the probe radiation is described
by expressions obtained by assuming a sharp change in the
electron density (see Ref. [18]). If L is greater than δ and z0—
the distance from the plasma boundary to the point where the
photoelectron density equals the critical one—is much smaller
than c/ω, then the field penetration depth and absorption
factor increase by (L/δ)1/3 � 1 times. If the distance to the
critical density point is greater than c/ω, then up to the point
z0 the field oscillates and its amplitude increases. The effective
penetration depth is comparable to the distance to the critical
density point. As a consequence of a large increase in the field
penetration depth into the plasma, the absorption coefficient
depends strongly exponentially on the electron collision fre-
quency and can reach values close to unity, which corresponds
to almost total absorption of the field in a variable density
layer. Similar behavior patterns of the field and absorption
coefficient are established in the normal skin effect regime,
when the field frequency is relatively small ν(1 − α/3) � ω,
where the α coefficient depends on the type of photoelectron
scattering cross section on the inert gas atoms. For L smaller
than δn (the skin layer depth for the normal skin effect), the
results obtained by assuming a sharp change in the photo-
electron density (see Ref. [18]) can be applied. If L � δn, but
|z0| � c/ω, then the field penetration depth and absorption
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factor increase by a factor of (L/δn)1/3 � 1. At |z0| � c/ω
the field penetrates the plasma to a distance of about |z0| and
the absorption coefficient is close to unity.

Note an important property characteristic for a photoion-
ized inert gas plasma. According to the Ramzauer-Townsend
effect, at photoelectron energies typical for multiphoton ion-
ization of atoms, their scattering cross section on neutral
atoms increases with increasing energy [19,20]. As a con-
sequence, our obtained expressions for the field, reflection,
and absorption coefficients depend on the effective collision
frequency, which is several times larger than in the absence
of the Ramzauer-Townsend effect. In the high-frequency skin
effect mode, the effective collision frequency is given by the
expression ν(1 + α/3), and in the normal skin effect mode by
the expression ν/(1 − α/3).

II. MODEL AND FORMULATION

When laser pulses of moderate intensity 1012-1014W/cm2

and with a duration of no more than 100 fs are applied to
inert gases, a weakly ionized gas with a highly nonequilib-
rium distribution of photoelectrons in the focusing region is
formed [10,14,21–23]. In the multiphoton ionization mode,
the characteristic energy of photoelectrons is several elec-
tron volts [8–13]. In the case of ionization of inert gas
atoms, the degree of ionization is relatively small (10−4-10−6)
[10,14,21,23]. At atmospheric pressure, this degree of ion-
ization corresponds to the concentration of photoelectrons
(1013-1015) cm−3 [14,21,23]. Under these conditions, the fre-
quency of electron-electron collisions is no more than 1010

s−1 and the collision frequency of photoelectrons with neutral
atoms is significantly higher ∼1012 s−1. Due to the fre-
quent collisions of photoelectrons with neutral atoms after
the laser pulse exposure, an isotropic distribution of photo-
electrons is formed during the time ∼1 ps−1, which means
that relaxation along the momentum directions occurs. The
relaxation of photoelectron distribution over energy is mainly
due to electron-electron collisions and occurs during a time
greater than ∼100 ps−1. Thus, there is an inhomogeneous
photoionized plasma with a highly nonequilibrium energy dis-
tribution of photoelectrons over a relatively wide time interval.
The photoelectron density changes at distances on the order
of the focusing area size. In the time interval mentioned
above the change in the density profile, caused by the ex-
pansion of the photoionized plasma, can be neglected, since
the size of the focusing region is usually large enough. This
approximation is justified by the fact that the spread of photo-
electrons is restrained by the charge separation field, while
the spread of ions is prevented by frequent collisions with
neutral atoms. A photoionized plasma with an electron density
1013-1015 cm−3 and a nonequilibrium energy distribution has
unusual properties. In particular, in such a plasma there is a
possibility of electron sound waves propagation with a fre-
quency greater than the plasma frequency of electrons [24,25],
and there is also a possibility of electromagnetic waves of
terahertz frequency range amplification [14]. The problem
considered below is of interest due to studies of the interaction
of terahertz and ultrahigh-frequency waves with photoionized
plasma, in which the plasma frequency of the electrons is
comparable to or greater than the frequency of the incident

radiation. Below, the theory of the probe wave interaction
with a frequency smaller than the plasma frequency with the
photoionized plasma formed during multiphoton ionization
of a inert gas is developed. An important feature of further
analysis is the consideration of an inhomogeneous distribution
of photoelectrons on the scale of the focusing region.

A. Photoelectron distribution function and permittivity
of inert gas plasma

Let us consider the interaction of a monochromatic electro-
magnetic wave with an inhomogeneous plasma produced by
multiphoton ionization of inert gases and occupying the z > 0
region of space. We assume that in the layer 0 < z < L the
photoelectron density n(z) increases linearly with increasing
coordinate from n = 0 at z = 0 to n0 at z = L, and remains
constant n = n0 at z > L. The degree of ionization of the inert
gas is considered to be small enough that permits to take
into account only the collisions of photoelectrons with neu-
tral atoms when describing the interaction of a photoionized
plasma with a probe monochromatic wave. At times longer
than the momentum relaxation time, but shorter than the pho-
toelectron energy relaxation time, the photoelectron velocity
distribution function can be approximated by the expression
f (v, z) = [n(z)/4πv2

0] δ(v − v0). Here v0 = √
2ε0/m, m is

the mass of electron, and ε0 is the photoelectron energy ob-
tained by multiphoton ionization of a inert gas atom.

In the interaction of an electromagnetic wave with such
a plasma, we consider that the frequency of the wave is
much larger than the inverse time of energy relaxation.
Moreover, we assume that the frequency of the wave sat-
isfies the inequality ω � ωL(v0/c), where c is the speed
of light, ωL =

√
4πn0e2/m, e is the electron charge. The

field strength of the acting electromagnetic wave is rep-
resented as E(z, t ) = (1/2)(E0, 0, 0) · exp[−iω(t − z/c)] +
c.c.. The electromagnetic wave produces an electric field
(1/2)(E (z), 0, 0) exp(−iωt ) + c.c. along ox axis in the
plasma and causes a small perturbation of the photoelec-
tron velocity distribution function (1/2) δ f (v, z) exp(−iωt ) +
c.c.. To determine δ f (v, z) we will use a linearized kinetic
equation with a collision integral describing the relaxation
along the directions of photoelectron velocity without chang-
ing their energy

−iωδ f (v, z) + evxE (z)

mv

∂ f (v, z)

∂v

= −ν(v)

[
δ f (v, z) −

∫
d	

4π
δ f (v, z)

]
, (1)

where d	 is the solid angle element. The collision fre-
quency of photoelectrons with inert gas atoms is represented
as ν(v) = Nσtr (v)v, where N is the concentration of neutral
atoms, and σtr (v) is the transport cross section of electrons
scattering on neutral atoms, which depends on the photoelec-
tron velocity. It is justified to use such an expression for the
collision frequency by the fact that in multiphoton ioniza-
tion the typical energy ε0 does not exceed a few eV and in
monoatomic inert gases the threshold for inelastic collisions
of electrons with atoms is noticeably higher. The dependence
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of the neutral atom concentration on the coordinate z is ne-
glected, which is possible in a weakly ionized gas.

Using the solution of Eq. (1), we find the complex ampli-
tude of the current density along the axis ox at the frequency
ω

j(z) = e
∫

dvvxδ f (v, z)

= e2

m

∫
dv

v2
x

v

∂ f (v, z)

∂v

E (z)

iω − ν(v)
. (2)

From Maxwell’s equations we have the equation for E (z) in
plasma

d2E (z)

dz2
+ ω2

c2
E (z) = −4π iω

c2
j(z). (3)

Taking the expression (2) into account, we rewrite Eq. (3) as

d2E (z)

dz2
+ ω2

c2
ε(ω, z)E (z) = 0, (4)

where the permittivity has the form

ε(ω, z) = 1 − ω2
L(z)

ω(ω + iν)

[
1 − i

α

3

ν

ω + iν

]
. (5)

Here ωL(z) =
√

4πn(z)e2/m, ν ≡ ν(v0), α = ∂ ln ν/∂ ln v0 is
a quantity determined by the average photoelectron energy
and the type of transport cross section dependence on energy.
Note that in inert gases the transport cross section in the region
of energies just below 1 eV has a minimum [19,20], and at
the point corresponding to the average photoelectrons energy
the derivative of the collision frequency is greater than zero.
Therefore, the parameter α usually has positive values.

B. Electric field in plasma and absorption coefficient

The way in which the photoelectron density depends on the
coordinate makes it possible to divide the area occupied by the
plasma into two parts. In the region 0 < z < L the electron
density depends linearly on the coordinate, and in the region
z > L the density is constant. In the area 0 < z < L, let us

represent the expression (5) as

ε(ω, z) = 1 + z

L
�ε, (6)

where

�ε = − ω2
L

ω(ω + iν)

[
1 − i

α

3

ν

ω + iν

]
(7)

is the contribution to the permittivity from photoelectrons at
z > L. Since the permittivity (6) is a linear function of the
coordinate, Eq. (4) is reduced to the Airy differential equation

d2E (ξ )

dξ 2
− ξE (ξ ) = 0, (8)

where

ξ = ξ (z) =
(

ω2

z0c2

)1/3

(z − z0), (9)

and

z0 = − L

�ε
. (10)

The general solution of Eq. (8) is

E (ξ ) = C1Ai(ξ ) + C2Bi(ξ ), (11)

where Ai(ξ ) and Bi(ξ ) are the Airy functions and C1 and
C2 are unknown coefficients. In the region z > L, where the
permittivity is constant, the solution of Eq. (4) is described by
an expression

E (z) = E (L) exp
[
i
ω

c

√
ε(ω)(z − L)

]
, (12)

with ε(ω) ≡ ε(ω, L) and Im
√

ε(ω) > 0.
The unknown coefficients C1,C2, E (L), and Er (the com-

plex amplitude of the electric field of the reflected wave at
the boundary z = 0) are found from the continuity conditions
for the tangential components of the electric and magnetic
fields at z = 0 and z = L. Taking into account the expressions
(11) and (12) and the solution of Eq. (4), corresponding to the
reflected wave in vacuum, for coefficients C1 and C2 we have

C1 = −2E0

D

[
− i

ω

c
Bi(ξL )

√
ε(ω) + ξ ′Bi ′(ξL )

]
, (13)

C2 = 2E0

D

[
− i

ω

c
Ai(ξL )

√
ε(ω) + ξ ′Ai ′(ξL )

]
, (14)

where

D =
[

Bi(ξ0) − i
c

ω
ξ ′Bi ′(ξ0)

][
− i

ω

c
Ai(ξL )

√
ε(ω) + ξ ′Ai ′(ξL )

]
−

[
Ai(ξ0) − i

c

ω
ξ ′Ai ′(ξ0)

]

×
[

− i
ω

c
Bi(ξL )

√
ε(ω) + ξ ′Bi ′(ξL )

]
, (15)

and the notations ξ ′ = dξ (z)/dz, ξ (0) = ξ0, ξ (L) = ξL are used. The sign ′ in the functions Ai ′ and Bi ′ denotes differentiation
by the argument of these functions.

Using the expressions (11), (13), and (14) and continuity of the electric field tangential component at the plasma boundary,
we find the complex reflection coefficient R = Er/E0:

R = 1

D

{[
Bi(ξ0) + i

c

ω
ξ ′Bi ′(ξ0)

][
− i

ω

c
Ai(ξL )

√
ε(ω) + ξ ′Ai ′(ξL )

]
−

[
Ai(ξ0) + i

c

ω
ξ ′Ai ′(ξ0)

]

×
[
−i

ω

c
Bi(ξL )

√
ε(ω) + ξ ′Bi ′(ξL )

]}
. (16)
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The absorption coefficient A, determining the fraction of inci-
dent wave energy transferred to the plasma, is found from the
formula

A = 1 − |R|2. (17)

The expressions for the field strength and the absorption co-
efficient contain the Airy functions and their derivatives at the
points ξ0 and ξL. Taking into account the formulas (6), (9), and
(10) we represent ξ0 and ξL as

ξ0 = −
(−ωL

c�ε

)2/3

, ξL = ξ0ε(ω). (18)

The presence of parameters (18) allows us to consider several
modes of field penetration into plasma with an inhomoge-
neous photoelectron density profile.

III. HIGH-FREQUENCY SKIN EFFECT

In a rarefied plasma the photoelectron collision frequency
with neutral atoms is comparatively low and it is easy to
realize a mode of electromagnetic field penetration into the
plasma when ω � ν, but the field frequency is noticeably less
than the electron plasma frequency ω � ωL. In this case the
contribution from photoelectrons to the permittivity (7) in the
linear approximation of ν/ω is

�ε ≈ −ω2
L

ω2

[
1 − i

(
1 + α

3

) ν

ω

]
, ω � ν. (19)

In the zeroth-order approximation by the small parameter
ν/ω, taking into account the formula (19) and the inequality
ω � ωL for ξ0 and ξL, from (18) we have

ξ0 ≈ −ω2

ω2
L

(ωL

c
L
)2/3

, ξL ≈
(ωL

c
L
)2/3

. (20)

From (20) we can see that the values −ξ0 and ξL depend
on the layer thickness of the variable photoelectron density.
Below we consider three ranges of layer thicknesses at which
different asymptotic expressions for the electric field in the
plasma (11) and (12) and the absorption coefficient (17) are
realized.

A. Thin layer

When the incident frequency ω is much smaller than the
plasma frequency ωL, then the inequality −ξ0 � ξL is ful-
filled. If the layer thickness is less than δ (the depth of the
skin layer in a constant density region), i.e., the conditions

L � δ = c

ωL
� c

ω
(21)

are fulfilled, then from (20) and (21) it can be seen that −ξ0 �
ξL � 1. Using the Airy functions expansion for small argu-
ment values [see formulas (A1) and (A2)], for the complex
amplitude of the electric field inside the layer with variable
photoelectron density from (11) and (13)–(15) we have

E (z) = 2E0
(L − z)γ + δ

(L + ic/ω)γ + δ
, (22)

where the notation γ = 1 − (i/2)(1 + α/3)ν/ω is used. In the
region of constant photoelectron density z > L from (12) and

FIG. 1. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of a thin layer with variable density.

(22) for E (z) we have the expression

E (z) = 2E0

[(
L + i

c

ω

)γ

δ
+ 1

]−1
exp

[
−γ

(z − L)

δ

]
. (23)

The numerically obtained under the conditions (21) depen-
dence of |E (z)| (the absolute value of the field strength) on
the distance to the plasma boundary z is shown in Fig. 1. The
curve in Fig. 1 is plotted using the general expressions (11),
(13), (14), and (15). Numerical calculations are performed
for α = 4.8, which corresponds to the plasma with average
photoelectron energy ε0 = 2.87 eV, obtained by three-photon
ionization of xenon atoms [14]. The remaining plasma pa-
rameters are assumed to be ω = 0.3ωL, ν = 0.01ωL, and L =
c/3ωL = δ/3. In Fig. 1 the characteristic scales that determine
the electric field behavior inside the plasma are marked: the
coordinate of the point z0 at which the plasma density equals
to the critical one; the layer thickness L and the skin layer
depth in a plasma with a constant photoelectron density δ.
From Fig. 1 and formulas (22) and (23) it follows that if the
skin layer depth is greater than the thickness of layer with
variable density, the field penetration features in plasma with
inhomogeneous density profile are close to those realized in
plasma with sharp boundary.

From (16) taking into account the Airy function expansion
for small values of the argument [see formulas (A1) and (A2)],
for the reflection coefficient we have

R = ω − iγωL

ω + iγωL
. (24)

Taking into account the interrelation between reflection co-
efficient (24) and absorption coefficient (17) and using the
expression for γ , we obtain

A(ω) = 2
ν

ωL

(
1 + α

3

)
. (25)

The same expression for the absorption coefficient was ob-
tained earlier in Ref. [18] under the assumption that the
plasma photoelectron density changes abruptly, i.e., L = 0.

045203-4



REFLECTION AND ABSORPTION OF ELECTROMAGNETIC … PHYSICAL REVIEW E 104, 045203 (2021)

B. Intermediate thickness layer

When ω � ωL, it is possible that −ξ0 � 1 � ξL. Such
an interrelation between the parameters −ξ0 and ξL is re-
alized for a variable density layer thickness satisfying the
inequalities

c

ωL
� L � ω3

L

ω3

c

ωL
. (26)

The right-hand inequality (26) means that the distance from
the plasma boundary to the point z0 is small compared to
c/ω = λ/2π , where λ is the wavelength. To calculate the

coefficients C1 (13) and C2 (14), on the boundary z = L we use
asymptotic formulas for the Airy functions at large values of
the argument [see formulas (A3) and (A4)] and at the bound-
ary z = 0 we use approximate formulas for small values of the
argument [see formulas (A1) and (A2)]. In that case, the coef-
ficient C2 is much smaller than C1 and the summand C2Bi(ξ )
in the expression (11) is a small correction to C1Ai(ξ ). The
correction value is smaller than ξ

−3/2
L � 1, for all values of ξ .

Taking this into account, the complex amplitude of the electric
field (11) inside the variable density layer 0 < z < L can be
represented as

E (z) ≈ −2iE031/3�(1/3)
(ωz0

c

)1/3
Ai

[(ωz0

c

)2/3( z

z0
− 1

)]
≈ −2iE031/3�(1/3)

δLω

c
Ai

( z − z0

δL

)
, (27)

where �(x) is the Euler gamma function and δL = (Lc2/ω2
L )1/3 is the effective skin layer depth in plasma with linearly varying

photoelectron density profile. According to the left-hand inequality (26) in the considered case the field penetrates the plasma
for a distance greater than the skin layer depth in a plasma with a sharp density profile. In the region of constant photoelectron
density z > L, the amplitude of the field strength (12) is exponentially small

E (z) ≈ −iE0
31/3�(1/3)√

π

(ωz0

c

)1/6( z0

L − z0

)1/4
exp

[
−γ

(z − L)

δ
− 2

3

ωz0

c

(γωL

ω

)3
]
. (28)

The numerically obtained under the conditions (26) depen-
dence of |E (z)| on the distance to the plasma boundary z is
shown in Fig. 2. The curve in Fig. 2 is plotted using the general
expressions (11)–(15). Numerical calculations are performed
for the following plasma parameters: α = 4.8, ω = 0.3ωL,
ν = 0.01ωL, and L = 10 c/ωL. In the same way as in Fig. 1,
the characteristic scales which determine the electric field
behavior inside the plasma are marked in Fig. 2. Figure 2 and
formulas (27) and (28) show that the electric field becomes
exponentially small at z > δL � z0, where δL � L. From the
expression (16) combined with (26) we obtain the reflection
coefficient as

R ≈ �(1/3) − i(3c/ωz0)1/3�(2/3)

�(1/3) + i(3c/ωz0)1/3�(2/3)
. (29)

FIG. 2. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of an intermediate thickness layer.

It follows that the absorption coefficient (17) has the form

A(ω) ≈ 4
�(1/3)

34/3�(2/3)

(LωL

c

)1/3 ν

ωL

(
1 + α

3

)
. (30)

A comparison of expressions (25) and (30) shows that an
increase in the variable density layer thickness leads to a
(LωL/c)1/3 times increase in the absorption coefficient. This
increase is caused by the greater depth of the skin layer in a
plasma with a smooth density profile.

C. Thick layer

When ω � ωL, as the thickness of the variable density
layer increases, conditions are possible in which not only −ξ0

but also ξL is significantly greater than unity. Such conditions
are realized if

L � ω3
L

ω3

c

ωL
, (31)

when z0 � c/ω. Calculating the electric field inside the
plasma, at z = 0 we use asymptotics of the Airy functions for
large arguments (A5) and (A6), and at z = L we use asymp-
totics of the Airy functions for large arguments (A3) and (A4).
If the inequality (31) is satisfied, then the summand C2Bi(ξ )
in the expression (11) is a small correction to C1Ai(ξ ) for all
values ξ and can be omitted. Thus, using the expressions (13)
and (15), for the electric field strength (11) inside the layer
0 < z < L we have

E (z) = 2E0
√

π
(ωz0

c

)1/6
exp

[
i

(
2

3

ωz0

c
− π

4

)]
Ai

( z − z0

δL

)
.

(32)
Since when the inequality (31) is satisfied, the distance to the
critical density point z0 is much larger than δL, it follows from
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(32) that in the considered case the field penetrates the plasma
at a depth of order z0 + δL ≈ z0 � δL. At z0 − z � δL, i.e., at
distances close to the plasma boundary, the expression (32)

describes a weakly increasing oscillation of the field whose
period increases as the critical density point is approached [see
(33)]

E (z) ≈ 2E0

( z0

z0 − z

)1/4
exp

[
i

(
2

3

ωz0

c
− π

4

)]
sin

[
2

3

( z0 − z

δL

)3/2

+ π

4

]
. (33)

Up to the critical density point, the field is formed due to the interference of the incident and reflected waves. This is particularly
clear at the plasma boundary, when z = 0 and the expression (33) takes a simpler form

E (0) ≈ E0 + E0 exp

[
i

(
4

3

ωz0

c
− π

2

)]
. (34)

It follows from (32) that in the constant density region z > L the field strength is negligibly small

E (z) = E0

(
ω

γωL

)1/2

exp

[
−γ

(z − L)

δ
+ i

(
2

3

ωz0

c
− π

4

)
− 2

3

ωz0

c

(
γ

ωL

ω

)3
]
. (35)

The numerically obtained under the conditions (31) depen-
dence of |E (z)| on the distance to the plasma boundary z is
shown in Fig. 3. The curve in Fig. 2 is plotted using the general
expressions (11)–(15). Numerical calculations are performed
for the following plasma parameters: α = 4.8, ω = 0.3ωL,
ν = 0.01ωL , and L = 800 c/ωL. Just as in Figs. 1 and 2,
Fig. 3 marks the characteristic scales defining the electric field
behavior inside the plasma. From Fig. 3 and the formulas
(32)–(35), we see that as we approach the point z0 the field
oscillation amplitude increases slightly and its frequency de-
creases. At z > z0 the field strength decreases at a distance of
order δL.

The reflection coefficient (16), when the inequality (31) is
satisfied, is

R = exp

[
i

(
4

3

ωz0

c
− π

2

)]
. (36)

Thus for the absorption coefficient (17) we have

A(ω) = 1 − exp

[
−8

3

(
1 + α

3

)νL

c

ω2

ω2
L

]
. (37)

When L ≈ cω2
L/ω3, the expression (37) is stitched with the

expression (30). If the thickness of the variable density layer
is large L � cω2

L/νω2, then the field is almost completely
absorbed in it.

FIG. 3. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of a thick layer.

IV. NORMAL SKIN EFFECT

Let us consider the case when collision frequency of elec-
trons with neutral atoms satisfies the inequality ν � ω. Then
the contribution from photoelectrons to the permittivity (7) in
the linear approximation of ω/ν is

�ε ≈ ω2
L

ν2

[
i
(

1 − α

3

) ν

ω
+ 2

α

3
− 1 + i(α − 1)

ω

ν

]
. (38)

We will focus on the case where, in addition to the inequality
ν � ω, the inequalities

ω2
L

ω

(
1 − α

3

)2
� ν

(
1 − α

3

)
� ω (39)

are satisfied. The right-hand inequality (39) means that a
photoionized plasma in which the parameter α is not only
less than 3, but also 1 − α/3 � ω/ν, is considered. The case
α > 3 is not discussed in this communication. Then, when the
inequalities (39) are satisfied, the permittivity can be repre-
sented in the form characteristic for the normal skin effect

ε(ω) ≈ �ε ≈ i
(

1 − α

3

)ω2
L

νω
. (40)

Taking (40) into account, for the values of ξ at the variable
density layer boundaries from (18) we have

ξ0 ≈ − exp
( iπ

3

)(
ω2

ω2
L

νL/c

1 − α/3

)2/3

,

ξL ≈ ξ0�ε ≈ exp
(
− iπ

6

)[
(1 − α/3)ω

ν

L2ω2
L

c2

]1/3

. (41)

It follows from (41) that, as before, several field penetration
modes are possible, depending on the thickness of the layer
with a variable photoelectron density.

A. Thin layer

When the left-hand inequality (39) is satisfied, then it fol-
lows from (40) and (41) that |ξ0| � |ξL|. If also the width of
the layer satisfies the condition

L � δn = (c/ωL )
√

2ν/(1 − α/3)ω, (42)
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FIG. 4. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of a thin layer with a variable photoelectron density.

where δn is the skin layer depth in the normal skin effect
mode, then the absolute values of the parameter ξ at the
variable density layer boundaries are small |ξ0| � |ξL| � 1.
Using the Airy functions expansion for small argument values
[see formulas (A1) and (A2)], for the complex amplitude of
the electric field inside the layer with a variable photoelectron
density from (11) and (13)–(15) we have

E (z) = 2E0
(L − z) + (1 + i)δn/2

(L + ic/ω) + (1 + i)δn/2
. (43)

From (12) and (43) we obtain E (z) in the region z > L

E (z) = E0
(1 + i)δn

(L + ic/ω) + (1 + i)δn/2
exp

[
(i − 1)

z − L

δn

]
.

(44)
For a thin layer with a variable photoelectron density, the nu-
merically obtained dependence of the absolute field strength
E (z) on the distance to the plasma boundary z is shown
in Fig. 4. The curve in Fig. 4 is plotted using the general
expressions (11)–(15). Numerical calculations are performed
for the following plasma parameters: α = 2, corresponding to
a plasma with an average photoelectron energy ε0 ≈ 4.5 eV,
produced by xenon ionization; incident field frequency ω =
0.05ωL; photoelectron collision frequency ν = 0.5ωL and
layer thickness L = c/ωL. The characteristic scales which
determine the electric field behavior inside the plasma are
marked in Fig. 4: The coordinate of the point |z0|, the layer
thickness L, and the skin layer depth in a plasma with a
constant photoelectron density δn. From Fig. 4 and formulas
(43) and (44) it follows that, as for the high-frequency skin
effect mode, when a skin layer depth greater than the vari-
able density layer thickness, the field penetration features in
plasma with an inhomogeneous density profile in the normal
skin effect mode are close to those realized in plasma with a
sharp boundary.

From (16) taking into account the Airy function expansion
for small values of the argument, for the reflection coefficient
we have

R = −
√

ε(ω) − 1√
ε(ω) + 1

, (45)

where
√

ε(ω) ≈ (1 + i)c/ωδn. Taking into account the in-
terrelation between reflection coefficient and absorption
coefficient (17), we obtain

A(ω) ≈
√

8νω

ω2
L

1√
1 − α/3

. (46)

The expression (46) was obtained earlier in Ref. [18] assum-
ing that the plasma photoelectron density changes abruptly,
i.e., L = 0.

B. Intermediate thickness layer

As the thickness of the variable density layer increases,
conditions are possible when |ξ0| � 1 and |ξL| � 1. Such
absolute values of the variable ξ at the inhomogeneous density
layer boundaries correspond to a layer thickness that satisfies
the inequalities

δn � L � ω2
L

ω2

c

ν
(1 − α/3), (47)

where the right-hand inequality provides a small distance to
the point |z0| compared to c/ω = λ/2π . To calculate the elec-
tric field inside a layer with a variable photoelectron density
on the boundary z = L we use asymptotic formulas for the
Airy functions at large values of the argument [see formulas
(A3) and (A4)] and at the boundary z = 0 we use approxi-
mate formulas for small values of the argument [see formulas
(A1) and (A2)]. When the inequalities (47) are satisfied, the
coefficient C2 (14) is much smaller than C1 (13) and the term
C2Bi(ξ ) in (11) is a negligibly small correction to C1Ai(ξ ).
Taking this into account, the complex amplitude of the electric
field (11) at 0 < z < L can be represented as

E (z) = 121/3e−iπ/3E0�(1/3)
ωδnL

c
Ai

(
21/3e−iπ/6 z − z0

δnL

)
,

(48)
where δnL = [Lc22ν/ω2

Lω(1 − α/3)]1/3 is the effective skin
layer depth in a plasma with smoothly varying photoelectron
density profile, realized when (39) and (47) are satisfied. We
note that δnL � |z0|. It follows from (48) that in the normal
skin effect mode the electric field penetrates the plasma to
distances (L/δn)1/3 times larger than in the case of a thin
inhomogeneous layer. In the region of constant photoelectron
density, when z > L, from (12) and (48) for the field strength
we have

E (z) ≈ E0
61/3�(1/3)√

2π

ωδnL

c

(
δnL

2L

)1/4

exp

{
(i − 1)

[
z − L

δn
+ 2

3

( L

δnL

)3/2]
− i

7π

24

}
. (49)
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FIG. 5. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of an intermediate thickness layer.

For an intermediate thickness layer with a variable pho-
toelectron density, the numerically obtained dependence of
the absolute field strength E (z) on the distance to the plasma
boundary z is shown in Fig. 5. The curve in Fig. 5 is plotted
using the general expressions (11)–(15). Numerical calcu-
lations are performed for the following parameters: α = 2,
incident field frequency ω = 0.05ωL, photoelectron collision
frequency ν = 0.5ωL, and layer thickness L = 50c/ωL . In
Fig. 5 the coordinate of the point |z0|, the thickness of the layer
L and the depth of the skin layer δnL are marked. Figure 5 and
formulas (48) and (49) show that, as in the high-frequency
skin effect regime, the electric field becomes exponentially
small at z > δnL � |z0|, where δnL � L.

From the expression (16) we find the reflection coefficient

R ≈ �(1/3) − eiπ/361/3�(2/3)c/ωδnL

�(1/3) + eiπ/361/3�(2/3)c/ωδnL
. (50)

It follows that the absorption coefficient has the form

A(ω) ≈ 22/3�(1/3)

31/3�(2/3)

ωδnL

c
. (51)

A comparison of the expressions (46) and (51) shows that
increasing of the variable density layer thickness leads to a
relative increase of the absorption coefficient by ≈ √

L/δnL

times.

C. Thick layer

If the variable density layer is so thick that the conditions

L � ω2
L

ω2

c

ν
(1 − α/3), (52)

or |z0| � c/ω are satisfied, then the absolute values of the
variable ξ at the inhomogeneous layer boundaries |ξ0|, |ξL| �
1. The electric field inside the plasma is found using asymp-
totic expressions for the Airy functions. When z = 0 we use
the formulas (A5) and (A6), and when z = L we use the
formulas (A3) and (A4). Ignoring the small term C2Bi(ξ ) in
the expression (11) and considering conditions (39) and (52),
for complex amplitude of electric field strength inside layer
0 < z < L we find

E (z) = 25/6E0
√

π

(
ωδnL

c

)1/2

exp

[
−1

3

(
ωδnL

c

)3

− i
π

6

]
Ai

(
21/3e−iπ/6 z − z0

δnL

)
. (53)

If the inequality (52) is satisfied, then the distance to the point |z0| � δnL, and from (53) it follows that in this case the field
penetrates the plasma to a depth of order |z0| + δnL ≈ |z0| � δnL. It follows from (53) that in the region of constant photoelectron
density z > L the field strength is negligibly small

E (z) ≈ 2−1/3E0

(
ωδnL

c

)1/2(
δnL

2L

)1/4

exp

{
(i − 1)

[
z − L

δn
+ 2

3

( L

δnL

)3/2]
− 1

3

(
ωδnL

c

)3

− i
5π

24

}
. (54)

For a thick layer with a variable photoelectron density, the nu-
merically obtained dependence of the absolute field strength
E (z) on the distance to the plasma boundary z is shown
in Fig. 6. The curve in Fig. 6 is plotted using the general
expressions (11)–(15). Numerical calculations are performed
for the following parameters: α = 2; incident field frequency
ω = 0.05ωL; photoelectron collision frequency ν = 0.5ωL

and layer thickness L = 1000c/ωL . From Fig. 6 and formulas
(53) and (54) it follows that, as in the high-frequency skin
effect regime, the electric field becomes exponentially small
at z − |z0| > δnL.

The reflection coefficient (16), when the inequality (52) is
satisfied, is

R = exp

[
−4

3

νL

c(1 − α/3)

ω2

ω2
L

− i
π

2

]
. (55)

Thus for the absorption coefficient (17) we have

A(ω) = 1 − exp

[
−8

3

νL

c(1 − α/3)

ω2

ω2
L

]
. (56)

Taking (52) into account, we see that electric field is almost
completely absorbed in the layer with a variable density of
photoelectrons.

V. CONCLUSION

Using the assumption of linear variation of photoelec-
tron density in space, the features of probing radiation
interaction with inhomogeneous photoionized plasma formed
during multiphoton ionization of inert gas atoms are stud-
ied. The conditions under which the assumption of a sharp
change in the photoelectron density can be used to describe
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FIG. 6. Dependence of the field strength absolute value E (z)
inside the plasma on the distance to the plasma boundary in the case
of a thick layer.

the interaction of short pulses with a nonequilibrium pho-
toionized plasma are revealed. It is shown to what changes
in the absorption and reflection of the probing radiation the
blurring of a photoionized plasma boundary leads to. The
obtained results form the basis for further study of possi-
ble modes of short electromagnetic pulses interaction with
photoionized plasma of inert gases, including such modes
when it is necessary to take into account the development of
instabilities.

ACKNOWLEDGMENTS

The reported study was funded by Russian Foundation for
Basic Research (RFBR) Project No. 20-32-90158.

APPENDIX

According to formulas 10.4.2 and 10.4.3 from Ref. [26],
which give the expansion of the Airy functions for

small values of the argument, we have approximate
expressions:

Ai(ξ ) = 1

32/3�(2/3)
− ξ

31/3�(1/3)
, (A1)

Bi(ξ ) = 1

31/6�(2/3)
+ 31/6ξ

�(1/3)
, (A2)

where �(x) is a Gamma function. For large values of the argu-
ment, using the known asymptotic expressions (see formulas
10.4.59, 10.4.63, 10.4.60, and 10.4.64 from Ref. [26]) we have
for the Airy functions

Ai(ξ ) = 1

2
√

πξ 1/4
exp

[
−2

3
ξ 3/2

]

×
(

1 − 5

48

1

ξ 3/2

)
, |arg ξ | < π, (A3)

Bi(ξ ) = 1√
πξ 1/4

exp

[
2

3
ξ 3/2

]

×
(

1 + 5

48

1

ξ 3/2

)
, |arg ξ | < π/3. (A4)

Ai(−ξ ) = 1√
πξ 1/4

sin

(
2

3
ξ 3/2 + π

4

)
, |arg ξ | < 2π/3.

(A5)

Bi(−ξ ) = 1√
πξ 1/4

cos

(
2

3
ξ 3/2 + π

4

)
, |arg ξ | < 2π/3.

(A6)
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