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Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The
deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated
field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in
these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures
in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction
algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma
interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary
foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is
also presented and proposed for use in tandem with these analytical advancements.
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I. INTRODUCTION

The proton radiography diagnostic allows probing of tran-
sient and quasistatic magnetic field structures in plasmas [1,2].
It has been used to image magnetic fields in laboratory analogs
of astrophysical collisionless shocks [3–5], the Weibel insta-
bility in interpenetrating plasma flows [6], stochastic magnetic
fields amplified by the turbulent dynamo mechanism [7], and
fields involved in laser-driven magnetic reconnection [8,9].
In the higher-density physics regime, proton radiography has
been used to probe plasma fields in imploding inertial fu-
sion capsules in both direct-drive [10–12] and indirect-drive
laser-hohlraum [13–15] configurations and in studies of laser
channelling physics relevant to fast ignition [16]. Proton-
radiographic magnetic field measurements have also been
used to validate a Faraday rotation-based magnetic field di-
agnostic at OMEGA [17].

A laser-generated proton beam [18] is directed through
a plasma and is deflected as it propagates by local electro-
magnetic field structures. After exiting the plasma, the beam
propagates over a distance before impinging on a detector
screen. CR-39 and radiochromic film are commonly used as
proton detectors and each has its own advantages and disad-
vantages [19].

While the resulting images are difficult to relate directly
to the fields in the plama [20], theoretical work from [21]
and [22] present algorithms which are able to recover trans-
verse magnetic field components, path-integrated along the
directions of proton probing. More recently, [23] developed
a statistical approach to compensate for lack of information
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regarding the transverse profile of the proton beam prior to in-
teraction with the plasma. [24] investigated the application of
machine learning methods to the problem of proton radiogra-
phy inversion, noting the degeneracy involved in interpreting
path-integrated measurements, and suggested taking proton
radiographs from multiple view angles as a method for resolv-
ing field structures spatially. While some experiments—for
example those of [25] and more recently [9]—have probed
similar interactions along different axes, the first full ex-
ploration of the possibility of recovering spatially resolved
magnetic field structures from proton radiographs using stan-
dard tomography techniques is presented here.

Volegov et al. have pioneered the use of tomographic
techniques in three-dimensional reconstruction of plasma
parameters at the National Ingition Facility [26–29]. They
employ a number of approaches using different probing ge-
ometries with orthogonal basis function representations (such
as spherical and cylindrical harmonic decompositions) of
the function under observation. We refine this approach and
investigate its application to data extracted from proton radio-
graphy observations of electromagnetic fields.

In Sec. II a brief summary of proton radiography is pre-
sented, along with a description of a current state-of-the-art
pipeline for analysis. The reader is then introduced to the
subject of tomography in Sec. III, along with the filtered
back-projection algorithm (FBP), which is one of the most
important and widely used in tomography applications. In
Sec. IV an approach to tomography using Fourier decomposi-
tion in the angular variable is presented. When implemented
in this way the new approach is realized by an interpolation
in observation angle. Section V presents another new method,
which improves reconstruction quality of functions with much
larger extent in one dimension than the others by making them
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FIG. 1. Schematic of the mechanism by which proton radiogra-
phy images are formed. Protons velocities are deviated downwards,
most strongly in the center of the plasma and more weakly toward
the edges. This causes protons which have traversed the lower half
of the plasma to be “focused” and those which have traversed the
upper half to be “defocused.” The defocusing region appears larger
at the image plane than the focusing region due to the divergence of
velocities in that region.

appear “squashed” into a more uniform aspect ratio before a
reconstruction algorithm is used. In Sec. VI it is shown how
these modifications improve the quality of reconstruction for
a function representing the magnetic field of a plasma chan-
nel, and the experimental realization of the proposed scheme
is discussed. Section VII summarizes the results, illustrates
areas for further research, and concludes the article.

II. PROTON RADIOGRAPHY

Proton radiography, in the limit of paraxiality and small
in-plasma deflections, can be understood as a measurement
of the electromagnetic fields present in plasma along a set
of parallel, straight lines. Considering for example a probe
direction aligned with the z direction, the diagnostic measures
a combination of transverse electric and magnetic field com-
ponents in the x and y directions [20]. These are encoded in
the deflection of particles from otherwise straight-line paths
by the transverse components of the Lorentz force, i.e., �vx ∝∫

Ex − v0Byz for protons with initial velocity v0 and similarly
for �vy.

Deflections of particles are not directly detected; rather,
the proton fluence is recorded on a detector such as CR-39
or radiochromic film [19]. This quantity is increased in re-
gions of the image plane where proton velocities converge
and decreased in regions where they diverge, relative to the
flat-field fluence which would be measured in the absence of
deflections.

Recovering the deflections imparted by the plasma is com-
plicated by the fact that as well as increasing the proton
fluence, the convergence of proton trajectories causes a re-
duction in the apparent size of such regions. Correspondingly,
regions of diverging trajectories appear larger as well as being
decreased in fluence. A schematic of this process is presented
in Fig. 1. Algorithms which account for this effect can ef-
fectively recover the proton deflections necessary to produce
an observed fluence distribution from a given source fluence

distribution, though importantly for them to work the trajec-
tories of protons must not cross before reaching the detector,
forming caustics [22]. Statistical techniques further enable use
of these algorithms in the absence of known initial fluence
distribution [23].

It should be stressed that these algorithms formally recover
the deflections of protons at the image plane and are agnos-
tic toward the physics causing these deflections. Therefore a
model is employed to calculate the values of electromagnetic
fields which produced the recovered deflections. In particular
the partition of electric vs. magnetic fields is an important un-
known quantity, and several techniques have been suggested
to separate these.

A simple model is the approximation that fast processes
in plasma (such as laser channelling) can generate persistent
magnetic field structures while the associated electric fields
decay on much shorter timescales as the plasma restores
quasineutrality [16,30]. Therefore the observed proton deflec-
tions are dominated by the magnetic contribution when the
probing is at sufficiently late times. A more sophisticated
approach which exploits the different energy dependence of
deflections caused by electric or magnetic fields was proposed
by [31] and can be used to disambiguate the two contributions
where the proton source has at least two well-defined energies.
This is especially applicable in the case of implosion capsule
proton sources such as those described by [32], due to their
two-peaked energy spectrum.

The discussion of this section suggests the following
pipeline for analysis of proton radiography images: First,
detector calibrations should be used to determine the proton
fluence present on the detector from a scanned image. Then
these fluences are fed into a Monge-Ampère solver such as
PROBLEM [33] which determines the proton deflections im-
parted by the plasma, employing methods such as that of [23]
to account for source profiles if necessary. These deflections
are then decomposed into electric and magnetic field compo-
nents, transverse to the probe direction.

Even in ideal scenarios, this reconstruction pipeline will
only produce information about line-integrated fields. Sym-
metry assumptions may be used to make conclusions about
the three-dimensional distribution of fields (for example, us-
ing Abel transform inversion if the plasma is known to have
an axis of symmetry), and [24] proposed that the additional
information available when taking proton radiographs from
multiple different probe directions could enable full recon-
struction of three-dimensional fields. This poses a vector
tomography problem, in the most general case for each of
the electric and magnetic fields. The next section focuses
on reconstruction of magnetic field components, as these
are more commonly studied using proton radiography, but
the same arguments can also be applied to reconstruction of
electric fields.

III. TOMOGRAPHY

A. Basic theory of tomography

In this work the proton source-plasma distance assumed
to be sufficiently large compared to the transverse extent of
the plasma that proton trajectories entering the plasma are
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FIG. 2. (a): The Shepp-Logan phantom f (x, y) and its sinogram F (φ, s) (d). [(b) and c)] Projections of f along the y and x axes,
respectively, corresponding to F ( π

2 , s) and F (0, s). Note that F is 2π -periodic and has the parity property F (φ + π, s) = F (φ,−s).

effectively paraxial, as this allows us to consider parallel-
probe tomography (i.e., tomography in which each observa-
tion is made using a collimated beam).

A three-dimensional scalar function f (x, y, z) is defined
in Cartesian coordinates. A tomographic projection of this
function is parametrized by the probe angle θ . For a given
θ we define a new Cartesian coordinate system (“projection
coordinates”) (q, s, t ) related to the “lab coordinates” (x, y, z)
by rotation about the z axis:⎡

⎣q
s
t

⎤
⎦ =

⎡
⎣x cos θ + y sin θ

y cos θ − x sin θ

z

⎤
⎦, (1)

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣q cos θ − s sin θ

s cos θ + q sin θ

t

⎤
⎦. (2)

Taking projections along the local q direction produces for
each θ a function of s and t :

Fθ (s, t ) =
∫ ∞

−∞
f (x(q, s), y(q, s), t )q

= Rθ [ f (x, y, z)](s, t )

= Rθ [ f (x, y, t )](s). (3)

This equation defines the Radon transform Rθ , the integral
transform that is the theoretical basis of tomographic analysis.
It is important to note that, due to our assumption of parallel
probing, this is effectively a “stack” of two-dimensional to-
mographs, one for each value in t . The values of Fθ (s, t ) at
fixed t are only influenced by the two-dimensional slice of
the original function for which z = t : f (x, y, t ), for all s and
θ . This allows for application of two-dimensional inversion
algorithms to the three-dimensional tomography problem.

The function Fθ (s) (whose dependence on t has been
dropped following the previous argument) is often visualized
as a “sinogram”: The parameter θ is promoted to a variable
and the resulting two-variable function F (s, θ ) is plotted as
an image. An example of a sinogram is shown in Fig. 2. This
sinogram was computed from the Shepp-Logan phantom, a
function often used to test tomographic techniques [34]. A
modified version of the Shepp-Logan phantom with both posi-

tive and negative values is employed in the following sections,
as this better represents the nature of magnetic field structures.

It is in general possible to perform tomographic mea-
surements without the restriction of all probe directions to
a common plane (equivalently, without a single well-defined
“axis of rotation”) [28]. In that case, however, the choice of re-
construction methods is more limited. As discussed in the next
section, sampling without a well-defined axis of rotation is not
useful for magnetic field tomography, so methods involving
this more general sampling strategy will not be discussed
further.

B. Tomography of vector functions

In this section, consider a vector function g(x, y, z), repre-
senting in this particular case the electric or magnetic field
probed by proton radiography. Tomographic projections of
this function are taken using the (q, s, t ), rather than the
(x, y, z), components—i.e., the components measured rotate
with the angle of probing rather than being fixed in the back-
ground coordinate system.

Proton radiography measures electromagnetic field compo-
nents transverse to the probe direction, so may be understood
as a transverse vector tomography measurement. By this
scheme the s and t components of a vector field are measured.
These are given by

F s
θ (s, t ) =

∫ ∞

−∞
ŝ · g(x(q, s), y(q, s), t )q

=
∫ ∞

−∞
[gx(x(q, s), y(q, s), t ) cos θ

+ gy(x(q, s), y(q, s), t ) sin θ ]q, (4)

Ft
θ (s, t ) =

∫ ∞

−∞
t̂ · g(x(q, s), y(q, s), t )q

=
∫ ∞

−∞
gz(x(q, s), y(q, s), t )q. (5)

Tomographic reconstruction using the s component is only
able to recover the irrotational part of the field in the x-y plane
(i.e., that part of the field whose curl has zero z component).
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FIG. 3. Example of the failure mode of FBP; 1, 2, 4, 8, 16, and 32 projections are used to produce these images. Linear streaking dominates
the reconstruction for N � 4 in (a), (b), and (c). Even for N > 8, while the original function is discernible, the exterior of the image continues to
show a chequerboard-like pattern. Reconstruction quality, calculated using the structural similarity index metric (SSIM) increases from 5.64%
for N = 1 view reconstruction in (a) to 35.0% for N = 32 in (f).

This can be understood by following similar reasoning to
that of [35] for longitudinal vector tomography. This limi-
tation is problematic when considering magnetic fields—the
part of the field sourced by currents parallel to the axis of
rotation t (or equivalently z in laboratory coordinates) is un-
detectable, which can be seen from the relevant component of
Ampère’s Law:

μ0Jz = ∂By

∂x
− ∂Bx

∂y
= 0. (6)

In contrast, because the unit vector t̂ = ẑ parallel to the axis
of rotation is invariant under the rotation which defines the
probe geometry, the corresponding component gt = gz trans-
forms as a scalar under the rotation and is therefore accessible
in full to scalar tomography techniques: Note that the forms
of Eqs. (3) and (5) are identical. This justifies only consider-
ing methods which involve probe directions constrained to a
common plane (as these are the only probe directions which
measure field components parallel to the normal vector to
that plane), as opposed to those considered by [27] which are
beneficial in cases of fixed, nonplanar probe geometry.

The following analysis will therefore focus on this out-
of-plane component of the magnetic field—by probing in
directions orthogonal to a chosen “rotation” axis, the com-
ponent parallel to that axis is recoverable. Probing relative
to three orthogonal “rotation” axes is therefore sufficient to
recover all components of the full three-dimensional vector
field. This protocol reduces the problem of three-dimensional
transverse vector tomography to a series of two-dimensional
scalar tomography problems, allowing the use of well-
developed algorithms and numerical techniques from this
field, such as the filtered back-projection algorithm.

C. Filtered back-projection

A canonical algorithm for the recovery of tomographic
data sets is the filtered back-projection (FBP) method [36].
In short, this method filters each projection with a kernel
proportional to |k| in Fourier space, then “smears” the filtered
projections across their probe directions, summing the result-
ing “back-projected” functions to recover an approximation of
the original function. Formally,

f (x, y) ≈ �θ

2π

N−1∑
n=0

Gθn (s(x, y, θn)), (7)

F1[Gθ (s)] = |k|F1[Fθ (s)], (8)

where s(x, y, θ ) = y cos θ − x sin θ as per Eq. (1), and F1

represents the one-dimensional Fourier transform.
FBP converges to an analytically correct result in the limit

of many projections (and can be derived as a discretization
of the Fourier projection-slice theorem discussed in Sec. IV),
but where samples are few and sparse in the angular dimen-
sion it suffers from severe “streaking” artifacts. This behavior
is demonstrated in Fig. 3. The quality of reconstructions is
quantified using the strucural similarity index metric (SSIM),
a popular measure of image similarity, between the input and
reconstructed functions [37].

As discussed in the previous section, filtered back-
projection is applicable to reconstruction of magnetic fields
when applied to the field component parallel to the axis of
rotation. The data input to a tomographic reconstruction of a
magnetic field measured by proton radiography is shown in
Fig. 4. This work employs TomoPy [38] as a back-end for
computation of projections and of filtered back-projections.
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FIG. 4. The different forms of data involved in applying tomographic techniques to proton radiographic data. (a) A three-dimensional
rendering of a Gaussian “cocoon” of magnetic field longer in its longitudinal direction than it is transverse. Arrows represent the probe
directions shown subsequently. (b) Simulated proton radiographs taken at π/6 and −2π/6 from the longitudinal axis. (c) Corresponding
line-integrated transverse magnetic field components for each direction. (d) The magnetic field component in each case which is parallel to
the “common direction” z. This component is the quantity input to a tomography algorithm such as fitered back-projection, analogous to x-ray
attenuation data in x-ray computed tomography.

IV. FOURIER MODE INTERPOLATION

The Fourier projection-slice theorem states that the one-
dimensional Fourier transform F̃θ (ks) of the projection Fθ (s)
is equal to the two-dimensional Fourier transform f̃ (kx, ky) of
the original function f (x, y), evaluated on a one-dimensional
slice through the origin of frequency space normal to the
probe direction:

F̃θ (k) = f̃ (−k sin θ, k cos θ ). (9)

Promoting the parameter θ to a variable, it is clear that
F̃ (k, θ ) is in fact nothing more than a representation of f̃
in plane-polar coordinates, albeit with θ differing from the
conventional polar angle variable by a quarter-cycle,

F̃ (k, θ − π/2) = f̃ (k cos θ, k sin θ ). (10)

All that is in principle required for reconstruction of
tomographic data is therefore a two-dimensional inverse
Fourier transform of the one-dimensional Fourier transforms
of projected data. This procedure is analytically exact, but
complications arise due to the discrete sampling of real data.
How should the inverse Fourier transform of data sampled
discretely on a polar grid be computed?

A natural decomposition for data sampled in cylindrical
coodinates is the cylindrical harmonics, i.e., a Fourier series
in the angular variable θ . This basis set is used by [29] to
improve tomographic reconstructions. We propose that data
should be collected using probe directions with constant an-
gular separation, θn = nπ/N for 0 � n < N , to allow this
Fourier series to be computed using the fast Fourier transform
instead of the relatively costly least-squares fitting to Fourier
modes involved in the aforementioned publication.

It is easily verified that the the mth angular mode of the
real-space function corresponds to the mth angular mode of
its Fourier transform and is independent of all other modes,
that is:

F2[ fm(r)e−imθ ] = f̃m(k)e−imφ. (11)

Following the work of [39], the relation between each of
these angular modes and their Fourier transform is given by
the Hankel transform of integer order matching that of the
angular mode (the zero-order form of this result is equivalent
to the inverse Abel transform). This relationship is as follows:

fm(r) = im

2π
Hm[F̃m(k)]. (12)

Higgins and Munson [40] present a direct algorithm for
evaluation of the integer-order Hankel transforms involved,
but this work takes a different approach—their algorithm
is equivalent to the expression for filtered back-projection
[Eq. (7)] in the limit where the discrete sum in FBP becomes
an integral over angle (high sampling rate) and the angular de-
pendence of the integrand or summand is given by exp(−imφ)
(an angular Fourier mode).

Therefore, the method of Higgins and Munson may be
approximated for any angular mode by passing a filtered back-
projection algorithm a set of “virtual projections” with the
desired angular dependence, sampled with arbitrary angular
density. The result of applying FBP to the virtual projections
of each mode is a reconstruction of the corresponding Fourier
series component of the original, real-space function fm, in-
cluding the exp(−imθ ) angular dependence.

By linearity of the operations involved, resolving the
Fourier series commutes with the FBP operation R̃−1:

f (x, y) ≈
M∑

m=−M

R̃−1[Fm(k)e−imφ]. (13)

= R̃−1

[
M∑

m=−M

Fm(k)e−imφ

]

= R̃−1[F̂ (k, φ)]. (14)

This equation provides a useful interpretation of F̂ : It is
a version of F “enhanced” by interpolation in φ using its
Fourier series. This Fourier series agrees with the original
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samples F at the sampled angles and is “optimal” in the
sense that it is C∞-smooth and explicitly possesses the same
2π -periodicity that the true function must exhibit.

This procedure can therefore be interpreted simply as an
interpolation of the observed projections which enhances the
observed data set by filling in between observations without
changing the angular Fourier series of the data, and will there-
fore be termed Fourier interpolation.

The procedure proposed here has some advantages over the
one used by [29], especially when data are sampled uniformly
in angle as suggested above.

First, where data are sampled uniformly the interpolation
can be carried out using an FFT, padding in Fourier space,
and an inverse FFT; when nonuniform sampling is necessary
it can be performed using standard trigonometric interpolation
formulas [41]. Either of these options should outperform the
solution of a linear system required by [29], though for small
numbers of projections the difference in computation time is
not expected to be significant.

The complexity of implementing the method is also re-
duced, as existing implementations of filtered back-projection
can be used to compute the Hankel transforms rather than
computing them individually for each different angular mode.

Finally, the interpretation of the resulting algorithm as
the application of a standard tomographic reconstruction al-
gorithm to data enhanced using Fourier-series interpolation
implies that algorithms other than FBP could be used to im-
plement that stage of the process. This provides a natural route
to incorporation as a “preprocessing” step in, for example,
iterative, algebraic reconstruction techniques which are able to
use a priori knowledge about the function under observation
to improve the quality of reconstruction [36].

Demonstration of Fourier-interpolated tomographic
reconstruction

Figure 3 was recreated using the Fourier interpolation tech-
nique to pre-enhance the set of all projections. The result is
shown in Fig. 5. It can be seen that in all cases the properties
of the interpolated reconstruction are improved versus the
noninterpolated. For example, while the naïve application of
filtered back-projection in Fig. 3 results in functions featuring
streaks that reach the edges of the image (and would continue
arbitrarily far if the reconstruction was carried out on a larger
domain), the reconstruction of Fourier-interpolated images
is compactly supported on the smallest disk that completely
contains the support of the original function. Effectively, the
linear streaks seen in the FBP reconstructions correspond
to circular streaks of constant radius in the reconstructed
image, and these circular streaks will—for many functions—
represent less of a deviation from the original function than
the linear streaks characteristic of FBP in the sparse sam-
pling regime. This correspondence reflects the relationship
between standard FBP and the polar-coordinates approach
taken in the derivation of this method: Artifacts in FBP arise
from “smearing” the observations along the direction of ob-
servation; artifacts in Fourier-interpolated FBP represent a
“smearing” in the polar angle.

Further, the most noticeable artifacts in, for example, the
reconstruction of Fig. 5(c) appear in the region where the

FIG. 5. Demonstration of the improvement attainable by using
Fourier interpolation techniques. Images were produced identically
to Fig. 3, except that the set of projections was enhanced by in-
terpolation to an angular frequency of 1024 view angles prior to
reconstruction. Noise and streaking are significantly reduced, though
performance is still quite poor for very small numbers of projections.
Linear streaking has been replaced by circular streaking, reflect-
ing this method’s polar-coordinates formulation as opposed to the
Cartesian formulation of standard FBP. SSIM reconstruction quality
increases from 74.6% (N = 1) in (a) to 85.9% (N = 32) in (f).

elliptical support of the original function does not fill the
circular support of the reconstruction. This indicates that
the reconstruction may be improved further by employing
a virtual transformation to the computational domain of the
algorithm to ensure the best possible overlap between the orig-
inal function’s region of support and the disk containing that
region. In the next section, this conjecture is investigated and
a method is derived to achieve the necessary transformation.

V. ASPECT RATIO COMPENSATION: ELLIPTICAL
TOMOGRAPHY

Many realistic functions are not best described as being
supported on a disk but have some aspect ratio not equal to
unity. These functions, represented by their projections as a
sinogram, have a width that oscillates with angle, an effect
seen for example in the right panel of Fig. 2. Altering the pro-
cedure used such that the object appears to have aspect ratio
closer to unity may be expected to improve the reconstruction
quality. This may be achieved by applying a uniaxial scaling
between the physical and computational domains of the prob-
lem. There are three things which must be considered when
implementing such a scaling: First, the angular separation of
observations in physical space becomes nonuniform in order
to maintain uniform angular sampling in computational space;
second, an individual scaling of the s axis must be applied
to projections, accounting for the stretching or shrinking of
the axis perpendicular to the projection; and, third, this must
be compensated for using an inverse scaling of the func-
tion values to maintain equality of all projections’ integrals
along s.

As an example, the modified Shepp-Logan phantom used
in Figs. 3 and 5 is defined on the two-dimensional do-
main [−1, 1] × [−1, 1] and composed of several ellipses with
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FIG. 6. Schematic depiction of the aspect ratio compensation method for an elliptical target function of aspect ratio 2:1. (a) Uniform
sampling of the elliptical target function by four probes. (b) Sampling at angles given by Equation 16 for a compensation ratio of 2:1, showing
nonuniform sampling in the physical domain. (c) Transformation into the computational domain of panel (b), showing that in the computational
domain sampling is uniform in angle and the target has been transformed into a circle.

differing parameters. The support of this function is defined
by the largest ellipse, which entirely contains all other el-
lipses and has minor and major semiaxis lengths in the ratio
A = 3 : 4. We now detail the procedure for tomography of
this phantom using aspect ratio compensation between the
physical domain with coordinates (X,Y ; R,�) and the com-
putational domain with coordinates (x, y; r, θ ).

The relation between Cartesian coordinates is such as to
equalize the aspect ratio of the function under observation.
Keeping x = X , this implies y = Y/A. Angles of projection
are uniformly spaced in the computational domain:

θk = kπ

N
(0 � k < N ). (15)

Using the relationship between Cartesian coordinates, it is
easy to derive the corresponding relationship for the angular
variables � and θ :

tan � = Y

X
= Ay

x
= A tan θ. (16)

This has the effect of reducing angular spacing when the
probe direction is close to the major axis and increasing angu-
lar spacing when close to the minor axis and is demonstrated
in Fig. 6.

The transverse extent of the physical-space object varies
with viewing angle, and this must also be compensated for.
The physical transverse width of the ellipse is

w(�) =
√

w2
max cos2 � + w2

min sin2 �

= wmax cos �
√

1 + A−2 tan2 �

= wmax cos �
√

1 + tan2 θ

= wmax
cos �

cos θ
. (17)

The s axis of each projection is rescaled by a factor
w(�)/wmin = A cos �/ cos θ to account for the transverse
stretching caused by aspect ratio correction, and the magni-
tudes of each projection’s values are scaled by the inverse
value [Equation (17) is used preferentially as the limit � =
θ = π/2 is not problematic in this form]. This has the effect
of eliminating the oscillation of the sinogram’s width as a
function of �. The techniques detailed above in Sec. III may
then be applied to this modified sinogram and the end result

of the reconstruction is stretched to reintroduce the physically
correct aspect ratio. The result of this procedure is shown
in Fig. 7.

VI. APPLICATIONS

We now turn our attention to the important example of
imaging laser-plasma interactions with very large aspect ra-
tios, such as channelling processes [16], jets in laboratory
plasma astrophysics experiments [42], and z-pinches [43].
To demonstrate its utility for the first of these applications,
magnetic fields have been extracted from a particle-in-cell
simulation of a high-intensity laser pulse propagating into a
plasma with a preformed density gradient. The laser pulse
carried 500 J in 500 fs at a wavelength of 1 μm and was fo-
cused to a vacuum focal spot diameter of 10 μm. It propagated
into a plasma of density gradient 500 μm up to approximately
critical density, where its energy was absorbed by the plasma.
A representation of the resulting magnetic fields is shown in
Fig. 8; by this point in the simulation residual electric fields
had decayed to be insignificant in comparison to the magnetic
fields, which are of the order of 1 kT in magnitude.

The results of reconstructing this field structure with and
without both Fourier interpolation and 10:1 aspect ratio com-
pensation are shown in Fig. 8. The performance of each
enhancement technique presented here, separately and in
combination, is plotted as a function of the number of probe
views available, and an example reconstruction is displayed
for eleven views. It is notable that achieving a SSIM recon-
struction quality of 90% requires nearly sixty probes when
FBP is used without our enhancement techniques, but when
both are combined only five probes are needed to attain this
level of quality. The highly elongated nature of the field
displayed in Fig. 8 causes severe problems in the absence
of aspect ratio compensation, though Fourier-series interpo-
lation improves the appearance of the final result. Even with
aspect-ratio compensation applied, without Fourier interpo-
lation the result still suffers from streaking artifacts which
can obscure the true field. At all sampling rates tested, ap-
plying both techniques together performs significantly better
than either individually, demonstrating that the noise- and
artifact-reduction properties of Fourier-series interpolation
complement the more efficient sampling facilitated by aspect
ratio compensation.
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FIG. 7. The effect of aspect ratio compensation on reconstruction quality. All reconstructions were carried out using 15 projections, and
expected aspect ratios of (a) 4:3 (SSIM: 47.5%), (b) 1:1 (SSIM: 69.0%), (c) 3:4 (SSIM: 87.2%), (d) 9:16 (SSIM: 39.5%), and (e) 27:64 (SSIM:
35.3%) chosen as they are integer powers of the correct 3:4 ratio. (b) No compensation; (c) the correct level of compensation and resultantly
the highest quality of reconstruction; (a) the correct ratio but in the wrong direction, worsening the quality of the reconstruction; [(d) and
(e)] “squeeze” the function due to excessive compensation. It is clear that compensation for aspect ratio can improve reconstruction quality if
applied appropriately.

Experimental implementation

The above discussion has shown that a relatively small
number of probe directions—on the order of 10—is suf-
ficient to produce good-quality reconstructions of even
very elongated magnetic field structures. We now ad-

dress the issue of experimentally implementing the meth-
ods of proton tomography derived above in experiments,
in particular how to increase the limited number of
proton radiography probe directions which can be run
simultaneously.

FIG. 8. Above: Z-component of magnetic field extracted from a particle-in-cell simulation of a laser-plasma channelling interaction,
approximately kT in magnitude. The field is shown in two dimensions, averaged over the z axis of the simulation to improve legibility.
All of the methods presented here are however applicable to three-dimensional data sets as well as two-dimensional ones. Below left:
Reconstructions produced using a sampling rate N = 11 views. (a) presents the results of applying naïve filtered back-projection, (b) includes
aspect ratio-compensation, (c) includes Fourier-series interpolation and (d) includes both. Aspect ratio compensation uses a ratio of 10:1.
Below right: Quantitative image reconstruction quality [37], plotted as 1 − SSIM such that smaller values are better, with 0 representing perfect
reconstruction. While each technique struggles with this field when used individually, the composition of both techniques produces results of
good quality even for very sparse sampling, equivalent to FBP using numbers of views orders of magnitude larger: Ninety percent SSIM is
achieved for five view angles when both enhancements are applied; without them this quality level requires 58. All reconstructions are plotted
using the same color scaling as the original field.
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FIG. 9. Simplified schematic of the proposed scheme, used to
probe a single target with four proton beams. The use of multiple
short pulses would enable more proton beams to be driven simulta-
neously, but for simplicity this schematic only shows one short pulse
driving a bundle of four beam foils.

When proton beams are driven by the target normal sheath
acceleration (TNSA) mechanism [44] one high-energy short
pulse is required per beam, and the number of short pulses
available at existing facilities is very limited, with many (for
example, the United Kingdom’s Orion and Vulcan [45] and
OMEGA EP [46] in the United States) providing two short
pulses. The National Ignition Facility’s Advanced Radio-
graphic Capability system has been demonstrated with four
independent beamlets [47,48] and is designed to eventually
provide eight [49,50]. Thus, even numbers of projections
considered “very sparse” by the wider computed tomography
community (75 in Ref. [51]) are far larger than the number of
beams producible via TNSA on a single shot.

Experiments at long-pulse facilities have used an
exploding-pusher implosion capsule system to produce proton
beams [32]. As these capsules are driven by long pulses this
provides hope for scaling to larger numbers of capsules at
facilities with many long pulses, such as the NIF, OMEGA,
and Laser Mégajoule. However, the isotropic nature of the
proton production by these sources implies a poor efficiency
of conversion from laser energy into the section of the beam
which probes the target, and may also present shielding and
crosstalk issues if several capsules are imploded simultane-
ously.

We present a third option which resembles the target
configuration used to produce TNSA protons. The proposed
scheme consists of several metal (in the simulations presented,
gold) foils connected to conductive wires. The foils are lo-
cated at arbitrary points in space according to the desired
probe geometry, and the conductive wires connected to their
rear faces are bundled together. A schematic representation of
this geometry is shown in Fig. 9. When a laser pulse is incident
on the bundled ends of the wires, electrons are expelled and
a space-charge imbalance is set up in and around the wire
ends. This outflow of electrons is balanced by large return
currents along the wires’ surfaces. These currents ultimately
lead to positive charging of the secondary foils, expelling the

relatively light hydrogen ions while the gold ions respond
more slowly.

This experimental configuration has been tested in particle-
in-cell simulations using the code Smilei [52]. The test
version of the geometry shown in Fig. 10 includes only two
beam-producing foils and much shorter wires than would be
used in an experiment in order to reduce the computational
cost of the simulations to an acceptable level. The spec-
trum of ions produced by this new acceleration geometry
is compared to a more conventional TNSA geometry (for
comparable laser and target parameters) in Fig. 10, show-
ing that these ions are also suitable for imaging plasma
electromagnetic fields.

VII. SUMMARY AND CONCLUSIONS

Proton radiography has found many applications for prob-
ing magnetic field structures in plasma. However, its extension
to three dimensional reconstruction remains a significant
challenge. To this end, two preprocessing techniques for
improving the performance of a standard tomographic re-
construction algorithm—filtered back-projection—have been
explored in this article.

First, Fourier decomposition of observations in the an-
gular parameter was proposed as a method for inver-
sion of the Radon transform, derived from manipulation
of the Fourier projection-slice theorem. By approximating
the calculation of the general integer-order Hankel trans-
form using back-projection, a single filtered back-projection
of interpolated data is able to replace the calculation
of a different integer-order Hankel transform per angular
mode, greatly reducing the computational complexity of
the method.

Second, based on the properties of Fourier-interpolated
reconstructions, this method of tomography has been shown
to achieve better accuracy for small numbers of observations
when the aspect ratio of the function being observed is close
to unity. To benefit from this observation, relations linking
physical space and a computational space which differ by
a nonuniform scaling have been derived, and these relations
allow aspect ratios far from unity to be compensated for.
The effectiveness of this compensation technique has been
demonstrated using a modified Shepp-Logan phantom, which
is supported on an ellipse of aspect ratio 3:4.

The effectiveness of these new proposed preprocessing
enhancement steps, both individually and in combination has
been compared to unmodified filtered back-projection. It has
been shown that in the case of the magnetic field of a simu-
lated laser channel in dense plasma, each new preprocessing
method improves the quality of reconstruction, and that com-
bining them produces the best results of all. This significantly
improves the prospects of a tomographic approach to proton
radiography being implemented.

Finally, a novel experimental geometry for accelerating
proton beams has been presented, and is proposed to enable
the generation of several proton beams from each available
short pulse, further improving the possibility of useful apppli-
cation of tomographic concepts to proton radiography.
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FIG. 10. Particle-in-cell simulation set-up for the proposed novel acceleration geometry. A 2 ps, a0 = 10 laser pulse is about to impinge
on solid-density metal wires, driving surface currents which lead to proton acceleration from the foils at the wires’ ends. The spectrum of the
protons accelerated by this interaction is compared to those produced by TNSA using the same laser parameters and target material and is
proposed to be suitable for radiographic applications based on this.
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