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Freezing in charged porous media can induce significant pressure and cause damage to tissues and functional
materials. We formulate a thermodynamically consistent theory to model freezing phenomena inside charged
heterogeneous porous space. Two regimes are distinguished: free ions in open pore space lead to negligible
effects of freezing point depression and pressure. On the other hand, if nanofluidic salt trapping happens,
subsequent ice formation is suppressed due to the high concentration of ions in the electrolyte. In this case our
theory predicts that freezing starts at a significantly lower temperature compared to pure water. In one dimension,
as the temperature goes even lower, ice continuously grows until the salt concentration reaches saturation, all
ions precipitate to form salt crystals, and freezing completes. Enormous pressure can be generated if initial salt
concentration is high before salt entrapment. We show modifications to the classical nucleation theory due to
the trapped salt ions. Interestingly, although the freezing process is enormously changed by trapped salts, our
analysis shows that the Gibbs-Thompson equation on confined melting point shift is not affected by the presence

of the electrolyte.
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I. INTRODUCTION

Freezing tolerance is necessary for materials that expe-
rience cold conditions; however its mechanisms are not yet
clear in various contexts. For example, freeze-thaw damage is
one of the biggest threats to cement and concrete in cold areas.
Although deicing salt lowers the melting point of snow and ice
on the roads, it actually makes the damage worse [1,2]. The
conventional thinking of water expansion upon freezing caus-
ing damage [3] contradicts this fact, and the real mechanism of
freezing damage is subject to more careful investigation. Frost
heave damage in soils has been discussed [4], and theorists
achieved successes in explaining the deformation of saturated
soils due to the dynamics of premelted liquid and its cou-
pling with the solid. However, its applicability to cement is
questionable, as the cohesion of cement paste nanoparticles
is much stronger than the capillary forces [5,6]. Biological
materials also exhibit remarkable freezing endurance: hu-
man embryos can be safely preserved using liquid nitrogen
at -200 °C [7-10]. Bacteria, some arctic insects, and other
primitive forms of life can survive extremely cold weathers
of -60~-100 °C [11,12]. Animals on the higher branches of
the “evolution tree,” such as amphibians and reptiles, show
moderate freezing tolerance of around —10 °C during winter
hibernation [13-16]. Perennial plants also survive freezing
weather in winter [17,18]. Their amazing capabilities of freez-
ing tolerance are usually associated with antifreezing proteins
[19-22]. Here our theory proposes a more general potential
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physical mechanism contributing to freezing tolerance and
damage. The thermodynamics of freezing is complicated by
the existence of salt ions and charged pore surface. Nucle-
ation mechanisms have been studied both theoretically and
numerically [23]. Classical nucleation theory (CNT) predicts
the critical size of nuclei and the nucleation rate at the be-
ginning of freezing [24]. Nucleation inside a charged pore
filled with electrolyte requires modifications to the classical
theory. While the influence of salt on bulk solution freezing
has been extensively studied [25], the role of salt ions in the
confined freezing of water has yet to be explored. Super-
cooling and freezing point depression due to salt are critical
processes for freezing tolerance in heterogeneous porous me-
dia.

In this paper we specifically distinguish the regimes of
free ions and trapped ions, and propose nanofluidic salt
trapping mechanisms for heterogeneous porous media. This
paper serves as a more comprehensive presentation that fo-
cuses on the theoretical aspects, complementing our other
report [26] more weighted on the applications. We present
a thermodynamically consistent theory to predict freez-
ing point depression, pressures, and modifications to CNT
equations, and discuss the Gibbs-Thomson effect of melting
point. Our treatment on the electrostatics part is on the mean-
field Poisson-Boltzmann (PB) level, and for simplicity the
freezing phase transition is assumed to be a homogeneous
nucleation process. We note that multiple approximations of
the continuum theory in this paper can be further improved in
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future work. For nanometer-sized confinement the size of ions
and water molecules and the roughness of the pore surface
may become important, and predictions from a continuum
theory are limited. Although multivalent ions such as Ca** are
present in the pores of cement and other biological materials,
we only focus on the case of monovalent ions for simplicity,
also consistent with the commonly used deicing salts. Ion
correlation effects, as well as the surface polarization of the
pores, i.e., image charge effects, are not considered in this
mean-field continuum approach but may be further included
by using enhanced versions of the PB equations [27,28].

II. THEORY

Let us consider a charged pore space filled with elec-
trolyte. When temperature lowers, the liquid state becomes
thermodynamically unfavorable and is inclined to solidify.
If the pore space is well connected to a large reservoir that
can accommodate the salt ions and excess water molecules,
then once freezing begins all the water molecules in this pore
should turn into solid ice, except for an interfacial layer of
liquid (< 1 nm thickness) remaining between the pore surface
and ice core [29], and the salt ions will escape into the large
reservoir. Below in Sec. II A we refer to this situation as free
salt ions, where only a certain number of counterions remains
in the pore to balance the pore surface charge and to contribute
to freezing point depression and pressure [see Fig. 1(a)]. On
the other hand, if the freezing pore is disconnected from the
external reservoir, such that the salt ions experience strong
resistance to removal from the pore, then the crowding salt
ions can inhibit ice growth [see Figs. 1(b)—1(d)]. In this case,
ice formation generates significant pressure that is transmitted
to the solid matrix of the porous medium. Eventually, the
resistance to freezing from salt ions will abruptly end once
the electrolyte volume is squeezed by ice so that it reaches
concentration saturation, which is assumed about 6 M (for
NaCl) throughout the following calculations. All salt ions will
precipitate into crystals at this point and the entire pore space
will freeze, except for the remaining lubricating liquid layer
mentioned above.

The latter case of an effectively disconnected pore may
be caused by several underlying mechanisms such as (1) the
pore is only connected through a narrow bottleneck to larger
space [Fig. 1(b)]; (2) the pore is initially connected through
another big pore, but when temperature lowers the big pore is
frozen first and only a narrow channel of lubricating liquid
remains [Fig. 1(c)]; (3) there is active control of water-ion
transport by channels on a cell membrane [Fig. 1(d)]. In (1)
and (2), when surface charge on the narrow channels is high,
coions will tend to be excluded from the channel and hence
cannot exit from the freezing pore; counterions remain to
maintain overall charge neutrality. If the solvation size of the
ions is comparable to or larger than the narrow channels, the
ions are geometrically trapped. In all these and other similar
situations, the solvated salt ions exit the pore over a longer
transport timescale to get through the highly charged and
narrow channels of nanometer size so that the freezing process
occurring on a shorter timescale will be significantly affected
by their existence in the pore. We distinguish water molecules
as “solvated” for those in the ion solvation shell and “free”

open-pore space

bottleneck pore

(b)

(©) (d)

FIG. 1. Free ions vs nanofluidic salt trapping. (a) When the freez-
ing pore is well connected to the reservoir, the ions move through the
pathway and not constrained inside the pore. This case is referred
to as “free” ions. (b) When the freezing pore is only connected via
bottlenecks, geometric constraints make the solvated ions difficult to
transport through the bottleneck. (¢) When heterogeneous freezing
happens and the freezing pore is blocked by ice formed in its larger
neighbors, only a thin (< nm size) layer of lubricating liquid layer
exists as channels to connect to the reservoir. Transport of the ions
deviates from bulk transport behavior, and they will be hindered due
to the highly charged surface of the narrow liquid channels. (d) The
ion and water channels on a membrane can actively control these
transport processes, hence controlling the salt concentration inside.

for those not. As with the free water molecules, the solvated
water molecules are electrically neutral and of very small size
(~ 3 A); hence we safely assume that all “free” water
molecules exchange between the freezing pore and the exter-
nal reservoir, even when salt is trapped. Below in Sec. II B we
refer to this situation as nanofluidic salt trapping. This idea of
nanofluidic salt trapping has led to the development of sev-
eral nanofluidic devices, such as electro-osmotic micropumps
[30], nanofluidic diodes, and bipolar transistors [31-33], and
nanofluidic ion separators [34].

Throughout this work we adopt a continuum description
for both the electrolyte and the ice domains. The general form
of free energy functional is

Fot = Fliquid + Fsolia + Finterface
€ =
-/ dV(us - §||V¢||2>
€ = 2
+ / dV[g({Ci}) + oo — E||V¢|| ]
v

+ > /S AS(y; +4;9), (1)

Jj=s,l,sl * "7
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where the integrations are performed over the volumes of the
solid (V;) and the liquid (V;) with permittivities €, and ¢,
respectively, and over surfaces of the solid-liquid interface
(S51), the liquid-pore interface (S;), and the solid-pore interface
(Ss), with corresponding surface charge densities, gy, q;, and
g5 and interfacial tensions, yy, ¥, and ys; us — iy is the bulk
chemical potential difference between the solid and liquid
phases; —%d) is the electric field; g({c;}) the nonelectric part
of homogeneous liquid electrolyte free energy; c; the concen-
tration of ion species i having charge z;e; and p = ) ; ziec; the
net charge density, assumed to be negligible in the solid phase.
We focus on situations of complete wetting by the liquid,
¥s — Y1 > Ys1, in which case we can neglect S; and assume
S; covers the entire pore surface.

We solve the model for isotropic symmetric pore spaces
in d dimension (d = 1, 2, 3) and assume a smooth ice-liquid
interface respecting the same symmetry of the pore geometry.
One significant convenience from the symmetries is that no
electric field should penetrate into the ice core in the mid-
dle of the pore, so that the electric field energy term inside
Vs can be neglected. To show that, one can draw a Gauss
surface surrounding the ice, or placed concentrically inside
the ice core, with the same geometric symmetry. The total flux
of the E field through this surface should be zero, since we
assume there is no net charge in the ice:

/ E.d§=0. @)
SGauss

By symmetry each infinitesimal element of E -dS should
possess the same value regardless of the orientation of the
normal direction dS , leading to E=0.

To determine the equilibrium state of the system under
a given pore radius, R, pore surface charge density, eq, and
initial salt concentration, ¢y, we minimize the total free energy
functional Eq. (1), with respect to the position of the ice-liquid
interface, denoted as r. For each fixed r value, the electric
field and ion density distribution inside the liquid phase should
also minimize the free energy. For simplicity, we choose the
entropy of an ideal gas,

gle(@)] = kT c[In(cv) — 1], 3)

so that the equilibrium ion concentration follows a
Boltzmann distribution (other entropies, such as a lattice gas
model, correspond to a Fermi-like distribution). The varia-
tional principle, 6F /§¢ = 0, leads to the Poisson-Boltzmann
(PB) equations [35-37]. We assume that ice always forms
concentrically at the center of the pore from homogeneous
nucleation. Additionally, we assume the ice surface to be
neutral and use g to denote the number density of surface
charges on the pore wall.

A. Free ion limit: One-component plasma

For one-component plasma (OCP) the PB equation reads

V2O 4«2 e ® =0, 4)

ocp

where ® = Zef¢ is the dimensionless potential, 8 = 1/kgT
and ko, = ZBe*/elg, where [y = BZ%¢* /4w is the Bjerrum

length. Additionally, the boundary conditions for @ are
D' (r/lg) =0
Z€2 ﬁ lG

P'(R/lg) = — g (&)

We scale all the spatial coordinates with the Gouy-Chapman
length I = % as X = x/lg. For OCP the value of the
reference electric potential is only determined by the prefactor
of e=®. Here we choose the nondimensional prefactor kocp in
terms of these characteristic length scales.

1. d=1: OCP in a slit pore geometry

In the one-dimensional case Eq. (4) becomes
"4 k2 e ® =0, (6)

ocp

and the surface of the ice is located at r = 0. This equation is
integrable, noticing that

D"® + ke PP =0
dr1 _
d—z[§(®’)2 — Koep® d’} =0

1
z(<1>/)2 — ke = —P. (7)

For P > 0 the solution reads

1 Koy o [Pl
= ——1In—sin —X+601, 8
¢ Zep " P > o (8)

where the constants P and 6 are determined by the boundary

conditions
V2IP|

¥/ =0) = T cot@n) =0
¢ X=R/lg) = ﬂ cot | 4/ ﬂR + 00 | = —eqlg/e,
Zep 2

(©))

so the final expression of electric potential reads

=0 —Llnuﬁlcos2 ﬂfc
T Zep 2

PR ZgBe*  2mR
PR _ zabe _ 2nR (10)
2 lG ¢ lG

|P| R
— — tan
2 g

Substituting the above solution into the total free energy (per
unit area A) of the system we get

F R € 5
7= e~ + dx| g(c(9)) + 5@)7).  ab
where minimization of this form yields
oF [ | kgT
oxa T e
The Gibbs-Helmholtz equation relates the bulk freezing en-
thalpy to (i) the latent heat of bulk water Q, (ii) the difference

P=0. (12)
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FIG. 2. The free energy for the case of freezing with free ions, as a function of r in a pore of radius R = 5 nm, with surface charge
density ¢ = 1 nm~2 and bulk water permittivity. Legend subscripts denotes the total free energy (Fiy), the electrolyte contribution (F,.), the
ice freezing enthalpy contribution (Fyjq), and the surface tension term (Fy,)m (a—c) at temperature 7 = 270 K, (d—f) at T = 230 K. (a, d)
d=1,(b,e)d =2, and (c, f) d = 3. Counterion recombination with the pore surface charge is neglected. The equilibrium solution is given by
the global minimum of F, at r*. If 7* = 0 no freezing happens; otherwise r* > 0 freezing starts in the pore. For d = 1 the pore almost freezes
completely even at T = 272 K, showing very minimal freezing point depression. For d = 2, 3 the competition between surface tension and
freezing enthalpy overshadows the contribution from OCP. (a, d, e, f) Frozen pores and (b, ¢) unfrozen pores.

of heat capacity between water and ice Ac,, (iii) the bulk
freezing point Ty, (iv) and the freezing point depression AT =
T — T as

AT AT?
) (13)

=021 _Ae 2
Ms — <Q T Cp T

Combining this result with Eq. (12), we arrive at a relation
between P, Q, AT, Ty, and Ac,, as follows:

47'[131(2;
kT

- AT AT?
P = - (14)

The physical meaning of P is shown to be the dimensionless
pressure. When no curvature effects are present, freezing point
depression is achieved via the presence of counterions. More
specifically, if g increases, in order for the ice not to melt, i.e.,
the ice front should remain at r, P has to increase [Eq. (10)],
resulting in a decrease of the freezing temperature, i.e., AT
becomes even more negative. A quick order of magnitude
estimate shows that 2wd > I; (for free water €, = 80, g =
1 nm~2, Iz ~ 0.6 nm, I &~ 1.66 nm, with R ~ 6 nm we have
2nd/lg ~ 22.7). Solving Eq. (10) we arrive at

ﬂkBT - AT
m ~ Pieeze & _QT()

T; 10 nm?
AT~—0.1K( 0 ) ey
273K/ \ R,

Pele ~
(15)

Figures 2(a) and 2(d) depict typical free energy functions
at T = 270 K and 230 K, respectively, for a pore of radius
R =5 nm and surface charge density ¢ = 1 nm~2. Since
d =1, there are no contributions from the surface energy.
The competition between OCP and ice freezing enthalpies
determines whether the pore is frozen or not. As analyzed
previously, as soon as the temperature drops about 1 K below
the bulk freezing point, the entire pore freezes. Pressure values
can be estimated by using Eq. (14).

2. d=2,3: OCP in a cylindrical or spherical pore symmetry

Under cylindrical or spherical symmetry, dg/3® = 0, re-
spectively, with 6 and ¢ denoting the azimuthal angles. After
separation of variables, the radial part of the nonlinear dimen-
sionless Poisson-Boltzmann equation reads

d—1
'+ +e =0 (16)
X
with

® = fZed +1In (d‘i>

Z2e2cld
qzez
= BZ n(————
pZeg +1In ((4n)26,60k3Tc0>
= BZed — In (4 colply), (17)
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where surface charge density is —eq < 0 (assumed negatively
charged pores). The counterion concentration is

1

— —BZep __ —P
c(x) = ¢pe = —,
(0 =co A lyl2

(18)

where ¢ is defined as the concentration when ¢ = 0.

In the remainder of the text we drop the hat symbol from all
dimensionless quantities, so that ¥ = x/lg — x, F =r/lg —
r, R =R/l — R. The boundary conditions for the higher-
dimensional case read

Px=r)=0
, Ze (19)
d'(x =R) = —0:¢(R) = —4nl;.
kgT
For OCP, charge neutrality can be checked by integrating
the charged surface boundary condition,

R
4
lg/ S(d)xd*‘dxme*q’m = S()R14 g
r BlG
(20)
R
/ x? dxe ™ = S(d)R!,

r

where S(d) is the dimensionless coefficient of surface area of
a hypersphere [Az(d) = S(d)R?"'] in d dimension: S(1) =
1,S2) =2n,53) =4n.

A general change of variable z(x) yields

P = 9,90,z =70.P
D" =7"9,® +7°920.

The prime ’ represents the derivative with respect to x. Now
Eq. (16) is

(z’zafcb +e )+ 2" +(d— 1) /x]9.D = 0. (21)

One way to simplify the differential equation is to eliminate
the 9,® term. This is done by setting its prefactor equal to
Zero as

x7'+d-17 =0 (x(d_”z’)/ =0. (22)

Equation (22) consists of a differential equation which evalu-
ates the mapping between the physical coordinates r and the
reference space z. In the case of multiple dimensions, where &
is not only a function of r but also of other spatial coordinates,
e.g., (6, z) in the cylindrical coordinate system, (6, ¢) in the
spherical one, the equivalent to Eq. (22) would be a set of
differential equations that specify the mapping of the physical
domain coordinate system to a reference one [38]. Integrating
Eq. (22) twice it follows that

C Clnx ford =2
= — > =
£ xd=D ‘ ford =3

/ c RN OX)

Notice that these transformations between coordinates satisfy
V2z=0

in the respective dimensions: they are the natural coordinate
in the curved geometry. Without loss of generality we take

C =1 and Eq. (16) now reads

320 +e P =0 cylindrical,

e 24)
BZZCD + o =0 spherical.

No analytical solutions to the spherical case are known so far,
but the cylindrical case can be recast into a similar form as in
d = 1 via the substitution = & — 2z:

Xy +e V=0

1 2 (25)
(58{(//) —e V= &,

where the boundary condition is

.Yz =In(r)] = -2

(26)
3.z =In(R)] =R — 2.

Assuming & < 0 one arrives at

2
¢ = Z%ﬂ In |:|)i§_| sin® <\/E2|1n(x) + 90)i|

2,2
— ——In L , (27)
ZE‘B 47'[€kBTC()

v 2|&] cot (\/@ln(;’) + 90) =-2
v/ 2|&| cot <\/E2|ln(R) + 90) =R-2.

Surface tension in d = 2,3 is not negligible: the typ-
ical values for pure water surface tension corresponds to
~100 MPa for a 5-nm pore. By the above order-of-magnitude
estimate on the pressure from OCP, we conclude that OCP
contribution to AT and pressure is overshadowed by surface
tension. The more interesting case of trapped salt ions in
d = 2,3 will be discussed later. In Figs. 2(b), 2(e) and 2(c),
2(f) we show the free energy profiles for d = 2, 3. With the
same parameters as in d = 1, the effect of OCP is clearly
overshadowed by the competition between surface tension and
bulk freezing enthalpy.

with

(28)

B. Trapped ion limit: 1:1 electrolyte

In the case of nanofluidic salt trapping, we focus on deal-
ing with the electrolyte for the rest of this section. For 1:1
electrolyte the equation reads

V2P — k2 sinh @ = 0, (29)

where k2 = 2c;e?B/€, and ¢y is the concentration of salt
at the reference point of potential ¢ = 0, which is variable
during freezing and compression of the electrolyte. In the limit
of all salt ions being trapped, the above Poisson-Boltzmann
equation is constrained by the number conservation of ions:

R R
Cref(r)/ 67¢S(d)xd’ldx =N, = / C037¢OS(d)xd71dx_
" 0
(30)
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The right-hand side is the total number of counterions when
no ice has formed, and the left-hand side corresponds to the
case where an ice core of radius r has formed.

1. d=1: 1:1 electrolyte in a slit pore geometry

For 1:1 electrolyte the dimensionless PB equation reads
V2® —sinh ® =0 (31)

by redefining the dimensionless variable ¥ = x/Ap, where the
inverse Debye length is now k = A;' = /2coZ2e2/ekpT, and
® = ZeB ¢ the dimensionless potential. Again, for the ease of
notation we remove the hat from all dimensionless quantities.
The electrolyte concentration is determined by both the refer-
ence concentration ¢y and the electrostatic potential ¢ as ¢; =
coe Pe%4® with Z, = —Z_ = Z. The boundary conditions for
the 1:1 electrolyte are

d'(r)=0
Ze’q q (32)
ckgT ~ 2c0Zrp’

' (R) = —ap

neutrality leads to

R
by / S(d)x*"'dx2Zcy sinh ®(x) = =SR2 q

R q
/ x?'dx sinh ®(x) = —R?"! (33)

. 2Zcorp

The nonlinear problem for ® in general needs to be solved

numerically. However, for the special case of d = 1, an analyt-

ical solution can be derived that can reduce significantly the

computational cost of evaluating the total free energy func-

tional. Multiplying each side by @', we arrive at the following
conserved form:

19? — cosh(®) = &. (34)
Then make a Mobius (fractional linear) transformation,
t+1
cosh(®) =u = e+l
at +1/a
a*+2ta+1=0. (35)
Equation (34) is rewritten as
d
“ — +/2dx, (36)

VE+uw@* —1)

where an additional change of variables leads to
P 1 —u/l  a—cosh(d)

The solution to the integral,

each value of r.

= , (37
where, again, r corresponds to the location of the ice surface au —1 a? cosh(®) — 1
and R is the radius of the charged pore. Additionally, charge and we arrive at
|
du B dt
VE+w@ —1) I =1/a®)+ (1 —a)2l[(1/a*€ —1/a) + (a?§ — a)?]
2dt
= a — —— - +/2dx. (38)
@ -1 a)\/[l + et 2][] 4 B 2]
= g—cl)sh((b) dt (az 1)(5 a)
a= cosh(®)—1 f— —
/ — = +2 > (x — x0), (39)
0 Ji— a1+ g a
can now be expressed by the first kind of incomplete elliptic integral F (u, v):
i . cosh(®)—a £a’? —a
x—x9) = F| arctan ia———-———1, + . (40)
22— 1)(E —a) a? cosh(P) — 1 §—a
[
The implicit formula for ® can be used to compute Fiy, at electrolyte reads in dimensionless form,
(V2= 1)d =0, (41)

2. d=2,3: Debye-Hiickel (DH) approximation in a cylindrical or
spherical pore geometry

In order to derive analytical solutions for 1:1 electrolytes
in the case of d =2 or 3, we make the well-established
Debye-Hiickel (DH) approximation [25], which linearizes the
exponential term of the PB equation. The DH equation for 1:1

where all lengths are again scaled by the Debye length Ap.
Under cylindrical symmetry d = 2, the radial part of
Eq. (41) is a Bessel equation

1
P+ -0 —d=0. (42)
X
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Since angular dependency vanishes due to symmetry, the so-
lution is constructed by

D = Ajo(x) + Bng(x), (43)

where jo(x) and no(x) are the zeroth-order Bessel and
Neumann functions, respectively. The coefficients A and B are
determined by the given boundary condition of the problem.

Under spherical symmetry d =3, the radial part of
Eq. (41) gives a spherical Bessel equation

" 2 /
'+ - —-d=0 (44)
X
and again, due to angular symmetry, we have
e e*
®=A—+B—. (45)
X X

The coefficients A and B are given by the boundary conditions.
To remind us, the total free energy reads

F = (ps — )V (d)r? + S@)yur®™

R €
+ / S(d)xdldx<g(c>+5¢’2>. (46)

Minimizing F with respect to r and noticing ®'(x =r) =0
leads to a transcendental equation for r.

C. Simplified model for thin double layer and low
surface charge

While the mathematical expressions for d = 1,2, 3 are
readily calculable numerically, greater physical intuition can
be gained by considering the solution in the limit of small
surface charge of the pore. In this limit, the entropic contribu-
tion to the free energy of the electrolyte becomes the P — V
work of compression of an ideal gas of ions with uniform
concentration, valid when |®| < 1. At small surface charge,
the entropic contribution to changes in free energy dominate
over the electrostatic contribution. The entropic contribution
to the free energy change for |®| ~ 0 is given by

R
Fo = [ St e )
with uniform concentration for each species given by
C()Rd (48)
CL R ——.
! (R —rd)

The expression for F,, can be easily integrated, since g(c;) is
a constant over the whole liquid domain:
2kpT coS(d)R?
FCHI = T
As the ice core radius grows, the difference in free energy due
to entropic effects versus r = 0 is given by
2kpT coS(d)R?
d
The expression in Eq. (50) can be expanded for /R < 1 to
give an additional contribution to the bulk energy of nucle-
ation, which scales as r? at leading order:
2kgT coS(d)r?
y .

[In(vco) —In(1 — (r/R)Y) — 1]. (49)

AFy = — In(1 — (r/R)%). (50)

AFy ~ (51)

The dominant leading order approximation suggests that the
pore size R does not strongly affect the freezing point depres-
sion, unless the ice nuclei size r is on the order of R. In other
words, the freezing point depression will happen similarly in
larger pores as long as the salt is trapped within the pore.

If the surface charge is fixed and the Debye length re-
mains thin relative to the pore radius, then the electrostatic
free energy will depend only on the change in the average
concentration, captured by a change in the effective Debye
length. The free energy stored in the diffuse part of the double
layer at linear response is equal to the energy stored in a planar
capacitor with capacitance C = ke multiplied by the outer
pore surface area. The energy stored in the capacitor, in terms
of the surface charge density, is

q2€2S(d)Rd_]

2ek (52)

Fiela =

As the ice grows, the electrolyte is compressed and the con-
centration of ions increases. Therefore the effective Debye
length becomes smaller:

o 2coe’ BR?

2
= A . 53
Kk (r) o eRT = ) (53)
The capacitive energy decreases:
2SR (1 1
AFjed = -1 -— (54)
2e k() k()

or in terms of the ice core radius, r:

2.2 d—1
e“S(d)R
AFjg = =125 (1= T= /R, (55)
2ex(0)
This expression can be expanded for r/R < 1 to give an
additional contribution to the bulk free energy of freezing:

qze2S(d)rd
4Rek(0)

We can combine Egs. (51) and (56) to arrive at the modified
bulk energy change due to ions:

AFele = AF‘ent + AF‘ﬁe]d

2kpTcoS(d)  g*e*S(d) d
A - .
d 4Rek (0)

Note that the expression in Eq. (56) scales with the square
of the surface charge density, meaning at the low surface
charge densities where the approximation is valid, the field
energy change is negligible compared to the entropic change.
While the simple formula gives a useful estimate of the free
energy, geometrical confinement when the double layer is not
thin renders the full numerical model necessary.

These formulas can be used to gain intuition about the
scales of the electrostatic and entropic contributions to the free
energy profile as a function of r. They give simple modifica-
tions to the classical nucleation theory, as will be discussed in
later sections.

AFfelg = — (56)

(57

D. Charge regulation and salt crystallization

When concentration of salt increases in the electrolyte,
as ice forms, the surface charge will tend to recombine
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FIG. 3. The free energy for the case of freezing with nanofluidic trapped ions as a function of r in a pore of radius R = 5 nm, with surface
charge density ¢ = 1 nm~2 and assuming saturated water permittivity ¢ = 10. Initial salt concentrations for all subplots are ¢y = 1 M. Legend
subscripts denotes the total free energy (F), the electrolyte contribution (F), the ice freezing enthalpy contribution (Fgq), and the surface
tension term (Fy,r) (a, b, ¢) at temperature 7 = 270 K, (d, e, f) at T = 250 K. Counterion recombination with pore surface charge is neglected.
The equilibrium solution is given by the global minimum of Fi, at #*. If * = 0 no freezing happens, otherwise r* > 0 freezing starts in the
pore. The discontinuity in F and Fg. happens at salt saturation. Beyond the saturation point F;, has no contribution from F.. (d, e, f) Frozen
pores, (b, ¢) unfrozen pores. Notice that in (a), even though salt crystallization lead to a global minimum at the frozen state, the homogeneous
nucleation barrier is sufficiently large that the unfrozen state is likely to be observed.

with counterions. The simplest recombination-dissociation
equilibrium for a one-step reaction with ion valence Z = 1,
M* + B~ = MB, is described by the equilibrium constant

K= %. The Langmuir adsorption isotherm for M in
OCP leads to s2q = KJFCK?,
occupied by a single site of B~ or MB group. The boundary

condition at the charged surface is then modified as

where s? is the surface area

@’(R) = LL
€s? K + cope=®®

(58)
The specific value of recombination-dissociation equilibrium
constant depends on the chemistry of the pore surface charge
and the counterion and can be further complicated by the
equilibrium of salt dissolution, multiple salt species, and solu-
tion pH. Here above we present the general theory framework
for it.

The analysis in Sec. II B is sufficient only if the salt is in-
finitely soluble in water. If the volume of electrolyte is reduced
too much by ice formation such that the concentration of salt
reaches saturation, the salt ions should precipitate into crys-
tal. Once salt precipitation is triggered, the system becomes
thermodynamically unstable and the new equilibrium will be
complete freezing of the pore. In this state, all salt ions are
transformed into crystal. This phenomenon is reflected in the

discontinuities of the curves in Figs. 3 and 4. We neglect the
volume of salt crystal.

E. Homogeneous nucleation barrier

Now we consider the effects of geometrical curvature,
which imposes a homogeneous nucleation barrier due to solid-
liquid interfacial tension, even in the absence of ions. In this
section we still use the symbol @ for dimensionless potential
and R for dimensionless pore size but restore r to be of length
dimension to denote critical nucleation radii. As shown in
Fig. 5, the trapped salt again plays a crucial role by signifi-
cantly increasing the free energy barrier and the critical radius
of an ice nucleus forming in the pore. Without ions, the critical
nucleation radius ry and the nucleation free energy barrier
for pure water confined in pores is described by the classical
nucleation theory (CNT) as a result of competition between
surface tension and bulk phase transformation:

_yd-1)
Ap

AGy  ,(d—1\""
v "\an )

where Ap ~ |QAT /Ty| depends on the latent heat of freezing
at bulk freezing point and the supercooling temperature. In

(59)
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FIG. 4. The salt concentration dependence of free energy. Similar to Fig. 3, here we show the case of freezing with nanofluidic trapped
ions as a function of r in a pore of radius R = 5 nm, with surface charge density ¢ = 1 nm~2 and assuming saturated water permittivity
€ = 10. Initial salt concentrations are (a) co =2 M, (b) co =3 M, (c) cp =4 M. Legend subscript denotes the total free energy (Fio), the
electrolyte contribution (F;), the ice freezing enthalpy contribution (Fy,q), and the surface tension term (Fy,¢). All subplots are at 7 = 260 K
for d = 1. Counterion recombination with pore surface charge is neglected. The equilibrium state is given by the minimum of Fy,, before salt
crystallization at r*. If r* = 0 no freezing happens, otherwise r* > 0 freezing starts in the pore. Due to salt crystallization the global minima
of (a—c) are all frozen states; however, the homogeneous nucleation barrier can be significant for the metastable states to be observed instead,

in which case only (a) here is labeled as fully frozen.

the presence of electrolyte the CNT equations are modified.
Once we know the supercooling nucleation energy barrier as
a function of temperature, given the initial salt concentration
and a certain energy threshold value we will know what the
supercooling temperature is.

As a first approximation, we can include the free energy
change from the model assuming small surface charge den-
sity and thin double layers in the limit of /R <« 1, given
by Eq. (57). While this model does not capture the non-
linear complexity of the problem, it can output a simple
formula for the influence of salt trapping on ice nucleation.
Because the terms to leading order are proportional to the
ice core volume ~r¢, they can be incorporated into an ef-
fective chemical potential change between the ice and water
phases, Aies:

q*e*d
Aptetr ~ |QAT /Ty| — 2kpTco + :
4Rex
The value of Ap can be plugged into the expressions for
ro and AGy in place of Au. The entropic contribution in-
creases rg and AGg, whereas the field contribution acts to
decrease them.

Now we turn to calculating the nucleation barrier from the
full numerical solution to the nonlinear model. Mathemati-
cally, the nucleation barrier problem can be formulated as
finding the extrema of the total free energy functional, AGy,
that occurs at the critical ice core radius ry. When performing
this task, the complication introduced by the electrolyte re-
veals itself as below in the constrained optimization problem
for the electrolyte region, which can be solved for the free
energy density of electrolyte and is related to solving the PB
equations with salt ion number conservation:

(60)

R
flox;r, R), c(x;1, R)] = argmin/ S(d)xdfldxf

r

s.t.V2¢p = Ze(cy — c_) = Zecy sinh(—B¢)

¢'(r)=0
¢'(R) = eq/e

R
f S(d)xe(x)dx = Nigy. (61)

The free energy density f of electrolyte modifies Eq. (59).

We compare the results of the full numerical solution to
the simple formula using A in Fig. 5. We find that the
model works relatively well up to charge densities of the
order ~ 0.1 nm~2, Using transition state theory, the nucleation
timescale can be calculated as

Touc(AT) = goef 208, (62)

The lower panels of Fig. 5 show the scaled nucleation
timescale Tpu./To0 X BAGe as a function of AT. Since salt
concentration increases the nucleation barrier in addition to
surface tension effect, a longer nucleation time is expected.

F. Gibbs-Thomson effect of melting point shift

For d = 2, 3, the classical Gibbs-Thomson effect relates
the shift of equilibrium melting point to the surface curvature,
which is determined by the pore size in our context:

1
AT, x —.
R

(63)
As shown in Fig. 3, after the salt saturates and crystallizes, the
free energy does not admit any more contribution from the salt
ions. Hence as the temperature goes up, when a little melting
has initiated yet no salt ions can dissolve due to the pressure
being unfavorable to dissolution entropy, the free energy of
the frozen state and its variational neighborhood states are al-
ways determined by the competition between surface tension
and solidification enthalpy. Hence, the prediction of melting
point will coincide with the classical Gibbs-Thomson effect

[Eq. (63)].

045102-9



TINGTAO ZHOU et al.

PHYSICAL REVIEW E 104, 045102 (2021)

..... CNT
== Salt trapping (approx)
= ' Salt trapping (mslmerical)

5 T T .
; g
4r 1iq 4r TR
ri ol 1
E3 1;i - E3[ 1 i
d — 2 A ’ £ v i
cor tS 0+ fe2r RV
e Z N i
L — P
0 L 0 '
40 -20 0 -40 -20 0
AT [K] AT [K]
5 T T T 5 T T ¢
I 1 F;
1 L U
ar i 4 ’
E) VAN !/
= & 4 s
d=3 =3r /,,:’ 7] %3_ ’ 7]
- //’/ B g &
2 7 -~ 2F o .
L P05 e
1 | | | 1 | | |
40 -30 20 -10 -40 30 20  -10
AT [K] AT [K]
Co = 1M Co = 2 M
..... CNT

== Salt trapping (approx)
= ' Salt trapping (numerical)

1.5F T P ] 15F T ' i
1 i 1
— I3 ]
g 1 i1 i
_ o § 1 7 7
d=2 3¢ )7 ;
5. s ’
o5t 25 Hosk v S
0 ! 0 '
40 -20 0 -40 -20 0
AT [K] AT [K]
15F T T “H15F T T B!
[ 1
1 1
— I 1
&n 1F Mo a
d g 3 EE 1 ;7 1 4
o 1 ; o
S ¢ 5 VR 4
o5 ¢/ HosF VA
/{»"“ /, P
mmﬁ"(wm _’/ o
0 1 1 1 0 1 1 1
40 -30 20 10 -40 -30 -20 -10
AT [K] AT [K]
Co = 1M Co = 2 M

FIG. 5. The critical nuclei radius (ry) and energy barrier for nu-
cleation (AG) from classical nucleation theory, the simplified model
[using Eq. (60)], and numerical solutions [based on Eq. (61)] for
d =2 and d = 3. The concentration is 1 mol/L salt, the surface
charge density is 0.1 nm~2, and the pore radius is R = 5 nm. The
critical nuclei radius and the energy barrier are both increased in
the presence of trapped salt. The numerical solution is truncated
when trapped salt makes freezing thermodynamically unfavorable
(neglecting saturation of salt).

III. NUMERICAL METHODS

A. One-component plasma

We adopt an iterative method to solve Eq. (16) by expan-
sion of &; — &4,

d—1
o)+ — O +e PP P =0, (64)

which after keeping the first order term of e® %+ =~

14+ &, — &,;; and manipulation of terms we get the
conservative form
Bxxd71d>;+1(x) —x¥ e, = —(1 4 & )xd e,
(65)

Starting from a reasonable initial trial solution &,_¢ =
0, Eq. (65) gives the rule for iteration, whose stopping

criteria are
|<Dt - q)t+l| < 8iter or Niler > Nitermax~ (66)

After ®(x) is evaluated, the field energy can be integrated
R
a1, 10
Fieu=F | x dxz(CD )7 (67)

d—2
where F = kgT ﬂ(—? IGT The ideal gas entropy is

R
~TS = kgT1g / S(d)x?dxe(x)[In (c(x)v) — 1]

r

R
=.7-"/ X dxe @ | 1n v —dx)—11,
, AxiplZ
(68)

where v is counterion volume. In practice we take the volume
of hydrated ions. Notice that & is usually positive from the
numerical solution. The free energy of ice is

AT AT?
Fy = (s — p)IGV (d)yr = (Q— + Ac,,—)zng)r"

Ty Ty

AT AT?\ 41215V (d)
= (02 + A G ¢F, 69
(Q T, oo, ) WTS@) )
where V(1)=1,VQ2)=m,V(3)=4r/3. The surface
energy is

Fourt = ()~ 17 yq. (70)

The problem now is reduced to finding the minimum of the
functional with respect to r:

R
a1, )1 0 —<1>(x>[ < v ) _ _ ]}
/r X dx{ 2(CD )+ ve In 477[31(2; dx)—1

AT AT?\ 4nlZV (d
+ (0= + Ac, TlZV(d) 4
T Ty ) qkgTS(d)

+4mr

where y;; is the solid-liquid surface energy per unit area.
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B. Trapped salts

The same iterative algorithm as above is applied to trapped
salts where the PB equation reads

axxd’I(D;H —x?71®, | cosh @,
= x?!(sinh ®, — @, cosh ,), (72)
with x the spatial coordinate scaled by the Debye length Ap.
Now the field energy is similar to Eq. (67):
R 1
Fraa = F [ 2 i@, 73)

except now F = 25(d )dekBT, and r, R are normalized by Ap.
The ideal gas entropy is summing over two ion species:

R
—~TS = kgT 2% f S(d)x?dx Z ¢;(0)[In (¢;(x)v) — 1]

r i=1,2

R
= ]-"/ xdﬁldxco[(ln vcg — 1) cosh @ + @ sinh P]J.

(74)
The free energy of ice is normalized by Ap as

AT AT?
Fy = (s — p)ApV (d)rd = (Q— + Acp—>)»1d)V(d)rd

T T

AT AT?\ V()

=0 +Ac)— |77 F. 75
(Q T, AT )ZkBTS(d)r (73)

The surface energy is
_ _ Vst _
Furt = S@r* 'yghy ! = F———r""1. (76
surf = S(A)r®™ yadp kel (76)
Similar to Eq. (65), we use the first order expansion
of sinh(®; + A) ~ sinh(®;) + A cosh(d;) for an iterative

scheme. After solving this finite difference problem one can
minimize the functional below:

R 1
/ xdldxc()(E @ + cosh ®(In vey — 1) + @ sinh d>>

AT AT? Vd 2
+ <QT + Ac ) (d) d Vst d-1
0

2sTS@) " 2apkaT

(77)

IV. CONCLUSIONS AND DISCUSSIONS

In this paper we present a general continuum theoretical
framework to model freezing phenomena in charged hetero-
geneous porous media. We distinguish the regimes of free and
trapped salt ions, which can rise from bottlenecks and het-
erogeneous freezing, referred to as nanofluidic trapping. The
limit of free ions is approximated as one-component plasma
and is shown to only induce minimal freezing point depression
and pressure. While in the case of trapped salts, the freezing
process becomes continuous, distinct from the feature of bulk
freezing as a first order phase transition. The freezing point
depression and pressure are significant in typical situations of
biological or materials science applications, which we elab-
orate in another companion paper. We discuss and include
in the framework additional physical chemistry phenomena
such as charge regulation and salt saturation. Finally, both
numerical results and analytical approximations are obtained
to derive a modified nucleation theory, when surface tension
effects are combined with the influence of the trapped salt
ions. Our theory can find potential applications in freezing
tolerance or endurance of biological and inorganic materials,
or novel nanofluidic devices.

For the sake of simplicity and demonstration, some approx-
imations have been made throughout this paper, which could
be investigated and potentially relaxed in future analysis. Ice
formation is treated as a homogeneous nucleation process
with a stable growing interface, where heterogeneous nucle-
ation or dendritic growth regimes are possible. A stability
analysis on the growth interface could clarify the regime of
validity of this assumption. Solubility of salt ions in ice is
neglected, which implies a not too fast freezing process and
could be violated in a very fast vitrification arising from large
supercooling. Lastly, continuum predictions may deviate from
reality when the freezing pores are reaching nanometer size,
for example, the discrete size of solvated ions may have to be
considered.
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