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Viscous normal stresses and fingertip tripling in radial Hele-Shaw flows
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Viscous fingering in radial Hele-Shaw cells is markedly characterized by the occurrence of fingertip splitting,
where growing fingered structures bifurcate at their tips, via a tip-doubling process. A much less studied pattern-
forming phenomenon, which is also detected in experiments, is the development of fingertip tripling, where a
finger divides into three. We investigate the problem theoretically, and employ a third-order perturbative mode-
coupling scheme seeking to detect the onset of tip-tripling instabilities. Contrary to most existing theoretical
studies of the viscous fingering instability, our theoretical description accounts for the effects of viscous normal
stresses at the fluid-fluid interface. We show that accounting for such stresses allows one to capture the emergence
of tip-tripling events at weakly nonlinear stages of the flow. Sensitivity of fingertip-tripling events to changes in
the capillary number and in the viscosity contrast is also examined.
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I. INTRODUCTION

When a lower viscosity fluid is injected against a higher
viscosity one in the narrow gap between the parallel glass
plates of a radial Hele-Shaw cell, the initially circular interface
separating them becomes unstable and deforms. During this
deformation process, the interface develops protrusions that
resemble the shape of fingers [1]. As the penetrating fingers
grow, they widen, and get increasingly flat at their extremities.
Then, the flattened fingers split at their tips, mostly dividing
into two new, smaller fingers. Such a typical tip-splitting
phenomenon in which a growing finger branches out into
two smaller fingers characterizes a pattern-forming behavior
that can be more precisely defined as tip doubling. The suc-
cession of fingertip-doubling events increases the complexity
of the expanding fluid-fluid interface, leading to the forma-
tion of highly branched structures at advanced time stages
of the evolution [2–7]. The tip-doubling phenomenon is the
most emblematic pattern-forming process in radial Hele-Shaw
flows. These convoluted fluid dynamic shapes arise due to the
Saffman-Taylor instability [8], and are commonly referred to
as viscous fingering patterns.

Irrespective of the large number of investigations of the
injection-driven radial viscous fingering problem performed
during the past few decades, the vast majority of these studies
neglect the effects of viscous normal stresses [9] on the dy-
namics of the fingered structures. As a matter of fact, in the
context of Hele-Shaw flows, just a few theoretical research
groups have analyzed the impact of viscous normal stresses
on the evolving fluid-fluid interface. For example, in Ref. [10]
a linear stability analysis has shown that the inclusion of
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normal stress effects leads to a more accurate prediction for
the number of resulting fingers that are formed in the centrifu-
gally driven viscous fingering problem in rotating Hele-Shaw
cells. By taking into account the presence of viscous normal
stresses, the authors of Ref. [10] have derived a linear disper-
sion relation for the rotating problem, and from it obtained
an analytical prediction for the number of emerging fingers.
It turns out that this theoretical prediction was in an increased
agreement with their experimental measurements than the cor-
responding prognosis which neglects normal viscous stresses.
Later, now in the context of the injection-driven situation in
radial Hele-Shaw cells, Kim et al. [11] executed a linear sta-
bility analysis of the problem, and showed that normal stresses
change the speed of propagation of the undisturbed interface,
and also modify the linear growth rate, consequently altering
the value of the mode of maximum growth, a popular linear
predictor for the number of fingers that arise at the interface
during initial linear stages of the flow. In Ref. [11] it has been
demonstrated that the addition of the viscous normal stresses
stabilizes the system, and brings their linear theory into a
better agreement with experiments in radial Hele-Shaw cells
driven by injection.

After the seminal work by Kim et al. [11] some other
groups investigated the effects of viscous normal and other
stresses on viscous fingering in Hele-Shaw cells at the linear
level. For instance, Awasthi et al. [12] utilized Darcy’s law,
and included the effects of shearing (tangential) stresses in
the viscous potential flow analysis of radial fingering in a
Hele-Shaw cell, showing that such stresses further stabilize
the system. Nagel and Gallaire [13] used the Brinkman equa-
tion and took into account both normal and tangential viscous
stresses to derive a quite complicated linear dispersion relation
for the Saffman-Taylor instability, finding a good accordance
with experiments. The consideration of interfacial fingering
and normal viscous stresses effects has also been instrumental
to provide a better agreement between theoretical predictions
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and experiments for fluid adhesion problems in Hele-Shaw
geometry [14].

In addition to the stability analyses which considered the
role of viscous normal stresses only at the purely linear stages
of the flow [10–14], there are a few studies that examined
the impact of such stresses in the early nonlinear regime of
the pattern-forming dynamics. Linear theory provides useful
information about the stability of the interface, and the typ-
ical number of arising fingers. On the other hand, nonlinear
perturbative mode-coupling theory allows one to predict and
capture key elements related to the morphology of the patterns
[15–19]. In this way, one can investigate how the shape of the
fingers is affected by the inclusion of normal stresses at the
onset of nonlinearities. Second-order weakly nonlinear stud-
ies considering the presence of viscous normal stresses have
been performed in Refs. [20,21]. Reference [20] reinforced
the necessity of introducing normal stresses into the general
theoretical framework of the rotating Hele-Shaw cell problem
in order to obtain a better and more reliable understanding
of the nonlinear finger competition dynamics observed in
experiments. Moreover, in Ref. [21] it has been found that
the introduction of normal stresses does affect the iconic tip-
doubling phenomenon that occurs in radial Hele-Shaw flows
induced by injection. The second-order study implemented in
Ref. [21] has indicated that, even though the maximal growth
rate is decreased by the action of normal stress at the linear
level [11], at the beginning of nonlinear stages it leads to
further development of characteristic finger bifurcation events
in which a single finger divides into two.

Despite the large number of works on radial viscous fin-
gering which neglect the action of viscous normal stresses,
and the considerably smaller number of studies which take
them into account, one feature of the pattern dynamics re-
vealed by experiments in injection-driven radial Hele-Shaw
flows has been largely underappreciated: although most of the
growing fingers split into two, it is not uncommon to find
fingers that split by dividing into three others. Therefore, the
general tip-splitting events that may occur in existing exper-
iments of radial fingering are not restricted to tip doubling,
and split into three fingers (or, tip tripling) is also observed.
As opposed to usual tip doubling in which fingers bifurcate at
their tips, during tip tripling a trifurcation process takes place,
where one observes a single finger dividing into three other
smaller fingerlike protrusions. The occurrence of tip tripling
can be found, for instance, in the experiments performed in
Refs. [2–7] (see Ref. [22] for details). Curiously, in spite of the
presence of such trifurcated fingers in these experiments, re-
searchers (experimentalists and theorists) have not paid much
attention to them. Maybe this happens because traditional
tip-doubling phenomena are considerably more numerous and
frequent than their fingertip-tripling counterparts. In any case,
the fact is that, regardless of their existence, the study of the
development of tip tripling in radial Hele-Shaw cell flows has
been largely overlooked in the literature. Similar to the tradi-
tional finger doubling events, the finger tripling phenomena
are intrinsically nonlinear. In this way, a proper theoretical
description of such a still poorly explored situation must go
beyond the limitations of purely linear stability analysis.

In this work, we try to fill the gap in literature, and present
a theoretical study about the occurrence of fingertip-tripling

events in radial Hele-Shaw cell flows. We investigate the early
nonlinear regime of pattern formation in radial Hele-Shaw
flows under injection, focusing on reproducing the initial
stages of the occurrence of fingertip-tripling phenomena. We
tackle the problem by employing a perturbative, third-order
mode-coupling approach, and by including the contribution
of viscous normal stresses into our theoretical description. By
doing this, we are able to capture the most relevant morpho-
logical aspects of the generated patterned structures which
do exhibit the onset formation of both finger doubling, and
most importantly, finger tripling structures. Our theoretical
results support the idea that normal viscous stresses are an
important physical contributor leading to the formation of
fingertip-tripling events in radial Hele-Shaw flows induced by
injection. Therefore, within the scope of our third-order mode-
coupling scheme, the consideration of viscous normal stresses
is a necessary theoretical ingredient to allow capturing the
emergence of fingertip-tripling events.

We close this section by discussing how our current pa-
per differs from other works that previously studied viscous
fingering instabilities while considering the contribution of
viscous normal stresses [10,11,20,21]. As mentioned earlier
in this introduction, Refs. [20,21] examined the second-order
nonlinear dynamics for rotating [20] and injection-induced
[21] Hele-Shaw flows. It is worth noting that in rotating
Hele-Shaw flows the centrifugally driven fingering struc-
tures stretch radially outward and compete among themselves
reaching different lengths, but the fingers do not split at their
tips. In this manner, fingertip-splitting events of any sort are
present, and have not been studied Ref. [20]. Therefore, in
contrast to what we do in this work (investigation of normal-
stress-mediated tip-tripling phenomena) the main focus in
Ref. [20] was on examining how viscous normal stresses
affected the characteristic finger competition (or, finger length
variability) process. On the other hand, the work carried out in
Ref. [21] dealt with radial Hele-Shaw flows, where fingertip
splitting does occur. However, as opposed to what we do in
this work, Ref. [21] aimed attention at characterizing how vis-
cous normal stresses influenced the development of traditional
fingertip doubling, and nothing has been done regarding the
occurrence of fingertip tripling.

Another noteworthy difference between the work per-
formed in Refs. [20,21] and here is the fact that while in
their studies interesting results can be extracted by a second-
order perturbation theory, in our current work we perform a
more complete and involved third-order perturbative calcula-
tion which allows us to explore the dynamics of the growing
interface more accurately. This enables us to have access
to even more stimulating nonlinear effects, namely the ones
connected to the development of fingertip-tripling structures,
a pattern-forming process that has been largely neglected in
the literature. It should be stressed that going to third order
is actually necessary in order to be able to detect tip tripling
while still respecting the validity of the perturbative weakly
nonlinear approximation which (i) requires the smallness of
the perturbation amplitudes, and (ii) does not allow interface
crossings (see Sec. III).

Furthermore, there is one final differing aspect, not
only from the weakly nonlinear research performed in
Refs. [20,21], but also from the work developed in
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Refs. [10,11] which considered the role of viscous normal
stresses on Hele-Shaw flow problems, but for purely linear
dynamic stages of the flow. The fact is that a key piece of
the calculations performed in Refs. [10,11,20,21], precisely
the part that adds the contribution of the viscous normal
stresses into the problem—the expression for the pressure
jump boundary condition—is either incomplete, or in error.
The complete and correct expression for such a modified
Young-Laplace condition is given in Eq. (7), and derived in
Appendix A of this work. It turns out that in Refs. [10,20,21]
the authors only considered the action of the radial component
of fluid’s velocities appearing in the viscous stress tensor
(angular velocity components have been neglected). The con-
sideration of a prevalent velocity field contribution along the
radial direction is certainly a valid initial approximation, in
particular for early time growth. However, the inclusion of az-
imuthal velocity contributions is necessary at more advanced
stages, where nonlinear effects take over. In addition, although
the pressure jump condition presented in Ref. [11] [their Eq.
(4)] took into account the contributions of both radial and az-
imuthal components of velocities in the viscous stress tensor,
it presents two errors that have been corrected in our Eq. (7).

In summary, our present work expands upon previous re-
search in the field, by addressing a still poorly explored topic
in radial Hele-Shaw flows (emergence of tip-tripling events),
and by tackling the problem via a more complete and accurate
(third-order) perturbative mode-coupling theory. Our theoret-
ical study presents an analysis which was not performed in
previous studies, offering ways to predict and detect the most
fundamental morphological aspects of the fingertip-tripling
phenomenon in radial Hele-Shaw flows.

II. THEORETICAL FORMULATION AND THE
THIRD-ORDER MODE-COUPLING EQUATION

Consider the motion of two Newtonian, immiscible, in-
compressible viscous fluids, flowing in a narrow gap of
thickness b that separates two parallel glass plates of a circular
Hele-Shaw cell. The viscosities of the inner and outer fluids
are denoted as η1 and η2, respectively. Fluid 1 is injected into
fluid 2 through a small orifice located at the center of the
cell, at a constant flow rate Q, which is the area covered per
unit time. At the fluid-fluid interface there is a surface tension
σ . Within the framework of our perturbative mode-coupling
theory, the deformed two-fluid interface is described as

R(θ, t ) = R(t ) + ζ (θ, t ), (1)

where |ζ | � R, θ represents the azimuthal angle, and R(t ) =√
R2

0 + (Q/π )t is the time-dependent unperturbed radius of
the evolving interface, with R0 being the unperturbed interface
radius at t = 0. In Eq. (1)

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) exp (inθ ) (2)

is the perturbation amplitude, where ζn(t ) denotes the com-
plex Fourier mode amplitudes, and n is the integer azimuthal
wave number. Mass conservation imposes that the zeroth
mode is written in terms of the other modes as ζ0 =
−(1/2R)

∑
n �=0 |ζn(t )|2 [17]. We are interested in the early

nonlinear behavior of the system, specifically in the de-
velopment of fingertip tripling, by taking into account the
contribution of viscous normal stresses. Therefore, our main
task in this section is to derive a mode-coupling differential
equation which describes the time evolution of the perturba-
tion amplitudes ζn(t ), accurate to third order.

The governing equations for the system are Darcy’s
law [1],

v j = − b2

12η j
∇p j, (3)

and the continuity equation for incompressible fluids,

∇ · v j = 0, (4)

where v j = v j (r, θ ) and p j = p j (r, θ ) denote the gap-
averaged velocity and pressure in fluids j = 1 and 2,
respectively.

From the irrotational nature of the flow in Hele-Shaw cells,
one can define a velocity potential φ j , where v j = −∇φ j . The
equation of motion for the perturbed fluid-fluid interface r =
R can be obtained by rewriting Darcy’s law [Eq. (3)] in terms
of the velocity potential for each fluid, and then by subtracting
the resulting expressions, yielding

A

(
φ1 + φ2

2

)
−

(
φ1 − φ2

2

)
= −b2(p1 − p2)

12(η1 + η2)
, (5)

where

A = η2 − η1

η2 + η1
(6)

is the viscosity contrast (a dimensionless viscosity difference)
which varies in the range −1 � A � 1. For the Saffman-
Taylor problem under radial injection, the interface is unstable
only for A > 0. Throughout this work, consistent with previ-
ous studies on this research topic [1–7], we focus on the most
unstable situation in which A = 1. In addition, notice that the
velocity potentials obey Laplace’s equation ∇2φ j = 0.

The problem is then specified by two boundary conditions.
The first one is a modified pressure jump, Young-Laplace con-
dition which incorporates the role of viscous normal stresses,

p1 − p2 = σκ − 2δη1

[
n2

r

∂2φ1

∂r2
+ 2nrnθ

(
1

r

∂2φ1

∂r∂θ
− 1

r2

∂φ1

∂θ

)

+ n2
θ

(
1

r2

∂2φ1

∂θ2
+ 1

r

∂φ1

∂r

)]
+ 2δη2

[
n2

r

∂2φ2

∂r2

+ 2nrnθ

(
1

r

∂2φ2

∂r∂θ
− 1

r2

∂φ2

∂θ

)

+ n2
θ

(
1

r2

∂2φ2

∂θ2
+ 1

r

∂φ2

∂r

)]
, (7)

where κ is the interface curvature in the plane of the cell. As in
Refs. [10,11,20,21], in Eq. (7) the curvature of the fluid-fluid
interface across the width of the cell is not accounted for.
This nearly constant transverse curvature is set by the static
contact angle measured between the plates and the curved
meniscus (assumed to be circular with radius b/2). Since
its gradient is nearly zero, this transverse curvature does not
significantly affect the motion in our Darcy’s law regulated
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problem [1,2]. In Eq. (7) the parameter δ is used to keep
track of the contributions coming from the viscous normal
stresses: δ = 0 if normal stresses are neglected, and δ = 1 if
normal stresses are taken into account. In addition, nr and nθ

denote the radial and azimuthal components of the unit normal
vector to the interface. A derivation of Eq. (7) is given in
Appendix A. We emphasize that our Eq. (7) differs a bit from
the equivalent expression originally obtained in Ref. [11] [see
their Eq. (4)] which is not entirely correct. Their expression
misses the factors of 2 which multiply the terms nrnθ on the
right hand side of Eq. (7).

The second relevant boundary condition is the so-called
kinematic boundary condition [1],

∂R
∂t

=
[

1

r2

∂r

∂θ

∂φ j

∂θ
− ∂φ j

∂r

]
r=R

, (8)

which expresses the fact that the normal compo-
nents of each fluid’s velocity are continuous at the
interface.

To conclude our derivation of the mode-coupling differen-
tial equation that describes the time evolution of the interfacial
amplitudes ζn(t ), we follow standard steps performed in
previous weakly nonlinear studies [17–21]. First, we define
Fourier expansions for the velocity potentials and use the
kinematic boundary condition [Eq. (8)] to relate the veloc-
ity potential Fourier amplitudes to ζn(t ) and ζ̇n(t ) = dζn/dt .
Substituting these relations, and the modified pressure jump
condition Eq. (7) into Eq. (5), always keeping terms up to
third order in ζ , and Fourier transforming, we find the dimen-
sionless equation of motion for the perturbation amplitudes
(for n �= 0),

ζ̇n = λ(n)ζn +
∑

p

{[F (n, p) + SF (n, p)]ζpζn−p + [G(n, p) + SG(n, p)]ζ̇pζn−p}

+
∑
p,q

{[H (n, p, q) + SH (n, p, q)]ζpζn−qζq−p + [I (n, p, q) + SI (n, p, q)]ζ̇pζn−qζq−p

+ [J (n, p, q) + SJ (n, p, q)]ζpζqζn−p−q + [K (n, p, q) + SK (n, p, q)]ζ̇pζqζn−p−q}, (9)

where

λ(n) = 1

s(n)

{
1

2πR2

[
A|n|

(
1 + δ

1

3R2

)
− s(n)

]

− (A + 1)

2CaR3
|n|(n2 − 1)

}
(10)

is the linear growth rate,

Ca = 12η2Q

σb
(11)

is the global capillary number which expresses a relative mea-
sure of viscous to surface tension forces, and

s(n) = 1 + δ
1

6R2
|n|(|n| + A). (12)

The global capillary number Ca [Eq. (11)] is an important con-
trol parameter of our radial Hele-Shaw cell system and should
be distinguished from the local (or instantaneous) capillary

number Ca = ηṘ/σ (η is the viscosity of the displaced fluid)
which can be orders of magnitude smaller [1,23]. Typical
values of the local capillary number used in radial Hele-Shaw
cell experiments vary within a widespread range O(10−4) �
Ca � O(102) [1–7]. In these very same studies, the typical
values of the global capillary number vary within a shorter
range O(10) � Ca � O(103).

The long and somewhat complicated expressions for the
nonlinear mode-coupling functions F , SF , G, SG, H , SH , I , SI ,
J , SJ , K , and SK are given in Appendix B—see Eqs. (B1)–
(B14). In Eq. (9) lengths are rescaled by b, and velocities by
Q/b. From now on, we work with the dimensionless version of
the equations. We emphasize that to strengthen the reliability
and soundness of our theoretical results, the values of all
dimensionless parameters we use throughout this work are
consistent with typical physical quantities used in real experi-
ments in radial Hele-Shaw flows driven by injection [2–7].

For a truly consistent third-order expression, we replace
the time derivative terms ζ̇p appearing on the right hand side
of Eq. (9) by λ(p)ζp + O(ζ 2), to finally obtain

ζ̇n = λ(n) ζn +
∑
p�=0

{F (n, p) + SF (n, p) + λ(p)[G(n, p) + SG(n, p)]} ζpζn−p

+
∑

p,q �=0

{[H (n, p, q) + SH (n, p, q) + λ(p)[I (n, p, q) + SI (n, p, q)]

+ [G(n, q) + SG(n, q)]{F (q, p) + SF (q, p) + λ(p)[G(q, p) + SG(q, p)]}] ζpζq−pζn−q

+ [J (n, p, q) + SJ (n, p, q) + λ(p)(K (n, p, q) + SK (n, p, q))] ζpζqζn−p−q}. (13)

This is the third-order mode-coupling equation for the
injection-driven flow problem in a radial Hele-Shaw cell, tak-

ing into consideration the action of viscous normal stresses.
By inspecting Eq. (13) it is evident that the third-order terms

045106-4



VISCOUS NORMAL STRESSES AND FINGERTIP … PHYSICAL REVIEW E 104, 045106 (2021)

add extra complexity to the description of the problem. How-
ever, the inclusion of these higher-order terms are necessary to
provide a more thorough description of the interface dynamics
than previous first- and second-order approaches to the prob-
lem [11,21]. Even higher perturbative orders [O(ζ 4

n ), O(ζ 5
n ),

etc.] are not considered since, due to the smallness of ζn with
respect to R (|ζn| � R), their contributions for the interface
dynamics become unimportant.

III. DISCUSSION

In this section, our perturbative mode-coupling theory is
utilized to investigate the possibility of describing the devel-
opment of fingertip-tripling events at early nonlinear stages
of confined, injection-driven radial flows. We do that by con-
sidering the action of viscous normal stresses. To carry out
this task, we make use of the third-order differential equation
for the perturbation amplitudes [Eq. (13)], and rewrite the
complex interfacial perturbation given in Eq. (2) in terms of
cosine and sine modes,

ζ (θ, t ) = ζ0 +
∞∑

n=1

[an(t ) cos nθ + bn(t ) sin nθ], (14)

where an(t ) = ζn(t ) + ζ−n(t ), and bn(t ) = i[ζn(t ) − ζ−n(t )]
are real valued. In Eq. (14) we include the mode n = 0 to
maintain the area of the perturbed shape independent of the
perturbation ζ . By applying such area conservation constraint,
the zeroth mode amplitude can be conveniently expressed in
terms of the other modes n � 1 as [17]

ζ0 = − 1

4R

∞∑
n=1

[
a2

n(t ) + b2
n(t )

]
. (15)

To reproduce the actual shape of the growing interface pat-
terns, we consider the nonlinear coupling of a finite number
of Fourier modes, and from Eq. (13) obtain the corresponding
mode-coupling differential equations for the mode amplitudes
an(t ) and bn(t ). The time evolution for an(t ) and bn(t ) gives
the time evolution for the interface itself [from Eqs. (1) and
(14)]. The resulting set of coupled nonlinear differential equa-
tions for these real valued amplitudes is solved in MATLAB,
using an explicit Runge-Kutta scheme for nonstiff problems
with absolute and relative tolerances set to 10−4 [24,25]. A
sensitivity analysis was performed to guarantee convergence
of the solutions.

It has been shown [17] that the classical tip-splitting mech-
anism resulting in tip doubling in radial Hele-Shaw flows
can be consistently mimicked by considering the weakly
nonlinear coupling of just two particularly relevant Fourier
modes: a fundamental mode n, and its first-harmonic mode
2n. So, within the scope of such a simplified perturbative
mode-coupling scheme, tip-doubling phenomena would be
produced as the result of the influence of mode n on the
growth of mode 2n. In this picture, the fundamental mode
sets the overall n-fold symmetry of the pattern, while the first
harmonic mode 2n determines the shape of the fingertip (i.e.,
if it is sharp, wide, or even if it splits). By analogy, if on top of
conventional tip doubling, one wishes to study the possible oc-
currence of fingertip tripling, the simplest alternative would be
to examine the interface growth by considering the nonlinear

interplay of modes n, 2n, and 3n. In the realm of this idealized
mode-coupling picture with a few participating modes, it is
plausible to assume that tip-tripling formation would require
the presence of mode 3n. To better appreciate the nonlinear
results that may emerge under this simplified mode-coupling
approach involving only modes n, 2n, and 3n, we analyze
Fig. 1.

In the top panels of Fig. 1, we depict the fluid-fluid inter-
face time evolution for 0 � t � t f considering the interaction
of the Fourier modes n, 2n, and 3n. This is done by taking
the following characteristic dimensionless parameter values:
A = 1, Ca = 200, and R0 = 3. The interfaces are plotted in
equal time intervals �t = t f /10, where t f is the final time.
Moreover, in the bottom panels of Fig. 1, we display the
corresponding time evolution of the rescaled perturbation am-
plitudes |ζn(t )|/R(t ), where |ζn(t )| = √

a2
n(t ) + b2

n(t )/2, for
each of the modes.

As mentioned earlier, we make sure that the representative
dimensionless parameters we utilize (A, Ca, and R0) are fully
compatible with the values of the relevant physical quanti-
ties used in real experimental studies in radial Hele-Shaw
flows [2–7]. In these experimental studies researchers use a
variety of values for the physical quantities involved in the
problem. Typical values for these quantities are injection flow
rates 0.2 cm2/s � Q � 150 cm2/s, surface tension ranging
20-65 dyne/cm, cell gap thickness 0.075 cm � b � 0.15 cm,
and initial radius R0 from 0.5 to 5 cm. A number of different
fluid viscosities are utilized for both fluids, but to maximize
interface deformations many experimental runs operate in
the highest viscosity contrast limit, where an inner fluid of
negligible viscosity (η1 ≈ 0, for instance, air, nitrogen, etc.)
displaces a viscous oil (for example, some type of glycerin
or silicone oil) of viscosity η2 ranging 1–10 g/cm s. In this
framework, one can say that the dimensionless parameters
O(10) � Ca � O(103) and O(1) � R0 � O(10). Moreover,
for unstable displacements of the interface one has that
0 < A � 1.

The particular choice we make for the viscosity contrast
(A = 1) is motivated by its vast use in experiments, and also
because it considerably favors interface destabilization. On
the other hand, the use of a capillary number of moderate
intensity (Ca = 200) is justified by the fact that we wish to
avoid an abrupt, exaggerated growth of the interface, some-
thing that would put us very quickly in a regime in which
our perturbative model could not be applied. There is nothing
really special about the value for R0 we take, other than it lies
within of the range of typical values used in experiments.

Throughout this work, to further guarantee the validity of
the perturbative solutions, while depicting the evolving inter-
faces, we stop the time evolution of the patterns as soon as the
base of the fingers starts to move inward, which would cause
successive interfaces to cross one another [26]. Since this
crossing is not observed in radial Hele-Shaw cell experiments
[1–7], the largest time before crossing is used as the upper
bound time (t = t f ) for the applicability of our perturba-
tive description. In addition, consistent with our perturbative
scheme, in all situations examined in this work we require
that |ζn(t )|/R(t ) � 1. As a matter of fact, we make sure that
all perturbation amplitudes |ζn(t )| we obtain are always well
below 10% of R(t ).
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FIG. 1. Time evolution of the interfacial patterns generated by solving Eq. (13) for 0 � t � t f when (a) δ = 0 and t f = 1000, (b) δ = 1 and
t f = 1800. The time t f is the maximum allowed time before interface crossings begin. Here we consider the third-order nonlinear coupling of
the fundamental mode n = nζ

max = 7, with its harmonics 2n = 14 and 3n = 21. The corresponding time evolution of the rescaled perturbation
mode amplitudes |ζn(t )|/R(t ) are illustrated in (c) for δ = 0, (d) for δ = 1. The flow parameters are A = 1, Ca = 200, and R0 = 3. The initial
perturbation amplitudes are an(0) = bn(0) = R0/2500, and a2n(0) = b2n(0) = a3n(0) = b3n(0) = 0.

To plot Fig. 1, we follow Ref. [27], and choose the fun-
damental mode n to be the mode of largest amplitude, as
given by linear stability analysis. From the purely linear terms
of Eq. (13), one can readily see that the linear perturbation
amplitude is given by

ζn(t ) = ζn(0) exp

[∫ t

0
λ(n)dt

]
, (16)

with ζn(0) being the interfacial amplitude at t = 0. The mode
of maximum amplitude (nζ

max) is thus obtained by maximizing
the interfacial amplitude (16),(

dζn(t )

dn

)∣∣∣∣∣
n=nζ

max

= 0. (17)

It has been shown in Ref. [27] that nζ
max is a better predictor for

the number of fingers generated at the linear regime than the
mode corresponding to the maximum of the growth rate (nλ

max)
which is obtained by setting [dλ(n)/dn]n=nλ

max
= 0. Therefore,

we consider the fundamental mode n = nζ
max taken at time

t f . For the circumstances considered in Fig. 1 n = nζ
max = 7,

therefore 2n = 14 and 3n = 21. To make sure that the interfa-
cial behaviors we portray in Fig. 1 are spontaneously induced
by the weakly nonlinear dynamics, and not by artificially
imposing large initial amplitudes for the harmonic modes 2n
and 3n modes, we set the initial (t = 0) harmonic mode ampli-
tudes to zero. Therefore, at t = 0 only the fundamental mode n
has nonzero, but small amplitudes an(0) = bn(0) = R0/2500.

We begin our discussion by examining Figs. 1(a) and 1(c)
which focus on the case where viscous normal stresses are
neglected (δ = 0), and t f = 1000. In Fig. 1(a) we observe a
nearly circular initial interface evolving to a seven-fingered
structure. As time progresses, we notice the development of
fingertip widening, followed by a fingertip-flattening process.
At later times, one then sees the emergence of fingertip split-
ting, via tip doubling. These morphological observations are
backed up by what we see in Fig. 1(c) for the growth of
the perturbation amplitudes: the overall sevenfold shape is
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determined by the growth of the fundamental mode n = 7,
while the fingertip widening, flattening, and doubling are in-
duced by the enhanced growth of the first harmonic mode
2n = 14. These remarks are consistent with the theoretical
findings of Refs. [17,21], and with the experimental results of
Refs. [1–7] with respect to the occurrence of usual tip-splitting
behavior, leading to tip doubling. It is worth pointing out that
there is no sign of tip tripling in Fig. 1(a), in consonance with
what is observed in Fig. 1(c) which shows that mode 3n = 21
has a small amplitude when δ = 0.

Now we turn our attention to Figs. 1(b) and 1(d) where
the influence of viscous normal stresses is taken into account
(δ = 1), and t f = 1800. Notice that t f = 1800 for δ = 1,
while t f = 1000 for δ = 0. This happens because viscous
normal stresses exert a stabilizing role, and slow down the
growth of the pattern as a whole. Therefore, for δ = 1 one
can evolve the dynamics to larger times, still conveniently
avoiding the prohibited crossing between successive inter-
faces. This overall stabilizing effect introduced by the normal
stress is quite general, and in accordance with the findings of
Refs. [10,11,20,21].

It is evident that the patterned structure depicted in
Fig. 1(b) for δ = 1 is different from the shape illustrated in
Fig. 1(a) for δ = 0. One can clearly see that the prevalent mor-
phological feature in Fig. 1(b) is not fingertip doubling, but
tip tripling. Indeed, in Fig. 1(b) we see an initially sevenfold
structure which evolves towards a 21-fold fingered morphol-
ogy. The rising of fingertip-tripling phenomena for the pattern
evolution that includes the presence of viscous normal effects
can be justified by inspecting Fig. 1(d), where we see the
growth of a sizable amplitude for mode 3n. By contrasting
the growth of mode 3n in Figs. 1(c) and 1(d) one finds that the
final amplitude of mode 3n significantly increases under the
presence of viscous normal stresses. Moreover, in Fig. 1(d),
although we observe that mode n still reaches a larger ampli-
tude than mode 3n, the growth of mode 2n is clearly inhibited.
The combination of these factors leads to the emergence of
fingertip-tripling events.

By comparing Figs. 1(a) and 1(b), one can also notice that
the pattern with stress has a larger size. This is due to the sta-
bilizing effects of normal stresses mentioned earlier, making
the pattern with stress larger than its counterpart that ne-
glects it. This finding can be further evidenced by scrutinizing
Figs. 1(c) and 1(d), where one can verify that the amplitude
for the fundamental mode n is attenuated when stresses are
present. Therefore, when the influence of normal stresses is
taken into account (δ = 1), the result is the emergence of a
larger pattern for which the fingers are wider (effect related
to the growth of mode 2n at earlier times), with their tips
splitting into three small lobes (due to the enhanced growth
of mode 3n). This indicates that the formation of tip tripling
involves the nonlinear coupling of both modes 2n and 3n
in which the growing finger first becomes wider due to the
growth of mode 2n, and then branches out into three small
lobes as a consequence of the enhanced nonlinear growth
of mode 3n. These observations hint at a third-order weakly
nonlinear mechanism leading to the emergence of fingertip
tripling when modes n, 2n, and 3n are present.

The theoretical results for the time evolution of patterns
and mode amplitudes under the absence (δ = 0) and presence

(δ = 1) of viscous normal stresses illustrated in Fig. 1 indicate
that the consideration of these stresses favor the occurrence
of fingertip-tripling phenomena. However, the scenario con-
templated in Fig. 1 is somewhat optimized, in the sense that
only three particular modes are present, and specific initial
conditions are considered, leading to the formation of very
symmetric n-fold structures for which only tip doubling (for
δ = 0) or tip tripling (for δ = 1) ultimately emerge as preva-
lent morphological features.

From now on, our primary goal is to test the basic morpho-
logical outcomes revealed by Fig. 1, but trying to verify the
robustness of such results under more realistic circumstances.
To do that we follow a successful model proposed in Ref. [28]
by Cardoso and Woods for evolving interfaces in the linear
regime (their “model B”), and extended in Ref. [17] to the
weakly nonlinear stage. This model is in line with typical
circumstances of real experiments in radial Hele-Shaw flows
[1–7], and explores the effect of a background level of noise
on the dynamics of the interface. The possible sources of
noise may come, for example, from irregularities in the gap
thickness b, inhomogeneities on the surface of the Hele-Shaw
cell, or even from thermal or pressure fluctuations [26]. Tak-
ing these issues under consideration, the model describes the
behavior of the two-fluid interface assuming the presence of
a constant low level of noise during its entire evolution. In
this framing, each participating Fourier mode n is perturbed
with a constant (in time) random complex amplitude ζn(0)
which contains an n dependent random phase, whose mag-
nitude |ζn(0)| is independent of n by assumption. As the
interface advances radially, it successively reaches critical
radii Rc(n) [obtained by setting λ(n) = 0] for each mode n,
such that only once a particular Rc(n) is reached, the pertur-
bation amplitude ζn starts to vary with time. The predictions
of this model are in good agreement with experimental ob-
servations within the linear [28] and weakly nonlinear [17]
regimes.

Furthermore, in all the patterns presented in the rest of this
study, we will not be restricted to include only a few partic-
ipating modes, but more sensibly consider the participation
of all Fourier modes which lie within the band of unstable
modes at time t = t f . Unless otherwise stated, as we also did
in plotting Fig. 1, in the remainder of this work we continue
to consider a representative set of dimensionless parameters
Ca, A, R0 which are in consonance with physical values
commonly used in many radial Hele-Shaw cell experiments
[1–7]. Moreover, in Figs. 2–7 we take the noise amplitude
|ζn(0)| = R0/1500.

Under these circumstances, we consider the participation
of the Fourier modes 2 � n � 21. Recall that the mode n = 0
is written in terms of the other modes via Eq. (15), and note
from Eq. (10) that since −1 � A � 1, the mode n = 1 (which
corresponds to a rigid translation of a circular interface) is
either linearly stable λ(n = 1) < 0, or marginal λ(n = 1) =
0. These facts are true for both δ = 0 and δ = 1. Although
we illustrate our main results by focusing on a representative
set of parameters, the reproducibility of the results is tested
generating them by using different initial conditions, in partic-
ular by changing the random phases attributed to each mode
[17,26,28]. By doing this we can verify the robustness of our
weakly nonlinear results if such conditions are changed. At
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FIG. 2. Time evolution of the interfacial patterns generated by solving Eq. (13) for 2 � n � 21, 0 � t � t f and equal time intervals
�t = t f /10, considering (a)–(c) δ = 0 and (d)–(f) δ = 1. The values of t f are (a) 530, (b) 530, (c) 560, (d) 970, (e) 1012, and (f) 1060. Three
different sets of random phases are used, one for (a) and (d), a second for (b) and (e), and a third for (c) and (f). The occurrence of tip-tripling
events in (d)–(f) is indicated by small arrows. Here A = 1, Ca = 200, and R0 = 3.

the end of this section, we also examine how changes in the
controlling parameters Ca and A may alter the development of
fingertip-tripling events.

Keeping in mind the important information given in the
previous two paragraphs, in Fig. 2 we plot the third-order
interface evolution, for a whole range of participating modes
2 � n � 21, when viscous normal stresses are neglected [(a)–
(c) for δ = 0], and taken into account [(d)–(f) for δ = 1].
To lend support to our theoretical results, three distinct sets
of random phases are examined, a first one for (a) and (d),
a second for (b) and (e), and a third for (c) and (f). By
going through Figs. 2(a)–(c), we observe the formation of
typical viscous fingering patterns in which seven or eight main
fingers of various sizes grow. Interestingly, considering the
parameters of the problem, one finds that 7 � nζ

max � 8, while
12 � nλ

max � 13, demonstrating that nζ
max is a better indicator

for the number of fingers formed. One can also notice that
some of the fingers tend to get increasingly wider, and flatter
at their tips as time advances. In particular, one can notice
that some of the flattened tip fingers begin to split via a tip-
doubling process. However, in these cases in which normal
stresses are neglected one does not verify the development of
fingertip tripling.

On the other hand, by analyzing Figs. 2(d)–(f), one per-
ceives a somewhat different sequence of events. When normal
stresses are included one also finds the emergence of charac-
teristic fingering patterns, where finger widening, flattening,
and splitting occur. It is curious to note that under the ac-

tion of normal stresses the fingers look a little shorter and
stubbier than the corresponding fingered structures observed
when such stresses are neglected [Figs. 2(a)–(c)]. This last
observation is a consequence of the stabilizing effect induced
by the viscous normal stresses, which has the tendency to slow
down interfacial pattern growth. Given the increased stability,
note that t f is bigger for δ = 1. However, the most peculiar
morphological aspect that arises when normal stresses act is
the existence of fingers which display the onset of tip-tripling
events. To better guide the eye, these three-fingered structures
are indicated by small arrows in Figs. 2(d)–(f). Of course,
fingertip doubling is also detected when δ = 1. As anticipated
by the simplified scenario discussed in Fig. 1, in Figs. 2(d)–(f)
once again we identify the formation of fingertip tripling in-
duced by the action of viscous normal stresses. We emphasize
that, different from what happened in Fig. 1, where only three
predetermined modes compete and interact in the absence of
noise, in Figs. 2(d)–(f) tip-tripling events persist under much
more realistic circumstances, despite the presence of a full
range of linearly unstable competing modes, and the action
of random noise.

It is worth noting that we have verified what would happen
to the patterns if all parameters and initial conditions are kept
as the ones used in Fig. 2, but if we use second-order and not
third-order theory to generate them. We have found that these
second-order patterns do not present the emergence of finger-
tip tripling. As a matter of fact, this very same observation
is also valid for the third-order patterns illustrated in Figs. 6
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FIG. 3. Snapshots of the velocity fields for the interface evolutions portrayed in Fig. 2, overlaid with the corresponding interface shapes
taken at final times t = t f . Note that (a)–(c) δ = 0 and (d)–(f) δ = 1. All physical parameters, initial conditions, and random phases are the
same as those used in Fig. 2. Darker colors and larger size arrows indicate higher local velocities. As in Fig. 2 A = 1, Ca = 200, and R0 = 3.

and 7 (i.e., their second-order counterparts do not show any
tip tripling).

Complementary information about the interface time evo-
lution behaviors observed in Fig. 2 is explored in a bit more
quantitative fashion in Figs. 3 and 4. Figure 3 represents the
velocity vector fields taken from the time evolutions portrayed
in Fig. 2 and the associated two-fluid interface shapes evalu-
ated at final times t = t f . The color coding is such that darker
colors and larger arrows indicate higher local velocities. By
examining Fig. 3, and contrasting the situations without [(a)–
(c) for δ = 0] and with [(d)–(f) for δ = 1] viscous normal
stresses, one can see that the presence of such viscous stresses
influences the resulting velocity field disposition, changing
the speed of propagation of the interface. The stresses delay
the growth of perturbations, allowing the fingers to propagate
for longer times, and to get wider at their tips, ultimately
favoring the development of both fingertip-doubling and tip-
tripling phenomena.

Another relevant piece of information is provided by Fig. 4.
It depicts the time evolution of the rescaled perturbation
amplitudes |ζn(t )|/R(t ), where |ζn(t )| = √

a2
n(t ) + b2

n(t )/2 for
each of the participating Fourier modes 2 � n � 21 associ-
ated with the interfacial pattern growths illustrated in Fig. 2.
By comparing the growth of the perturbation amplitudes by
neglecting [(a)(c) for δ = 0] and considering [(d)–(f) for δ =
1] the influence of viscous normal stresses, one can readily
see that stresses considerably impact the amplitudes’ time
evolution behavior, leading to a significant attenuation of their
growth. This more quantitative finding is in line with our more
visual observations regarding the shorter and thicker nature
of the resulting fingers under the presence of stress, and with
the possibility of evolving the patterns up until longer times

when stresses are included. Ultimately, our third-order mode-
coupling findings reveal a dual role played by viscous normal
stresses regarding interface growth in radial Hele-Shaw flows:
if on one hand stresses act to restrain the overall growth of the
patterns, on the other hand they modify the local velocity field
in such a way that the growth of tip-splitting events (including
both tip doubling, and tip tripling) is stimulated.

Up to this point, we have illustrated our results on the
development of fingertip-tripling phenomena induced by vis-
cous normal stresses, for representative values of the viscosity
contrast, and capillary number, namely for A = 1, and Ca =
200. To check how the evolving interface responds to changes
in these two fundamental parameters, we examine what
happens if other characteristic values of A and Ca are con-
sidered. Before proceeding, we call the reader’s attention
to the role played by these key parameters in injection-
driven radial Hele-Shaw flows. It is well known that, no
matter whether normal stresses are taken into consideration
or not, increasingly larger values of A and Ca tend to desta-
bilize the system [2–7,11,21]. So far, we have focused on
the situation of maximum instability regarding the viscos-
ity contrast (A = 1). Nevertheless, in principle, for unstable
interface displacements one can have 0 < A � 1. On the
other hand, the capillary number may vary within a wide
spread range of values in radial Hele-Shaw experiments:
typically O(10) � Ca � O(103). If Ca is too small the in-
terface is quite stable against perturbations, making its time
evolution uninteresting. However, if Ca is very large the
interface becomes very quickly deformed, creating difficul-
ties for an accurate early nonlinear theoretical description,
since the undesired (and unphysical) interface crossings occur
rapidly.
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FIG. 4. Time evolution of the rescaled perturbation mode amplitudes |ζn(t )|/R(t ) for 2 � n � 21, corresponding to the patterns’ evolutions
displayed in Fig. 2. Note that (a)–(c) δ = 0 and (d)–(f) δ = 1. All physical parameters, initial conditions, and random phases are identical to
those utilized in Fig. 2.

To characterize the impact of the capillary number on the
morphologies of the nonlinear interfacial structures under the
presence of viscous normal stresses for a range of values of
Ca, we analyze Fig. 5. It details how the rescaled perimeter of
the fluid-fluid interfaces at final time t f ,

L(t f ) = 1

2πR(t f )

∫ 2π

0

√
R2(t f ) +

[
dR(t f )

dθ

]2

dθ, (18)

behaves as Ca is increased. L(t f ) expresses the ratio of the
perimeter of the perturbed interface R(t ) to the length of the
corresponding unperturbed, circular interface of radius R(t )
at the final time t = t f . L(t f ) reflects the departure from a
circle at the final time t f , serving as a quantitative measure
of the increase in complexity of the interface at nonlinear
stages of the dynamics. The larger the rescaled perimeter
L(t f ), the more structured the interface. For each value of Ca,
the data shown in Fig. 5 are obtained from the third-order time
evolution of interfaces generated for modes 2 � n � 21, by
taking into account viscous normal stresses effects (δ = 1),
and produced by employing the same set of phases utilized in
Fig. 2(f). In addition, A = 1. The rest of the parameters are
also identical to those used in Fig. 2(f). Figure 5 considers
15 increasing values of the capillary number in the range
25 � Ca � 200, separated by equal steps of Ca = 12.5. From
Fig. 5 it is apparent that the rescaled interfacial perimeter
increases for increasingly larger values of Ca, indicating that
the third-order nonlinear interfaces become more deformed

FIG. 5. Rescaled interfacial perimeters L(t f ) [Eq. (18)] for third-
order nonlinear patterns obtained by considering different values
of the capillary number Ca. Here A = 1 and δ = 1. The data are
acquired by using the set of phases and the rest of the parameters
utilized in Fig. 2(f). The weakly nonlinear, third-order time evolution
of the interfacial shapes corresponding to points (a) Ca = 50, (b)
Ca = 100, and (c) Ca = 200 (identified by small arrows) are pre-
sented in Fig. 6.
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FIG. 6. Time evolution of the interfacial patterns associated with the data points (a)–(c) indicated in Fig. 5. The growth of these structures
is generated by solving Eq. (13) for 2 � n � 21, 0 � t � t f , equal time intervals �t = t f /10, δ = 1, and considering that A = 1, for three
increasing values of the capillary number: (a) Ca = 50, (b) Ca = 100, and (c) Ca = 200. These patterns are obtained by using the set of phases
already utilized in Fig. 2(f). The values of t f are (a) 12 000, (b) 3000, and (c) 1060.

as Ca is augmented. This will have consequences on the
development of fingertip-tripling phenomena (see Fig. 6).

The effect of varying the capillary number on the emer-
gence of fingertip-tripling events is inspected in Fig. 6. We
carry out our analysis on this issue by illustrating the weakly
nonlinear, third-order time evolution of the patterns that arise
for the data points (a) Ca = 50, (b) Ca = 100, and (c) Ca =
200, indicated by arrows in Fig. 5. By scrutinizing Fig. 6, in
particular the fingers located on the upper right side of the
patterns in Figs. 6(a)–(c), one notices that by augmenting the
value of the capillary number Ca the result is an enhanced
tendency toward fingertip-tripling formation, in accordance
with the expected increase in interface instability as revealed
by Fig. 5. Although the formation of conventional tip splitting
(or, tip doubling) is not the main focus of this work, one can
also notice in Fig. 6 that this phenomenon is also enhanced
as Ca assumes larger values (see, for instance, the finger on
the upper left-hand side of the patterns). This is in line with
previous findings in the literature [21].

As in all other situations analyzed in our study, in trying
to capture the occurrence of tip-tripling events via our pertur-
bative mode-coupling analysis, there is a tradeoff between the
desire of using as large as possible destabilizing parameters
(in order to detect sizable morphological effects), and the
limitations imposed by a perturbative scheme (requirement
of smallness of perturbations with respect to the unperturbed
evolving interface radius, and necessity of avoiding unphys-
ical interface crossings). This can be seen in Fig. 6, where
tip tripling of the finger situated on the upper right-hand
side of the patterns is only clearly unveiled in Fig. 6(c), for
the largest Ca, and consequently, for the smallest final time
t f . Tip tripling is not detected in such a finger for smaller
values Ca: in Fig. 6(a) one detects the onset of tip doubling,
while in Fig. 6(b) a fingertip-flattening behavior is identi-
fied. From the weakly nonlinear findings of Figs. 5 and 6
which explored a range of values for the capillary number,
one concludes that the occurrence of fingertip tripling is in-
deed favored for larger values of Ca. We point out that we
have observed a similar morphological trend (i.e., enhanced
tip tripling) as Ca is increased for other sets of random
phases.

Nevertheless, we emphasize that, even though the use of
higher Ca is a necessary condition to get fingertip tripling,
this is not a sufficient condition. For example, recall that the
pattern displayed in Fig. 2(c), which is produced by utilizing
basically the very same parameter values and initial conditions
as those utilized to obtain the structure illustrated in Fig. 6(c)
[or in Fig. 2(f)], does not show the development fingertip
tripling. It turns out that the only differing condition in the
way the patterns shown in Figs. 2(c) and 6(c) are generated
is the fact that while the former neglects the action of viscous
normal stresses (δ = 0), the latter takes it into account (δ = 1).
Therefore, to predict and capture fingertip tripling via theo-
retical means it is not enough just to consider higher values
of the capillary number [e.g., Ca = 200, as in Figs. 2(c) and
6(c)], but on top of it one must take into account the action of
viscous normal stresses.

We close our discussion by examining what happens to
fingertip-tripling phenomena under the presence of normal
stresses (δ = 1), if the capillary number is held fixed, while
the viscosity contrast is modified. This is done in Fig. 7 for
Ca = 200, 2 � n � 21, and 0 � t � t f . Here we consider the
emerging interface shapes for three values of the viscosity
contrast: (a) A = 0.75, (b) A = 0.85, and (c) A = 1. These
patterns are generated by using the same set of phases ap-
plied in Fig. 2(f). Going over Fig. 7, and again paying closer
attention to the fingers growing on the upper right-hand side
of the images, one can verify that fingertip-tripling formation
is favored when the viscosity contrast assumes larger values.
Focusing precisely on the finger on the upper right-hand cor-
ner, (i) there is no sign of tip tripling in Fig. 7(a), (ii) just
a modest onset of tip tripling can be detected in Fig. 7(b)
(small bump arising in the middle of the finger), and (iii) only
in Fig. 7(c) is a clear tip-tripling finger observed. Of course,
if A is decreased further the interfacial patterns become in-
creasingly more stable. As a matter of fact, the experimental
cases that reveal some tip-tripling events in injection-driven
radial Hele-Shaw flows [22] are all performed for large values
of the viscosity contrast (A = 1). We have also investigated
the behavior of the rescaled interfacial perimeter L(t f ) for
Ca = 200 as the viscosity contrast A varies in the range of
values leading to unstable displacements (i.e., 0 < A � 1),
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FIG. 7. Time evolution of the interfacial patterns generated by solving Eq. (13) for 2 � n � 21, 0 � t � t f , equal time intervals �t =
t f /10, δ = 1, and considering Ca = 200, for three increasing values of the viscosity contrast: (a) A = 0.75, (b) A = 0.85, and (c) A = 1. These
patterns are generated by using the set of phases utilized in Fig. 2(f). The values of t f are (a) 2700, (b) 1550, and (c) 1060.

and, similar to what we have found in Fig. 5, we encountered
that L(t f ) increases with A. Note that the behaviors of the
interfaces in Fig. 7 are consistent with this fact, once deformed
interfaces are obtained earlier in time (smaller t f ) for larger
values of A, in consonance with the well known, typical be-
havior of the Saffman-Taylor instability in Hele-Shaw flows
[1]. Notice that we have checked that an increased tendency
toward tip-tripling formation also occurs for A = 1, if other
sets of random phases are used.

At this moment, we do not have a fully quantitative, def-
inite physical mechanism by which such fingertip-tripling
structures are formed. Nonetheless, on the basis of the main
findings of this work, we would like to conclude by offering
some qualitative physical elements that could contribute to
their formation. For the case of conventional fingertip splitting
via tip doubling, it is well known that the critical length scale
leading to fingertip bifurcation increases at higher capillary
numbers Ca [1,23]. We believe a similar physical mechanism
acts to generate fingertip tripling. If Ca and A are sufficiently
large, and in addition viscous normal stresses effects are such
that local velocities increase, the growing fingers would be
more susceptible to the viscous fingering instability. In this
process the evolving fingers tend to widen, making room to
further destabilization. This means that it would be easier for
more fingers to form at the expanding tips, ultimately favor-
ing the occurrence of fingertip-tripling events. We hope our
current investigation will stimulate researchers to find a better
and more quantitative physical explanation for the rising of
these interesting three-fingered shapes.

It should be stressed that, as unveiled in Refs. [2–7], experi-
ments reveal the simultaneous occurrence of both tip doubling
and tip tripling. Therefore, as pointed out above, if Ca and A
are sufficiently large, both tip doubling and tip tripling are fa-
vored. Other than these, there are no specific configurations or
physical constraints required to lead to tip tripling experimen-
tally. Nevertheless, it is the inclusion of the effects of viscous
normal stresses into the theoretical perturbative description of
the problem that allows one to capture the development of
the tip-tripling phenomena detected experimentally. In other
words, if viscous normal stresses are neglected in the modified
Young-Laplace condition [Eq. (7)], our theory is able to re-
produce tip-doubling events, but not tip tripling. On the other

hand, the inclusion of viscous normal stresses in Eq. (7) are
such that local velocities increase, resulting in the rising of
tip-doubling and tip-tripling fingered structures at third order.

IV. CONCLUDING REMARKS

In this work, we carried out a perturbative mode-coupling
analysis of the radial viscous fingering problem in Hele-
Shaw geometry, and derived nonlinear, coupled differential
equations that describe the time evolution of the interfacial
perturbation amplitudes accurate to third order. As opposed to
most previous theoretical studies of the viscous fingering in-
stability, our model incorporates the effects of viscous normal
stresses on the dynamical evolution of interfacial pattern-
forming structures. In addition to the customary development
of fingertip doubling, our model predicts the occurrence of
fingertip-tripling events, where a finger splits into three oth-
ers. Our findings suggest that normal viscous stresses are an
important physical ingredient leading to the formation of fin-
gertip tripling in radial Hele-Shaw flows induced by injection.

Our theoretical results are in qualitative agreement with
existing experimental observations, where the emergence of
fingertip tripling has been identified [2–7,22]. These results
indicate that viscous normal stresses exert a dual role on the
time evolution of the interface. They tend to restrain the over-
all growth and delay the formation of interfacial disturbances.
However, they also modify the speed of propagation of the
interface, and alter the local interfacial velocity distribution in
such a way that fingers may split into two, as well as into three
secondary fingers. We have verified that the manifestation
of the tip-tripling phenomena via our perturbative model is
robust, persisting to occur under the presence of background
noise, under different initial conditions, and for a range of
possible values for the capillary number Ca, and viscosity
contrast A. We have also found that fingertip-tripling episodes
are facilitated for larger values of Ca and A.

Unfortunately, due to the intrinsic limitations of our per-
turbative model, which is valid only at the onset of nonlinear
effects, we have not been able to perform a quantita-
tive and direct comparison between our weakly nonlinear
patterns exhibiting tip tripling and the corresponding three-
fingered structures detected experimentally. These particular
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experiments [2–7,22] usually reveal tip-tripling events at ad-
vanced time, fully nonlinear stages of the dynamics for which
the interface is highly deformed. Regrettably, our perturba-
tive theory no longer holds under these conditions. Despite
the possible nontrivial challenges related to the inclusion of
viscous normal stresses effects in a numerical scheme capable
of accurately describing the long time dynamics of the system,
the development of fully nonlinear numerical simulations for
the problem is a possible extension of this work. We plan
to tackle these significantly more complex issues in a future
work.
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APPENDIX A: DERIVATION OF THE MODIFIED
PRESSURE DIFFERENCE BOUNDARY CONDITION EQ. (7)

In this Appendix, we derive the generalized pressure jump
boundary condition [Eq. (7)], by incorporating contributions
from viscous normal stresses and surface tension. We follow
Refs. [9,29–31], and consider the normal stress balance at the
interface (r = R) of two viscous Newtonian, incompressible
fluids ( j = 1 and 2) in which stresses are related to pressures
and velocities as

p1 − p2 = σκ + [δ(τ1 − τ2) · n] · n, (A1)

where

τ j = η j[∇v j + (∇v j )
T ], (A2)

with T denoting a matrix transpose, and δ = 1 (δ = 0) if
normal stresses are (not) taken into account. In the effectively
two-dimensional flow geometry of a radial Hele-Shaw cell,
the stress tensor is represented in polar coordinates (r, θ ) as

τ j =
(

τ j,rr τ j,rθ

τ j,rθ τ j,θθ

)
. (A3)

By considering the incompressibility of the fluids [Eq. (4)],
the components of the stress tensor are given by

τ j,rr = 2η j

[
∂v j,r

∂r

]
, (A4)

τ j,θθ = 2η j

[(
1

r

∂v j,θ

∂θ
+ v j,r

r

)]
, (A5)

τ j,rθ = η j

[
r

∂

∂r

(v j,θ

r

)
+ 1

r

∂v j,r

∂θ

]
. (A6)

These components can be conveniently expressed in terms of
the velocity potentials φ j , yielding

τ j,rr = −2η j

[
∂2φ j

∂r2

]
, (A7)

τ j,θθ = −2η j

[
1

r2

∂2φ j

∂θ2
+ 1

r

∂φ j

∂r

]
, (A8)

τ j,rθ = 2η j

[
1

r2

∂φ j

∂θ
− 1

r

∂2φ j

∂r∂θ

]
. (A9)

With Eqs. (A7)–(A9) at hand, and with the unit normal
vector written as n = (nr, nθ ), one can readily see that

[τ j · n] · n =
[(

τ j,rr τ j,rθ

τ j,rθ τ j,θθ

)(
nr

nθ

)]T (
nr

nθ

)

= n2
r τ j,rr + 2nrnθ τ j,rθ + n2

θ τ j,θθ

= −2η j

[
n2

r

∂2φ j

∂r2
+ 2nrnθ

(
1

r

∂2φ j

∂r∂θ
− 1

r2

∂φ j

∂θ

)

+ n2
θ

(
1

r2

∂2φ j

∂θ2
+ 1

r

∂φi

∂r

)]
. (A10)

Finally, by evaluating Eq. (A10) for fluids j = 1 and 2, and
substituting the resulting expressions into Eq. (A1), ones gets
Eq. (7).

APPENDIX B: EXPRESSIONS FOR THE NONLINEAR
MODE-COUPLING FUNCTIONS

This Appendix presents the expressions of the nonlinear
mode-coupling functions F , SF , G, SG, H , SH , I , SI , J , SJ , K ,
and SK presented in Eq. (9):

F (n, p) = |n|
s(n)R

{
1

2πR2
A

(
1

2
− sgn(np)

)
− (A + 1)

2CaR3

(
1 − 1

2
p(n + 3p)

)}
, (B1)

SF (n, p) = δ
|n|

12πR5s(n)
{−A[n|n|sgn(p) − p2 + 1] + |p| + nsgn(p)}, (B2)

G(n, p) = 1

s(n)R
{A|n|[1 − sgn(np)] − 1}, (B3)

SG(n, p) = δ
|n|

6R3s(n)
{−A[n|n|sgn(p) − 2np + p2 − 1] − |n| + |p| + nsgn(p)}, (B4)

H (n, p, q) = |n|q
2πs(n)R4

sgn(p)

[
1 − sgn(nq) − A

|n|
]
, (B5)

SH (n, p, q) = −δ
|n|

12πR6s(n)
{sgn(npq)[(q2 − 1)|q|sgn(n) − 2q|nq| + n2q] − A sgn(pq)[q(n + q) − |nq|]}, (B6)

045106-13



COUTINHO, ROCHA, AND MIRANDA PHYSICAL REVIEW E 104, 045106 (2021)

I (n, p, q) = 1

s(n)R2

{
A|n|[1 − sgn(nq)] + |n||q| sgn(pq)

[
1 − sgn(nq) − A

|n|
]

− 1

}
, (B7)

SI (n, p, q) = −δ
|n|

3R4s(n)
({qsgn(p)[n|n|sgn(q) − 2nq + q2 − 1] + |n| − (n + q)sgn(q)}

− A{|q|(n + q)sgn(p) − |n|[nsgn(q) + qsgn(p)] + 2nq − q2 + 1}), (B8)

J (n, p, q) = 1

2πs(n)R4

{
(A − 1)A(n, p, q) + (A + 1)B(n, p, q)

2|p| − |n|(|p| + A/3)

2
− 1

}

+ (A + 1)|n|
2CaR5

{
1 − 3p2 − 3

2
q(n − p − q)(p2 + 1)

}
, (B9)

SJ (n, p, q) = −δ
|n|

24πR6s(n)
{A[4|n|(q − n)sgn(p) + |np| − 2n(p + 2q) + 7p2 + 18pq + 4q2 − 2]

+ p|n|(−2n + p + 2q) + sgn(p)[4q(np + 3) − 4n + p3 − 4pq2 − 3sgn(p) + 12p] + 3}, (B10)

K (n, p, q) = 1

s(n)R2

{
(A − 1)A(n, p, q) + (A + 1)B(n, p, q)

2|p| − |n|(|p| + A)

2

}
, (B11)

SK (n, p, q) = δ
|n|

12R4s(n)
( − A[|n|sgn(p)(−4n + p + 4q) − 2np + 4nq + 7p2 + 10pq − 4q2 + 4]

+ |n|{−[p(−2n + p + 2q) − 2]} − sgn(p)[4q(np + 3) − 4n + p3 − 4pq2 + 12p]), (B12)

where the auxiliary functions A(n, p, q) and B(n, p, q) are expressed as

A(n, p, q) = (n − p − q)(2p − p|p|) − 1
2 |p|(|p| − 1)(|p| − 2), (B13)

and

B(n, p, q) = (n − p − q)(2p + p|p|) + 1
2 |p|(|p| + 1)(|p| + 2). (B14)

Note that the sgn function equals ±1 according to the sign of its argument.
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