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Phase diagram and snap-off transition for twisted party balloons
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Many of us have the experience of inflating balloons and twisting them into different shapes and animals.
Snapping the balloon into two separate compartments is a necessary step that bears resemblance to the pinch-off
phenomenon when a water droplet detaches from the faucet. In addition to testing whether balloons exhibit the
properties of self-similarity and memory effect that are often associated with the latter event, we determine their
phase diagram by experiments. It turns out that a common party balloon does not just snap, but can assume five
more shapes, i.e., straight, necking, wrinkled, helix, and supercoil, depending on the twist angle and ratio of its
length and diameter. Moreover, history also matters due to their prominent hysteresis. One may shift the phase
boundary and/or reshuffle the phases by untwisting or lengthening the balloon at different twist angle and initial
length. A heuristic minimal model is provided to obtain analytic expressions for the phase boundaries.
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I. INTRODUCTION

Twisting and bending elastic filaments [1–3] or ribbons
[4,5] has fascinated scientists for centuries, such as a coil
formed by twisting a rope [6] and tendril of the climbing
plant [7,8]. In recent years, due to the progress in biology,
researches in DNA and protein structures and functions make
this topic popular again [9–11]. For a long rod or wire, a one-
dimensional description suffices since the thickness is much
smaller than the length. In this work, we shall investigate the
twisting of inflated party balloons in Fig. 1(a) for which the
rubber thickness t is replaced by radius R that is comparable
to length L.

Balloon is an example of soft material that is easily acces-
sible and fun to play with. When inflated with air or fluid, it
exhibits many interesting phenomena, such as a longitudinal
phase separation during inflating [12–16], deformation and
bursting when it impacts a rigid wall [17], fragmentation due
to bursting [18], and air transfer between two balloons [19].
Our initial goal is to determine how many configurations a
twisted balloon can adopt besides the familiar snapping phase.
It turns out that the phase diagram is not a state function of
the twist angle θ and ratio of length and diameter, but also
depends on history, e.g., untwist or increase L/2R while fixing
the θ . This hysteretic behavior is more extensive than that for
a stretched loop ribbon [5], the rearrangements of soap films
in a triangular prism frame [20], and when the frequency of
an applied force to zip or unzip DNA is varied [21]. It is hard
not to see some resemblance between the snap-off transition
and the pinch-off phenomenon for water dripping from a
faucet [22,23], bubble formation [24,25], elephant trunks of
interstellar gas and dust in the Eagle Nebula [26], and the
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sticky “capture blob” used by Bolas spider [26]. Comparisons
are made in the end.

II. EXPERIMENTAL SETUP

Produced by Sempertex, our balloon samples come in three
diameters, 1, 2, and 3 inches when inflated. They can be
blown up to 60 inches long—about five times their origi-
nal length. When inflated, their material characteristics are:
Young’s modulus Y = 0.02 GPa, thickness t = 0.07 mm, and
shear modulus S = 1 MPa.

The experimental setup in Fig. 1(b) consists mainly of
two parts, a frictionless rail and a force sensor. The rail is
composed of two hollow coaxial cylinders, A and B, through
which the balloon is inserted. Cylinder A is the active side via
which we twist the balloon around a bearing fixed on a desk.
As the stepping motor rotates at a steady angular velocity, a
tension meter measures the twist force F .

In Fig. 1(b), the inner diameter of A and B is adjustable.
While being prevented from rotating about A by a weight of
600 gw, the cylinder B is fixated to a long hollow aluminum
pipe of length SE = 1 m that is much larger than its diameter
s = 1 cm. A long iron centering pin fixed to the ground is
then inserted into the pipe to avoid tilting that may otherwise
happen when the balloon tries to bend to lessen its shear
energy which renders the twist angle hard to control. In the
mean time, the combination of wires of length W = 5m and
sliding rails that are fixed on the ceiling ensures that the
cylinder B moves passively along the central axis as long
as the displacement �z � W sinα where α denotes the angle
between the wire and ceiling in Fig. 1(b).

III. A CONSERVED PHYSICAL QUANTITY

Let us first examine a straight twisted balloon. The shear
modulus S is defined as the ratio of shear stress F/(2πRt ) to
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FIG. 1. (a) Balloon samples. (b) An inflated balloon is inserted
and fastened by Velcro straps between two cylinders where A is
driven by a stepper motor and in charge of twisting. The operational
length L is defined as the distance between the inside edge of Velcros.
(c) A horizontal mark is drawn before twist. Besides the straight
phase in panel (d), a medium-sized balloon with L/2R = 4.6 can
develop (e) necking, (f) wrinkles, and (g) snapping. In contrast, a
long balloon with L/2R = 11.8 shows (h) helix and (i) supercoil. The
white circle in panel (h) is to facilitate visualization of the relation
between the two radii of curvature, ρ and ξ .

the shear strain φ where 2πRt is the cross section area:

S =
F

2πRt

φ
. (1)

When we twist the balloon by angle θ , as shown in Fig. 2(a),
the arc length

	

CD = Rθ . From the perspective of L,
	

CD is
achieved by twisting angle φ. Therefore,

Rθ = Lφ, (2)

as long as φ � 1 which is obeyed in the parameter range we
tested. Combining Eqs. (1) and (2), we obtain

F = S × 2πRtφ = S
2πR2t

L
θ. (3)

As will be explained soon, a part of the balloon may
become concave at large enough θ . Ostensibly it seems en-
ergetically unfavorable for the balloon to voluntarily concave
because it raises the surface tension energy. So the balloon
must have been compensated by the shear energy. To see why,
let us generalize Eq. (1) to a balloon with a nonuniform trans-
verse radius r(z). The elasticity relation for shearing becomes

F

2πrt
= S

r dθ (z)√
(dz)2 + (dr)2

, (4)

FIG. 2. (a) A schematic of a twisted balloon in phase 1. (b) A
thin slice of vertical cross section between z and z + dz. (c) The
conserved quantity in Eq. (5) is checked and shown by triangles for
a concave balloon with L/2R = 2.0 and θ = 4.0 whose profile is
denoted by circles in the second y axis on the right. The r-dependence
of St and how to measure r are elaborated in Sec. III of the
Supplemental Material (SM) [27]. Circle and triangle in (d) represent
torque and minimum radius r0, with solid and open symbols denoting
twist and untwist, in the double-y plot vs θ for L/2R = 5.0. (e) is for
L/2R = 14. Note that r0 does not pop back to full R as θ is relaxed
to 0 in (d).

for the slice between z and z + dz in Fig. 2(b) where θ (z) is the
local twist angle that obeys θ (L) = total twist angle θ , dr ≡
r(z + dz) − r(z) denotes the difference between local radius,
and dr and dz are the two sides of rectangle whose hypotenuse
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√
(dz)2 + (dr)2 plays the role of L in Eq. (3). By combining

Eq. (4) with the constant torque condition, Fr = const., from
static equilibrium, we obtain

St
r3√

1 + (dr/dz)2

dθ (z)

dz
= const. (5)

This conserved quantity is verified in Fig. 2(c) for the concave
and smooth region where S and t are respectively an decreas-
ing and increasing function of r but their product St is found to
be roughly a constant by Fig. S4(g) of the SM [27]. The r3 in
Eq. (5) implies that lowering r can redirect more shear angle
into the concave segment and lower the total shear energy, as
demonstrated in Sec. VII of the SM [27].

IV. MECHANICAL RESPONSE AND HYSTERESIS

In the following, we refer medium balloons to 4 < L/2R
� 8. As shown in Figs. 1(c)–1(g), their configuration evolves
continuously from being (1) straight and smooth to (2) con-
cave and smooth and (3) concave and wrinkled. At the point
of (4) snapping in Fig. 1(g), the balloon suddenly loses its
resistance. The transition in Fig. 2(d) is abrupt. Live demon-
strations can be found in Video S1 in the SM [27].

For a long balloon in Fig. 2(e), phases (2∼4) are now
replaced by (5) helix and (6) supercoil, as shown in Figs. 1(h)
and 1(i). The torque plummets at the border between phases 5
and 6. There is no such a discontinuity for later transitions
when more supercoils take turns to appear. By examining
the marker line on the balloon and other reasons detailed in
Sec. IV and Video S1 of the SM [27], we know that shear
stress hardly affects the bended region, i.e., the supercoil.
Phases 5 and 6 are shared by twisted filaments [6] whose
torque versus θ relation is similar to Fig. 2(e).

Hysteresis is observed when the balloon is allowed to un-
twist. The torque in Fig. 2(d) changes continuously to the best
resolution of our force meter from phase 4 to 3, and the neck
radius does not pop up to full R until θ is much smaller than
the critical angle when phase 1 transits to 2 in the forward
twist process. This relaxation line is reversible until it meets
the forward twisting line that will take over the evolution. We
believe hysteresis is intrinsic and not due to plasticity that is
present in balloons since r0 did not revert to R at θ = 0 in
Fig. 2(d). Our proof comes from testing on an inflated condom
[27] that is mainly plastic, but still exhibits the hysteresis.

V. MINIMAL MODEL FOR PHASE BOUNDARIES

Shear energy for phase 1 can be written down as

E1 ∼ SRtL
(Rθ

L

)2
= SR3t

L
θ2. (6)

For phase 2, we approximate the concave segment by a uni-
form tube of length 
, radius r � R, and shear angle θ1 to
obtain

E2 ∼ Sr3t



θ2

1 + SR3t

(L′ − 
)
(θ − θ1)2

+ 2πT [R(L′ − 
) + r
 + (R2 − r2) − RL], (7)

where T denotes the surface tension coefficient, defined as
the amount of stretching energy per unit surface area and
the empirical value is about 55.5J/m−2 in inflated state.
The first two terms represent the separate contributions from
the concave region and the rest of surface. Since we treat the
air as being incompressible, the air that originally occupies
the concave region will be relocated and elongate the balloon
from its original length L to L′. By volume conservation, we
obtain the following:

πR2L = πR2(L′ − 
) + πr2
, (8)

where L′ − 
 = L − (r2/R2)
. By use of Eq. (8), the con-
served quantity in Eq. (5) requires that

r3θ1



= R3(θ − θ1)

L − r2

R2 

, (9)

which pins down θ1 as a function of r and 
 which in turn
are determined by minimizing E2 respectively, as detailed in
Sec. VII of the SM [27]. Setting r = R and equating Eqs. (6)
and (7) reveal that


 ∼ R (10)

at the transition from phase 1 to 2 when the twist angle reaches

Rθ1,2/L ∼
√

T/(St ), (11)

which matches the data in Fig. 3(a). Let us skip E3 since its
transition from phase 2 is empirically difficult to nail down.
The next is phase 4. By now, the marker line on balloon has
reverted to being horizontal at the snap-off and, therefore, we
do not expect any remaining shear energy except the creation
of two hemispheres about the singular neck. So,

E4 ∼ T R2. (12)

Physically we expect the snap-off to be triggered by an
imbalance between shear and surface energies. In other
words, the transition angle θ3,4 can be estimated by equating
Eqs. (6) and (12):

θ3,4 ∼
√

T

St

L

R
. (13)

The reason why we did not try to incorporate the wrinkles and
write down E3 is that the snap-off transition is abrupt so that
E3 > E4 and θ3,4 cannot be determined by equating them.

Phase 5 for long balloons is trickier in that it relieves part of
the shear energy by angle η by distorting or bending itself into
a helix. Furthermore, a second bending term is needed because
our experimental setup in Fig. 1(b) requires both ends of the
balloon aligned. By twiddling with real balloons, it is easy to
realize that this extra energy (1) is redundant for η = 0 and 2π

when the alignment is automatic, and (2) can be diminished by
lengthening the balloon which justifies an additional factor of
R/L. Overall, we expect

E5 ∼ SR3t

L
(θ − η)2 + Kb

(
η

L

)2

RL + Kb
η(2π − η)

L2
R2,

(14)

where Kb ∼ Y R2t from elasticity and η/L in the second term
coming from the curvature 1/ρ that can be derived from the
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FIG. 3. Phase diagram for balloons is history-dependent. Panel (a) is for a twisted balloon with fixed L/2R where doubling t is achieved
by inserting one balloon into another before inflating which also doubles T in Eq. (11). Open symbols denote the transition angle θ1,2 and θ1,5,
and solid symbols are for θ3,4 and θ5,6. Dashed lines are the fitting functions. Gray area means there exists a crossover region for the transition.
Panel (b) is obtained by untwisting a snap-off or supercoil balloon. Note that θ2,1 refers to the transition angle from phase 2 to 1, and same for
others. Diagram (c) is by lengthening L while fixing R and θ for a short or medium balloon. Similar to panel (c), panel (d) is for a long balloon.
Phase 3 is omitted since its range is too small.

Pythagorean theorem in Fig. 1(h), ρ2 = (ρ − ξ )2 + (L/4)2,
that requires ρ ∼ L2/ξ . The fact that ξ is linked to η by
ξ ∼ ηL immediately leads to ρ ∼ L/η.

Minimizing Eq. (14) with respect to η gives

η ∼ Sθ − Y R
L

S + Y (1 − R
L )

. (15)

For phase 1 to enter phase 5 and η to increase from zero,
Eq. (15) sets a lower bound on θ that can be duly identified
as the boundary

θ1,5 ∼ Y

S

R

L
. (16)

As the twisting continues, we come to the next boundary by
setting η = 2π in Eq. (14). This renders

θ5,6 ∼ 2π + Y

S
, (17)

independent of L, R. The same conclusion has been derived
[34] for a twisted filament, which implies that the much larger
length scale L in the longitudinal direction masks the structure
in the cross section. This is similar to the fact that the lattice
spacing becomes negligible when taking the long-wavelength
limit for the dispersion relation of phonons in solid.

Vindicated by the R-squared values shown in Fig. 3(a),
the theoretically predicted dependence of phase boundaries
on L/2R matches the experiment excellently. In addition, the
prefactors also fall in the right ballpark. For instance,

√
T/(St )

in Eqs. (11) and (13) equals 0.890 in contrast to the empirical
value of 0.23 and 2.76. As for Eqs. (16) and (17), the factor
of Y/S equals 20.30 as opposed to 41.43 and 7.96 from the
fitting. The discrepancy is expected since we have not been
careful with numerical factors like 1/2 and 2π to focus on

the key experimental parameters in our minimal model. It is
not worthwhile to go back and fill in these numbers since
a bigger uncertainty lies in our approximating the concave
region of a phase-2 balloon in Fig. 1(e) by a U-shape basin in
Fig. S9(b). We have tried V-shape and smooth functions such
as the Cauchy and Gaussian distributions, but the calculations
quickly became so cumbersome that analytic expressions
were no longer possible.

A closer scrutiny of the fitting functions in Fig. 3(a) will
reveal the existence of constant terms not predicted by our
model. They are an artifact of how we implemented the
torque. Similar to how we grasp and twist the balloon by
bare hands, we inserted the balloon into two hollow coaxial
cylinders before fastening it by Velcro straps. As marked
in Fig. 1(b), the operational definition of L is the distance
between the inside edge of these two straps. Although we have
tried to extend the reach of Velcros as far as possible, the ends
of balloon, i.e., two hemispheres, inevitably stuck out and
were not counted in the theoretical definition of L in Eq. (8)
for a whole balloon whose volume is conserved. Therefore,
when examining the empirical phase diagram of Fig. 3(a), all
the theoretical L in this section need to be adjusted to L + �L
where �L ≈ 4.3R denotes the total length of two Velcro width
and two radii of hemisphere. This change will introduce a
positive correction to θ1,2 and θ3,4 since their L-dependence
is in the numerator, as opposed to a negative amendment from
the L in the denominator of θ1,5. More statistical analyses on
the selection of a better fitting function can be found in Sec.
IX of the SM [27].

Having established in Figs. 2(d) and 2(e) that the value
of torque and r0 for untwist is different from that for twist
at the same θ , we thus expect a different phase diagram for
relaxation. As plotted in Fig. 3(b), it becomes clear that the
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FIG. 4. (a) The evolution of configuration for a balloon with L/2R = 4.6 is shown by the side view in photographs (i–v). The closure of
open area A at the bottleneck from the internal view in (vi–x), shot at the same time as the photograph above it. As can be viewed from Video
S2 in the SM [27], both r0 and A decrease slowly at the final moment of snap-off, which made them unsuitable to define τ0. (b) Dimensionless
radius r0/R vs real time τ . The first derivative is plotted in the inset where the vertical dash lines mark the time τ0 and τ1 at which the speed
equals 10% of its maximum value. We set τ < τ1 as regime I when the neck radius hardly decreases, as opposed to regime II for τ1 < τ < τ0

when the irreversible and automatic shrinkage picks up a noticeable speed. The temporal resolution is 0.1 ms. (c) Equivalent radius of the open
hole in (vi-x) vs τ where τ0 = 4.60 ms corresponds to the full closure of the shutter.

phase boundaries, θ4,3 and θ2,1 are indeed dissimilar to θ3,4 and
θ1,2. For instance, θ2,1 ∼ θ5,1 ∼ 0.1 is small for all lengths,
in contrast to Eqs. (11) and (16). The story does not end
here that two more different phase diagrams are found when
we lengthen L while keeping θ fixed. Experimentally this is
achieved by shifting the moving end B in Fig. 1(b) while
holding the balloon (to keep the twist angle fixed.) If we start
from phase 4, then it remains so without entering phase 6, as
shown in Fig. 3(c). But if we start from phase 5, it will transit
to phase 1 in Fig. 3(d).

VI. DETERMINATION OF SNAP-OFF TIME
AND SHRINKING SPEED

A high-speed camera with 10 000 fps was used to capture
the dynamical process that leads up to a singular neck. The
balloon in Figs. 4(a)(i), 4(a)(ii), and 4(a)(iii) is reversible and
corresponds to phases 2 and 3, respectively. Being taken at
successive time at the same θ , the process in Fig. 4(a)(iv) and
4(a)(v), categorized as phase 4, thus reveals their irreversibil-
ity. Note that the exact time τ0 at which the snap-off occurs
is not as clear-cut as its counterpart for pinch-off because
the two disconnected segments of balloon remain attached
and r0 never equals exactly zero in Fig. 4(a). Additionally,

r0 approaches zero at only 1% of the maximum speed which
makes it difficult to single out a value that corresponds to τ0.
So we resort to its time-derivable for a clearer identification.
Analogous to the cutoff frequency in filters [35], τ0 and an-
other threshold time τ1 can be unambiguously defined through
the caption for the inset of Fig. 4(b) to signalize regime II dur-
ing which period the shrinking and its accompanying physics
mainly occur. It comes as no surprise that τ0 roughly coincides
with the time when the opening in Fig. 4(c) vanishes be-
cause further shrinkage beyond this point will squeeze on the
rubber. Evidence presented in Sec. X of the SM [27] indicates
that, while τ0 is an important parameter for characterizing the
properties for snap-off transition, there is a tolerance range of
0.5 ms to its precise value.

Unlike the reversible regime I where dr0/dt is determined
by the stepper motor, an average shrinking speed vs for regime
II in Fig. 5(a) is meaningful because it is intrinsic to the
phase-4 balloon. In Figs. 5(b) and 5(c), τ0 − τ is rendered
dimensionless by an intrinsic timescale that comes from di-
viding R by a characteristic speed v whose expression will be
theoretically derived shortly in Eq. (22). As proven in Sec. X
of the SM [27] by the calculation of cosine similarity value
[36] that exceeds 0.9, we are confident to claim that medium
balloons exhibit the property of self-similarity in regime II,

045004-5



CHENG, HSIEH, TSAI, AND HONG PHYSICAL REVIEW E 104, 045004 (2021)

FIG. 5. (a) Figure 4(b) is replotted by shifting τ to τ0 − τ . Dash line at τ = τ1 signalizes the transition from reversible to irreversible. (b) By
renormalizing the x axis in panel (a), data for different L, R, and t can be made to collapse to a master curve in regime II. (c) Renormalized
shrinking speed vs increases quadratically with L/2R. (d) Time evolution of balloon profile where z0 is the position at the bottleneck. The time
interval between successive lines is 0.1 ms. (e) Data in regime II can be made to collapse to a master curve by rescaling. (f) Cosine similarity
value is evaluated for different β.

i.e., the data for different R, L, and t can be made to collapse
onto one master curve by rescaling. A direct vindication for
v can be found in Fig. 5(c) where the empirically obtained vs

is shown to scale with v. To test whether snap-off transition
exhibits the property of self-similarity, we rescale the profiles
in Fig. 5(d) by r/(Rτ̃ α ) and (z − z0)/(Rτ̃ β ) where α = 1 and
β = 2 enable the best overlap in Fig. 5(e) via trial and error.
Physically, the scaling exponent α = 1 is expected from the
constant v, but β = 2 is determined by maximizing the cosine
similarity value in Fig. 5(f). Note that the relative magni-
tude of α < β is different from 0 < β � α � 1 for pinch-off
systems [23]. For starters, rubber does not obey the Rayleigh-
Plateau instability that predicts the breakage of water column
occurs when r � z − z0. Therefore, β − α < 0 is required to
revert the relative size in

r

τ̃ α
>

z − z0

τ̃ β
τ̃ β−α (18)

at small τ̃ .
In the following, we explain that the quadratic relation

between v and L/2R comes from ratio of area between flat
and neck regions, Aflat/Aneck, because longer balloons convert
more shear potential into the kinetic energy of the collapsing
neck. Since r is much smaller than R at the snap-off transition,
r2
/R2 term can be neglected compared to L in both the
numerator and denominator of Eq. (9). Furthermore, the first
term r3L in the denominator can be omitted because R3
 is
much larger. Based on the above approximations, Eq. (9) can
be simplified to

θ − θ1 = r3L

R3

θ1. (19)

Remember that the distinction between short and medium
balloons lies in whether the concave segment spans over the
whole balloon. This is based on the result in Eq. (10), namely,

 ≈ R at θ1,2. Now imagine cranking up θ in phase 2. Experi-
mentally both r and 
 are deceased instead of creating another
partial segment with aggravated concaveness. This implies
that the concave segment can be effectively treated as a down-
sized short balloon, and r ∼ 
 should be valid throughout
phases 2 and 3. As a result, we can set r ∼ 
 = δR at the
snap-off transition where δ � 1 decreases with increasing θ .
Apparently the twisting direction is arbitrary and so δ ought to
be an even function of θ and δ ∼ 1/θ2 is the simplest guess:

r ∼ 
 ∼ R

(θ3,4)2
= SR2t

T L
(20)

at the snapping where the expression for θ3,4 has been
borrowed from Eq. (13). Finally, the shear strain accumulated
outside of the concave segment is “sucked” into the bottle-
neck because dθ/dz diverges at r → 0 according to Eq. (5).
This shear energy is then converted to the kinetic energy of
shrinking:

SR3t

L
(θ − θ1)2 ∼ σ

2

rv2 = σ

2

(
SR2t

T L

)2

v2, (21)

where σ is the surface mass density and Eq. (20) has been
used. Inputting the formula for θ − θ1 in Eq. (9) then enables
us to determine the shrinking speed as

v ∼
(L

R

)2
√

T 3

S2σ t2
. (22)
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TABLE I. Competing mechanisms in pinch-off and snap-off.

Phenomena Pinch-off [23] Snap-off

Singularity Yes Yes
Competing Input Surface tension Shear (dominant)
mechanisms

Surface tension
Output Viscosity (dominant) Inertia

Inertia

It is worth noting that this dependence on the initial length
violates the lack of memory effect which property is often
flaunted for pinch-off systems where v only depends on the
flow of inner liquid [37,38].

VII. COMPARING SNAP-OFF TRANSITION WITH
PINCH-OFF PHENOMENA IN FLUID

In spite of the analogy to the similarly abrupt and singular
nature of pinch-off phenomenon [23,39–47], we emphasize
that they do not share the same microscopic mechanisms.
Shear trumps the surface tension as the main input energy
to trigger the snap-off in balloons, and competes with dissi-
pations due to the inertia of collapsing neck, as summarized
in Table I. A clear physical insight is via the inspection of
the conserved quantity derived in Eq. (5) and vindicated by
Fig. 2(c), which states that dθ/dz is proportional to r−3. This
sensitive dependence predicts that the shear strain, along with
its energy, will be pumped en masse in the immediate vicinity
of the singular neck as r → 0. This picture is backed up by
the experimental observation that the marker line on the flat
segments that flank the concaved region suddenly reverts to
being horizontal upon the occurrence of snap-off. This is clear
evidence that shear energy is being converted to the kinetic
energy of the collapsing neck. Unlike the Rayleigh-Plateau
instability, the surface tension energy plays a lesser role in
balloons. This can be easily demonstrated by pinching the
neck of an untwisted balloon, which will not create the abrupt-
ness characteristic of the snap-off transition.

VIII. CONCLUSION AND DISCUSSIONS

In summary, we show that party balloons can assume
six configurations, depending on the twist angle and aspect
ratio between length and diameter. Scaling analysis, including
the finding of a conserved quantity that links radius and the
gradient of strain, are provided to derive analytical forms for
the phase boundaries that are consistent with experimental
findings. Not caused by the plasticity, the hysteresis of balloon
is pronounced that the allowed number of phases and their
location in the phase diagram are subject to change when the
balloon is untwisted or lengthened at different twist angle and
initial length.

Special attention is paid to clarify the connection between
the snap-off and pinch-off transitions. Although the finite
thickness of rubber will prevent the balloon neck from actu-
ally collapsing to a singularity, the physics we are interested
in happens prior to that. So the development of a neck whose

FIG. 6. (a, b) The asymmetry in phase 2 and 3 with L/2R = 2
and θ = 900, 1400 tilts in opposite directions. (c) The lateral shift �

is plotted as a function of θ . The dash vertical lines denote the phase
boundary.

size evolves to be much smaller than all the other length scales
of the system is common in these two phenomena. Further-
more, they share the existence of two competing energies to
safeguard the property of self-similarity. Mainly, the surface
tension in pinch-off is replaced by shear in snap-off as the
dominant input energy, while the dissipation from viscosity
being negligible for air is substituted by the inertia term of the
collapsing neck. It will be worthwhile to find and solve the
counterpart of Stokes equation [23] for snap-off in the future
to clarify the physical mechanism implied by the different
scaling exponents.

While measuring the radius r(z) for Fig. 2(c) to vindicate
Eq. (5), we realized that the upper and lower profiles of
phase-2 and -3 balloon are not symmetric. In other words, the
twisted balloon automatically breaks its reflection symmetry
in phase 2, but temporarily restores the symmetry at θ3,4

before breaking it again in phase 3 in a reversed direction,
as demonstrated by Fig. 6. The lateral distance � denotes the
shift between the lowest point of upper profile and the highest
point of lower profile. We do not yet fully understand the
mechanism that triggers this breaking of reflection symmetry,
nor can we explain why the symmetry is restored temporarily
at the critical angle. However, a useful clue is that � can be
reversed if we change the chirality of the twisting direction.
This strongly suggests that the act of twisting is responsible
for breaking the symmetry.
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