
PHYSICAL REVIEW E 104, 045002 (2021)

Nonclassical nonlinear elasticity of crystalline structures
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Hysteretic elastic nonlinearity has been shown to result in a dynamic nonlinear response which deviates from
the known classical nonlinear response; hence this phenomenon was termed nonclassical nonlinearity. Metallic
structures, which typically exhibit weak nonlinearity, are typically categorized as classical nonlinear materials.
This article presents a material model which derives stress amplitude dependent nonlinearity and damping from
the mesoscale dislocation pinning and breakaway to show that the lattice defects in crystalline structures can
give rise to nonclassical nonlinearity. The dynamic nonlinearity arising from dislocations was evaluated using
resonant frequency shift and higher order harmonic scaling. The results show that the model can capture the
nonlinear dynamic response across the three stress ranges: linear, classical nonlinear, and nonclassical nonlinear.
Additionally, the model also predicts that the amplitude dependent damping can introduce a softening-hardening
nonlinear response. The present model can be generalized to accommodate a wide range of lattice defects to
further explain nonclassical nonlinearity of crystalline structures.
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I. INTRODUCTION

Elastic nonlinearity in materials has been of interest to
researchers in a wide range of disciplines including materials
science, engineering, and geophysics. Naturally, this would
mean the bulk nonlinear response would be a result of tangled
contributions from a wide variety of lattice and higher scale
defects. Of particular interest are the contributions from the
mesoscale defects since they contribute directly to macro or
bulk scale elasticity, and nanoelasticity. Typically, the bulk
nonlinearity has been characterized using phenomenological
models for different types of materials including crystalline,
amorphous, polymeric, rubber, etc. Specifically for crystalline
metallic structures, a hyperelastic stress-strain relationship
with a Taylor series expansion of the strain energy density has
been used [1–3]:

ϕ = 1
2Ci jklεi jεkl + 1

6Ci jklmnεi jεklεmn + · · · , (1)

where εi j are the Lagrangian strain components, Ci jkl are the
linear second order Brugger elastic coefficients, and Ci jklmn

are the nonlinear third order Brugger elastic coefficients [4,5].
Equation (1) accommodates the anisotropy of the elastic con-
stants as well. These nonlinear elastic constants can also be
determined theoretically using empirical force-constant mod-
els, molecular-dynamics simulations, and density function
theory (DFT) methods [6]. There is also a large body of work
which covers measurement of the nonlinear elastic constants
using static methods [7] and dynamic methods, such as non-
linear wave propagation [4,8], acoustoelastic waves [9], and
nonlinear resonances [10].
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Recent work in the past two decades has demonstrated a
new type of nonlinearity that arises from the microstructure.
It exhibits anomalous nonlinear dynamic behavior such as
hysteretic damping, nonlinearity, discrete memory, and slow
dynamics [11–15]. Since these stress amplitude and time
dependent behaviors are not classical characteristics of non-
linear materials, this was termed “nonclassical nonlinearity”
(NCNL). NCNL materials have been reported to exhibit dif-
ferent behavior based on the applied stress range [16,17]:
(a) linear elastic, which is a low stress amplitude range where
the structure behaves like a linear elastic material due to
low contributions of nonlinearity [11]; (b) classical nonlinear
(CNL), where the elasticity is controlled by classical defini-
tions of nonlinearity prescribed by Landau and Lifshitz [18];
and finally (c) nonclassical nonlinear, where the elasticity is
controlled by mesoscale features. Any NCNL structure will
exhibit all three stress ranges [11,16,17]. However, the stress
value at transition between the different stress regimes is de-
pendent on the hysteretic mechanisms. Furthermore, at low
stress amplitudes, the hysteretic response is low, so it exhibits
an apparent linear and CNL response. While there is a wide
body of literature which explores the NCNL response of geo-
materials [19], concrete [20], reinforced composite structures
[10,21,22], and granular materials [23,24], there are only a
few articles which explore the NCNL behavior of metallic
structures [14,25–29]. This presents an interesting challenge
since the source of NCNL behavior in metallic structures has
not been well understood. There is no work in the literature
which has explored the influence of lattice defects on the bulk
NCNL behavior of metallic structures.

The general approach towards understanding nonclassi-
cal nonlinearity has been to use phenomenological models
which model the hysteretic nonlinear material behavior. While
most of the present work modifies the bulk phenomenological
coefficients to fit the experimentally observed response, the
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FIG. 1. Schematic showing the nonclassical nonlinear behavior of structures. For each parameter such as frequency shift, internal friction,
and harmonic scaling, the three strain ranges, linear, classic nonlinear (CNL), and nonclassical nonlinear (NCNL), are shown. (a) The frequency
shift � f ∝ σ n, where n can take up values of 0, 1, or 2. (b) The nonlinear internal friction Q−1 ∝ σ n, where n can take up values of 0 or 1.
(c) The higher order harmonic amplitude scaling laws with fundamental harmonic: ax ∝ an

1, where x = 2 for second order harmonic, x = 3
for third order harmonic, and the power law term n can take up the values 0, 2, or 3. (d) Slow dynamic showing the preconditioning frequency
( f0), the high amplitude conditioning frequency ( fc), and the recovery frequency over time ( fRti) at time ti.

physical effects are lost in the process. Presently there is no
physical model which can capture all three stress regions. The
objective of this article is to use physical effects such as dislo-
cation dynamics to explain the nonclassical nonlinearity and
damping observed in crystalline structures. Previous experi-
ments show that dislocations can result in a linear frequency
shift [30], but the exact mechanisms have not been explained.
The present work uses dislocation dynamics in a resonant bar
experiment to show that the overall elastic behavior will be
nonclassical nonlinear in nature. The dislocation based model
captures the nonlinearity in the three stress ranges and the
transitions between them. Additionally interesting phenomena
such as softening-hardening nonlinearity are also shown.

II. BACKGROUND

The NCNL behavior typically arises due to the hysteretic
nonlinear elasticity. This has been traditionally modeled using
a stress-strain relationship given by [31]

σ =
∫

[K0(1 − βε(t ) − δε(t )2

−χ (�ε + ε(t )sign(ε̇))) + · · · )]dε, (2)

where K0 is the linear second order elastic stiffness, β and δ

are the third and fourth order nonlinearity parameters, and χ

is the hysteretic parameter, which is strain rate dependent. A

resonant beam with this material law will exhibit the following
characteristics:

(1) Nonlinear frequency shift. In the case of linear elas-
tic materials, with increase in stress amplitude, the resonant
frequency of the beam remains constant; � f ∝ σ 0. For CNL
materials, a quadratic decrease in resonant frequency is ob-
served with increasing stress amplitude, as prescribed by
Landau [18]: � f ∝ σ 2. But for NCNL materials, a linear
frequency shift is observed: � f ∝ σ as shown in Fig. 1(a).
By definition, this dynamic response is strain amplitude de-
pendent, i.e., a NCNL material will exhibit all three stress
regions, and a CNL material will only exhibit the linear and
CNL regions.

(2) Nonlinear internal friction. The internal friction (Q−1)
remains constant with stress amplitude for linear and CNL
materials, Q−1 ∝ σ 0, and increases linearly for NCNL ma-
terials, Q−1 ∝ σ , as shown in Fig. 1(b).

(3) Higher order harmonic scaling. The higher order har-
monics are defined as, i.e., f2 = 2 × f1, f3 = 3 × f1, where
f1 is the fundamental harmonic, and f2 and f3 are the second
and third order harmonic frequencies, and a2 and a3 are their
respective amplitudes. For linear materials, there are no higher
order harmonics, i.e., a2, a3 = 0. In the case of CNL materi-
als, a2 ∝ a2

1, and a3 ∝ a3
1. For NCNL materials, a3 ∝ a2

1
as shown in Fig. 1(c). Once again, this will be an amplitude
dependent behavior, and NCNL materials will exhibit all three
characteristics.
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FIG. 2. Schematic showing (a) the dislocation breakaway pro-
cess as a function of stress and (b) the resulting stress-strain plot.

(4) Slow dynamics. Slow dynamics occur in purely NCNL
materials, and are not found in linear or CNL materials. If
the high stress amplitude is sustained over a period of time
(conditioning) and removed, the resonant frequency does not
recover to the original (unconditioned) value immediately;
rather it slowly recovers over time to its original value as
shown in Fig. 1(d). This has been categorized as a multire-
laxation phenomenon [32] and probed using a combination of
different techniques [27].

Existing NCNL models have focused on an array of mi-
crocracks or hysteretic mesoscopic units (HMUs) [23] which
can open and close over a stress cycle to simulate hysteretic
nonlinearity as shown in Eq. (2). The development of the
Preisach-Mayergoyz (PM) space model has tremendously
helped to explain the nonclassical phenomenon. Since hys-
teresis is central to NCNL response, the PM space model
works well for structures like rocks and concrete, which might
have an array of cracks. However, physically, not all struc-
tures contain such an assembly of microcracks. In metallic
structures, the hysteretic effects can arise from the lattice de-
fects [14,25,26,33]. Therefore, modeling the microstructural
response for crystalline materials would help in developing a
deeper understanding of NCNL behavior.

Lattice defects such as precipitates and dislocations have
been shown to be sources of nonlinearity and internal friction
in metals [34,35]. Dislocation motion under the action of an
applied harmonic stress is the most prominent source of hys-
teretic nonlinearity [35,36]. Explorations in this area gave rise
to the idea of amplitude dependent internal friction (ADIF)
[37–39]. The Koehler-Granato-Lücke model [35] provided
the first comprehensive explanation of frequency dependent
mechanical damping due to dislocation motion in a viscous
medium (prominent only in the megahertz range), and stress
amplitude dependent damping due to dislocation bowing and
breakaway for stress waves propagating through a crystal
lattice. The Koehler-Granato-Lücke model assumes that the
crystal lattice contains a network of dislocations pinned down
by impurity particles, with the dislocation loop length LC

defined as the length of the dislocation line between the weak
pinning points and the network length LN composed by a se-
ries of weakly pinned loop lengths between the strong pinning
points, as shown in Fig. 2(a). The dislocation line undergoes
hysteretic behavior as it is subjected to an applied harmonic
stress.

During the increasing quarter cycle of stress, an unde-
formed dislocation loop LC bows, and continues to do so until
the breakaway stress is reached, as shown in Fig. 2. During

this stage, the modulus of the dislocation stress-strain curve
is governed by the length LC . Once the breakaway stress
is achieved, the dislocation unpins catastrophically from the
weak pinning points, causing a sharp increase in the disloca-
tion strain for no increase in the stress. Further increases in
the stress correspond to a bowing of the dislocation network
line LN , with the modulus of the dislocation stress-strain curve
now being governed by LN . During the decreasing quarter
cycle, the unpinned dislocation line LN collapses elastically
obeying the modulus determined by LN until it reaches its
undeformed configuration, when it is once again pinned by
the impurity particles. The result is a hysteretic stress-strain
loop, with the energy loss proportional to the area enclosed by
the same. This hysteretic behavior leads to a stress amplitude
dependent loss, which has been characterized by Granato and
Lücke for propagating stress waves in the crystals [Eq. (13)].

The formulations from the Granato-Lücke model have
been used for propagating waves, but have not been studied
in the context of a resonant system. Additionally, there is
no work in the literature which has explored the effect of
dislocation breakaway on the nonlinear response. The com-
bined effect of dislocation dynamics influenced nonlinearity
and damping on the frequency shift and higher order harmonic
characteristics is also currently unknown. The present work
aims to fill these gaps and determine if dislocation dynamics
can give rise to dynamic elastic behavior which can be classi-
fied as nonclassical nonlinearity.

III. MODEL

Our approach to modeling the nonclassical behavior starts
with introducing stress amplitude dependent nonlinearity and
damping arising as a result of the hysteretic dislocation dy-
namic model of Koehler, Granato, and Lücke [35]. Scaling
the mesoscale response to the macroscopic response requires
the use of dynamic vibration models. Coupling the mesoscale
and the macroscale models allows us to capture the dislocation
dynamic effects in the macroscopic vibration model.

A. Modeling dislocation behavior

Granato and Lücke had assumed an exponential distribu-
tion of loop lengths in the initial lattice, which changes as the
material is stressed, and the breakaway process proceeds. For
a dislocation line, breakaway occurs when the force exerted by
a dislocation line on a weak pinning point exceeds the binding
force given by Cottrell’s theory. For a maximum binding force
fm, we define a “breakaway length” L, given by [35]

L = π fm

4bRσapp
, (3)

where σapp is the instantaneous value of the applied stress. The
other parameters in Eq. (3) can be found in Table I. The values
of the parameters correspond to Fe, but can be generalized for
any crystalline solid. For a harmonic loading condition, as is
considered in the present work, σapp is given by

σapp = σ0 sin 
t, (4)

where σ0 is the applied stress amplitude and is propor-
tional to the applied force. Breakaway occurs only when LN
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TABLE I. Descriptions and values of parameters used in the model. The values for parameters correspond to iron.

Symbol Description Value (unit)

ρ0 Material density 7850 (kg m−3)
C11 Second order elastic constant 205 (GPa)
M111 Third order elastic constant −2400 (GPa)
G Shear modulus 80 (GPa)
ηe Elastic Kelvin-Voigt damping 4753 (Pa s)
ν Poisson’s ratio 0.29
LC Dislocation loop length 0.27 (μm)
LN Dislocation network length 10LC

b Burger’s vector 0.3 (nm)
� Dislocation density 1012 (m−2)
R Schmid factor 0.3
ζ Shear to longitudinal strain constant 10
σ1 Initial (biasing) stress 0.02 (MPa)
C Force per unit length in 2Gb2

π (1−ν )

a bowed-out dislocation
fm Maximum binding force on dislocation line 1.0448 × 10−9(N )

Parameters for NL beam model
L Length of beam 76.2 (mm)
W Width of beam 19.05 (mm)
h Thickness of beam 7.29 (mm)

exceeds L. L is a function of the instantaneous applied stress
σapp, as evident from Eq. (3), and varies over the course of
a harmonic stress cycle. We may compute the value of L
over an increasing quarter cycle of stress to identify if and
when catastrophic breakaway of the dislocation line occurs.
Of course, no dislocation breakaway occurs at low stress
amplitudes, and it is only the length LC which bows, and
recovers during the decreasing quarter cycle. As the stress
amplitude increases, breakaway occurs increasingly sooner
in the increasing quarter cycle of stress, and the dislocation
length LC bows and breaks away, after which the length LN

bows. The dislocation line of length LN collapses during the
decreasing quarter cycle, and repins when the stress drops to
zero.

To integrate the effects of dislocation breakaway into a
material model, we assume a nonlinear stress-strain relation-
ship which has previously been considered in the literature
[4,5,30,34,40,41] given by

σi j = Ci jklεkl + Mi jklmnεklεmn, (5)

where Ci jkl are the second order elastic constants (SOECs),
and Mi jklmn are the third order elastic constants (TOECs),
related to the Brugger elastic coefficients as

Mi jklmn = 1
2 (Cjlmnδik + Ci jnlδkm + Cjknlδim + Ci jklmn), (6)

where δi j are Kronecker deltas.
To include the effect of damping, we will also introduce

a Kelvin-Voigt damping term into the stress-strain response.
Using Voigt notation to contract the elastic constants, and
restricting ourselves to one dimension along the solid, allows
us to rewrite the stress-strain relationship as

σxx = C11εxx + M111ε
2
xx + ηε̇xx, (7)

where ηε̇xx is the Kelvin-Voigt damping term to account
for the material damping. The elastic nonlinearity parameter

arising purely from lattice is defined by [42]

βe = −M111

C11
. (8)

In addition to lattice contribution (βe), there is also a
dislocation contribution to the nonlinearity parameter, first
described by Hikata et al. [34], which will be discussed in
the following section.

1. Stress amplitude dependent nonlinearity

The existence of a biasing stress σ1 leads to a dislocation
contribution to the nonlinearity parameter, which for a dislo-
cation loop of length 2L is given by [34]

βd = 12

5

ζR3�C2
11L4σ1

G3b2
. (9)

For a dislocation line that has not broken away, 2L = LC , and
for one that has, 2L = LN . The corresponding values of βd for
the two cases, called βd

C and βd
N , respectively, may be found

simply by substituting the appropriate value of L into Eq. (9).
It must be noted that there exists a distribution of loop lengths
in the lattice, and the calculation of βd is based on average
loop lengths.

If the applied stress amplitude is too small to trigger dislo-
cation breakaway, i.e., L > LN over the complete stress cycle,
we have

βd = βd
C . (10)

If the applied stress amplitude is large enough to cause
dislocation breakaway, we can find the time instant T during
the increasing quarter cycle at which this occurs by equating L
and LN . Strictly speaking, T depends on the forcing frequency

. This dependence, however, is found to be very small; we
ignore it and use Eq. (3) to compute L, and consequently T , at
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the resonant frequency ω. We use T to find the proportion of
time, P, a dislocation line spends unpinned during the increas-
ing quarter cycle. Furthermore, if breakaway has occurred, the
dislocation line remains unpinned over the entire decreasing
quarter cycle, repinning when the stress drops to zero. βd is
therefore a time dependent parameter. We disregard its time
dependence and compute an average value of βd from its
variation over a half cycle, given by

βd = 1
2

[
(1 − P)βd

C + (1 + P)Qβd
N

]
, (11)

where Q is a factor between zero and 1 that accounts for
the probability of a dislocation breaking away to the aver-
age length LN based on multiple slip plane orientations. The
overall nonlinearity parameter β is found simply by summing
the value of βe found from Eq. (8) with the value of βd from
either Eq. (10) (if breakaway does not occur) or Eq. (11) (if
breakaway occurs):

β = βe + βd . (12)

2. Stress amplitude dependent damping

Considering the exponential distribution of dislocation
loop lengths, Granato and Lücke have estimated a value of
L at which the stress-dislocation strain relationship becomes
nonlinear, and provided the stress-dislocation strain relation
for the increasing and decreasing stress quarter cycles [35].

The energy lost per cycle due to the dislocation bowing
and breakaway, �W , is found by computing the area enclosed.
The stress-dislocation strain curve and the stress amplitude
dependent dislocation decrement are finally expressed as [35]

�d = �W

2W
= T �0�L3

N

πLC

�

Rσ0
exp

( −�

Rσ0

)
, (13)

where T is the orientation factor accounting for multiple slip
plane orientations [35], and �0 is given by

�0 = 8C11b2

π3C
, (14)

and � is the effective dislocation modulus given by

� = π fm

4bLC
. (15)

The decrement arising from dislocations is further used to
compute the dislocation damping, which when combined with
the damping from the lattice gives the damping parameter of
the system.

B. Dynamic model

The phenomenon of NCNL in crystalline solids is studied
within the framework of a nonlinear beam vibration model.
The dynamic model for the flexural vibration of a cantilever
beam is derived beginning from the Kirchhoff plate the-
ory, with the in-plane and transverse midplane displacements
given by

u(x, y, z, t ) = u0(x, y, t ) − z
∂w

∂x
, (16)

w(x, y, z, t ) = w0(x, y, t ), (17)

where t is the time. The resulting linear von Kármán strain-
displacement relationship (with the nonlinear contribution
being neglected) with the x-direction strain is given by

εxx = ∂u0

∂x
− z

∂2w0

∂x2
. (18)

The dynamic equation is derived in a manner analogous
to previous work [10]. Details of the derivation are presented
in Appendix A. We drop the term in qq̇ from Eq. (A14) for
simplicity, and assume a harmonic external forcing given by
F sin(
t ) to write the final dynamic equation as

q̈ + ω2q + φq2 + γ q3 + αq̇ = F sin (
t ). (19)

The parameters in Eq. (19) are defined in Eqs. (A15)–(A18).
We now account for the amplitude dependence of the non-

linearity and damping due to dislocation breakaway within the
dynamic model to express the nonlinearities φ and γ , and the
damping α as amplitude dependent parameters.

We use Eq. (12) to rewrite the expressions for φ and γ in
Eqs. (A16) and (A17), as

φ = B11

�I

∫ L

0
p(p′′)2dx − 1

�I

∫ h/2

−h/2

(
βe + βd

)
C11z3dz

∫ L

0
p[p′′ pIV + (p′′′)2]dx, (20)

γ = − 1

�I

∫ h/2

−h/2
(βe + βd )C11z2dz

∫ L

0
p(p′′)3dx, (21)

where �I is given by Eq. (A20).
The effect of dislocation damping cannot be incorporated

into the material model [Eq. (7)] directly. We therefore com-
pare the value of the dislocation decrement �d from Eq. (13)
to the decrement � for the nonlinear oscillator from Eq. (19),
found from its first order solution and given in Eq. (34).
We equate � and �d , and solve for the damping parameter
due to dislocation motion, termed αd . Equations (A12) and
(A18) may then be used to back-calculate the Kelvin-Voigt
dislocation damping parameter ηd that would lead to αd . We

write the Kelvin-Voigt damping parameter due to both lattice
and dislocation contributions as

η = ηe + ηd . (22)

The damping parameter α, defined in Eq. (A18), can now
be rewritten, accounting for amplitude dependent dislocation
effects as

α = 1

�I

∫ h/2

−h/2
(ηe + ηd )z2dz

∫ L

0
p(pIV )dx, (23)

where �I is given by Eq. (A20).
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Equation (19) is solved using the method of multiple time
scales (MTS) [43]. Two time scales are used to express the
temporal function as

q(t, ε) = q0(T0, T1) + εq1(T0, T1) + · · · , (24)

where T0 = t and T1 = εt . This allows the transformation of
the time derivatives, which are then given by

d

dt
= D0 + εD1, (25)

d2

dt2
= D2

0 + 2εD0D1 + · · · , (26)

where Dn = ∂/∂Tn.

1. Primary resonances and decrement of the nonlinear oscillator

The primary resonances arise when the excitation fre-
quency is close to the linear resonant frequency, i.e., 
 ≈ ω.
A detuning parameter ς is used to show this nearness as


 = ω + ες. (27)

The primary resonances are excited with relatively small
forcing amplitudes, and the MTS solution thus assumes the
nonlinearities, the damping, and the forcing to be of the scale
ε, allowing us to rewrite Eq. (19) as

q̈ + ω2q + εφq2 + εγ q3 + εαq̇ = εF sin (ωT0 + ςT1),
(28)

where Eq. (27) has been used to rewrite 
t .
The subsequent steps in the MTS solution are provided in

Appendix B 1. Squaring and adding Eqs. (B9) and (B10) gives
us the frequency response for primary resonance,

(
1

2
aα

)2

+
(

aς − 3

8

a3γ

ω

)2

= F 2

4ω2
. (29)

The calculation of the decrement of the nonlinear oscillator
(19) requires us to compare the energy lost per cycle to the
maximum energy stored in the oscillator. The instantaneous
energy stored in the oscillator is represented by

E = 1
2 q̇2︸︷︷︸

Kinetic

+ 1
2ω2q2 + 1

4γ q4︸ ︷︷ ︸
Potential

, (30)

where q is taken to be the solution of the ε0 order equation
(B1), q0, given in Eq. (B3). Using Eqs. (B5) and(B6) and
simplifying, we may write

q = 1
2 aei(
t−θ ) + 1

2 ae−i(
t−θ ). (31)

q̇ is obtained from a simple time derivative of the above ex-
pression. Substituting the expressions for q and q̇ into Eq. (30)
allows us to solve for the maximum energy stored in the
system, finally obtained as

Emax = 1
2ω2a2 + 1

4γ a4. (32)

The energy lost per cycle can be found by integrating the prod-
uct of the instantaneous forcing and the velocity q̇ with respect
to the time t over one time period. This loss is represented by

�E =
∫ 2π/


0
F sin (
t )q̇dt = −πaF cos θ. (33)

The expression for the decrement of the nonlinear oscilla-
tor is now given by

� = �E

2Emax
= −πaF cos θ

aω2 + 1
2 a3γ

, (34)

for which we obtain cos θ from Eqs. (B9) and (B10), and a
in terms of α from Eq. (29). Equation (34) indicates that �

depends on the forcing frequency 
 in addition to the forcing
and the system parameters. However, this frequency depen-
dence is found to be negligible, and restricts the application of
Eq. (34) to the resonant frequency ω.

We finally derive from Eq. (29) an expression for the reso-
nant frequency shift, by evaluating the detuning parameter at
the peak amplitude, where da/dς = 0. The expression for the
frequency shift of the primary resonance is given by

ςp = 3

8

F 2γ

α2ω3
, (35)

which predicts a quadratic softening frequency shift with the
forcing amplitude F if all other parameters remain constant.
The resonant frequency at any forcing value is given simply
by the sum ω + ςp.

2. Higher order harmonic resonances

Higher order harmonics arise at integer multiples of the
excitation frequency, i.e., n
, where n = 1, 2, 3, . . . due to
the nonlinear interactions. For propagating waves, the def-
inition of higher order harmonics is straightforward, i.e.,
second order harmonic frequency f2 = 2 f1 and third order
harmonic f3 = 3 f1. However, for resonant vibrations, higher
order harmonics are defined based on the vibration mode. If
the fundamental resonance is excited at a resonant mode, a
corresponding resonant mode at the higher order harmonic
frequency is necessary to observe the nonlinear coupling.
However, this requirement is only satisfied for torsional
modes, and does not hold for flexural modes. Therefore, to ob-
serve the nonlinear coupling to excite a higher order harmonic
of order n for flexural modes, we need to provide the harmonic
excitation near ω/n to ensure that the nonlinear coupling will
result in a higher order harmonic near ω. This also means
that nonresonant excitation requires the forcing amplitudes
to be large, i.e., of the order ε0. The equation of motion for
corresponding the MTS solution is now written as

q̈ + ω2q + εφq2 + εγ q3 + εαq̇ = F sin (
T0). (36)

The second order harmonic arises when 
 is near ω/2. The
detuning parameter ς for this case is given by

2
 = ω + ες. (37)

The details of the MTS solution for higher order harmonic
resonance, starting from Eq. (36), is given in Appendix B 2.
Squaring and adding Eqs. (B17) and (B18) gives the expres-
sion for the frequency response as(

1

2
a2α

)2

+
(

a2ς − 3

8

a3
2γ

ω
− 3

a2γ�2

ω

)2

= φ2�4

ω2
. (38)

It must be noted that the quadratic nonlinearity φq2 con-
tributes only to the frequency response of the second order
harmonic, Eq. (38). φ does not appear in Eqs. (29) and (40),
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FIG. 3. (a) Frequency response curves for the primary resonance, developed with constant values of the nonlinearity parameter β and
the damping parameter α, showing CNL behavior, i.e., quadratic softening of the resonant frequency with the applied stress amplitude σ0.
(b) Frequency shift with the applied stress amplitude σ0, showing a brief region with almost zero frequency shift, followed by a region with
quadratic softening; this combined shift is referred to as CNL in subsequent results.

and has no influence on the frequency responses of the pri-
mary resonance or the third order harmonic.

Similar to the second order harmonic, the third order har-
monic arises when the forcing frequency 
 is near ω/3. The
detuning parameter ς is now defined as

3
 = ω + ες. (39)

The frequency response is derived by squaring and adding
Eqs. (B22) and (B23). The resulting expression is

(
1

2
a3α

)2

+
(

a3ς − 3

8

a3
3γ

ω
− 3

a3γ�2

ω

)2

= γ 2�6

ω2
. (40)

Unlike the explicit quadratic relationship between fre-
quency shift and applied stress for the fundamental frequency
given by Eq. (35), the higher order harmonics do not have
an explicit relationship. Equations (38) and (40) need to be
evaluated numerically to understand the harmonic amplitude
dependence on the fundamental excitation amplitude.

IV. RESULTS

A. Classical nonlinear behavior

The frequency response equation given by Eq. (29) allows
us to develop the resonance curves to understand the dynamic
behavior of the structure. By definition of Eq. (35), a quadratic
softening frequency shift is expected. At very low applied
stress amplitudes, the frequency shift will be infinitesimally
small, i.e., ∼0, and as the applied stress amplitude increases,
a quadratic shift in the frequency will be observed. Therefore,
as long as the coefficients of the equation of motion, Eq. (19),
are not dependent on the applied stress amplitude, classical
nonlinear behavior is expected. In the present work, CNL
behavior is observed on disregarding all dislocation effects,
i.e., setting ηd and βd to zero, such that only lattice contribu-
tions to the nonlinearity and the damping are considered. The
resulting frequency shift of the primary resonance is quadratic

with the forcing amplitude F , and by extension, the applied
stress amplitude σ0, as predicted by Eq. (35) and shown in
Fig. 3. As shown in Fig. 3, the classical model can capture
both the linear and the classical nonlinear zones.

In addition to the nonlinear frequency shift, higher order
harmonics can be used to characterize the material response.
A linear material will not exhibit higher order harmonics,
while a CNL material will exhibit higher order harmonics
which scale with fundamental amplitude. The second order
harmonic will scale quadratically (a2 ∝ a2

1), and the third or-
der harmonic will scale cubically (a3 ∝ a3

1) with fundamental
amplitude. The frequency response equations for the second
and third order harmonics, given by Eqs. (38) and (40), were
evaluated for increasing fundamental excitation amplitude,
and the resulting higher order harmonic peak amplitudes were
captured. For ease of presentation, rather than fitting with
a quadratic or cubic functions, we plot a2 against a2

1 and
a3 against a3

1, both of which are supposed to show linear
dependencies for CNL behavior. Figures 4(a) and 4(b) show
a quadratic and cubic scaling of the second and third order
harmonics, which is consistent with CNL behavior.

B. Influence of stress amplitude dependent nonlinearity

We consider the nonlinearity parameter to be given by
Eq. (12), which in turn influences the values of φ and γ , as
in Eqs. (20) and (21), while assuming a constant damping
coefficient, i.e., η = ηe. When the applied stress amplitude
is below the threshold to trigger dislocation breakaway, the
dislocation contribution to the nonlinearity parameter is given
by Eq. (10), which is small compared to the value of βe for
the value of σ1 considered. Furthermore, the value of β in this
range is not significantly different from that considered for
the CNL case. When the applied stress amplitude exceeds the
dislocation breakaway threshold, the dislocation contribution
to the nonlinearity parameter is given by Eq. (11), and a
sharp increase in its value can be observed, which stabilizes
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FIG. 4. Higher order harmonic scaling for CNL behavior. (a) Second order harmonic amplitude a2 scaling with the corresponding
fundamental harmonic amplitude a1; a2 ∝ a2

1. (b) Third order harmonic amplitude a3 scaling with the corresponding fundamental harmonic
amplitude a1; a3 ∝ a3

1.

at higher applied stress amplitudes. This variation of β with
the applied stress amplitude due to breakaway is shown in
Fig. 5(a) for different choices of the breakaway probability
Q. Larger increases in β are observed for larger values of Q.
The stress amplitude dependence of β is expected to cause
a deviation in the frequency shift of the fundamental har-
monic. Figure 5(b) shows the frequency shift of the primary
resonance with the applied stress amplitude, derived using
Eq. (35), for the different variations in β. The response clearly
shows the existence of two regions, one where β is constant,
and another above ∼3 MPa, where β starts varying due to
breakaway. Similar behavior has been shown experimentally
for aluminum by Cantrell and Yost [44,45]. Interestingly, both
regions show a quadratic frequency shift behavior.

We now look at how the breakaway process affects the
higher order harmonics. Since there are many breakaway
probabilities Q, we choose a value at which a considerable
change in β can be observed: Q = 0.3. We proceed as de-
scribed in the previous section to find the dependence of a2

and a3 on a1. For the range of the applied stress amplitude
where β remains constant, a2 scales linearly with a2

1, and a3

scales linearly with a3
1, as was the case for CNL behavior; this

is shown in Fig. 6. Interestingly, in the breakaway region, a2

still scales quadratically with a1, albeit with a small change in
the slope as shown in Fig. 6(a). However, a3 begins to scale
with a2

1 in the postbreakaway region, which is characteristic of
NCNL materials rather than CNL behavior. As can be seen in
Fig. 6(b) the scaling is not uniform in the NCNL range owing

FIG. 5. (a) Variation of the nonlinearity parameter β with the applied stress amplitude σ0 for different choices of the breakaway probability
Q. (b) Frequency shift of the primary resonance with the applied stress amplitude σ0 for different variations in β corresponding to different
breakaway probabilities Q.
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FIG. 6. Higher order harmonic scaling for variable β obtained for Q = 0.3. (a) Second order harmonic amplitude a2 scales quadratically
with fundamental harmonic amplitude a1; a2 ∝ a2

1 over the entire range of β. (b) Third order harmonic amplitude a3 scaling with fundamental
harmonic amplitude a1; a3 ∝ a3

1 in the CNL region, and a3 ∝ a2
1 in the NCNL region. The black squares represent response before breakaway,

and blue diamond markers represent after breakaway. The data shown in pink circles were noisy and could not be fit with either a3
1 or a2

1.

to the variable rate of increase in β with σ0 shown previously.
Two separate fits in the NCNL range are thus developed.

C. Influence of stress amplitude dependent damping

We now consider the effect of stress dependent damping
by setting the damping parameter, α, to have a dislocation
contribution, as given by Eq. (23). We further set the non-
linearity parameter to have no dislocation contribution, i.e.,
β = βe. The dislocation contribution to α is only prominent
beyond applied stress amplitudes sufficient to cause disloca-
tion breakaway; the resulting α therefore remains constant
until a certain value of applied stress amplitude, after which
it increases with the applied stress amplitude. Figure 7(a)
shows the dependence of α on the applied stress amplitude

for different values of the orientation factor T . The rate of the
increase in α is higher at larger values of T , as evident from
Fig. 7(a).

The stress amplitude dependence of α is expected to cause
a deviation in the frequency shift of the primary resonance
from the quadratic nature, typical of CNL systems. Figure 7(b)
shows the frequency shift of the primary resonance with the
applied stress amplitude, derived following Eq. (35) for dif-
ferent rates of increase in α. We note that the case for which
T is set to 4.8 × 10−4 shows a rightward frequency shift at
elevated values of σ0. This softening-hardening behavior is
intriguing and will be discussed later.

We again look at how the higher order harmonics scale,
setting T = 1.2 × 10−4 and proceeding as described in
Sec. IV A. For the range of the applied stress amplitude where

FIG. 7. (a) Variation of the damping parameter α with the applied stress amplitude σ0 for different values of the orientation factor T .
(b) Frequency shift of the primary resonance with the applied stress amplitude σ0 for different rates of increase in α corresponding to different
orientation factors T .
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FIG. 8. Higher order harmonic scaling for variable α obtained for T = 1.2 × 10−4. (a) Second order harmonic amplitude a2 scaling with
the corresponding fundamental harmonic amplitude a1; a2 ∝ a2

1 over the entire range of α. (b) Third order harmonic amplitude a3 scaling with
the corresponding fundamental harmonic amplitude a1; a3 ∝ a3

1 as long as α remains constant (CNL region), and a3 ∝ a2
1 when α increases

(NCNL region). The black squares represent response before breakaway, and blue diamond markers represent after breakaway.

α remains constant, a2 ∝ a2
1, and a3 ∝ a3

1, as for CNL behav-
ior. Once α starts increasing with the applied stress amplitude,
these scaling laws are no longer valid. While a2 now scales
reasonably linearly with a2

1, albeit with a rate different from
the one followed previously [Fig. 8(a)], a3 now scales linearly
with a2

1. The two distinct regions in the scaling of a3 are shown
in Fig. 8(b).

D. Combined effect of stress amplitude dependent
damping and nonlinearity

We now consider the combined effect of stress amplitude
dependent nonlinearity and damping, using Eqs. (12), (20),
(21), and (23) to describe the coefficients of the dynamic
equation (19). The variations of β and α follow the same trend
as in Figs. 5(a) and 7(a). Different combinations of Q and T
are used to derive curves for the frequency shift of the primary
resonance as shown in Fig. 9. The frequency shift is quadratic
as long as β and α remain constant which signifies a CNL be-
havior. But this deviates at higher applied stress amplitudes to
an apparent linear frequency shift with and without hardening
effects, which signifies NCNL characteristics.

The higher order harmonic behavior for combined varia-
tion in β and α was obtained by setting Q = 0.3 and T =
1.2 × 10−4. As long as β and α remain constant, we observe
CNL behavior, with a2 scaling linearly with a2

1, and a3 scaling
linearly with a3

1. Once the parameters start increasing, a3 once
again starts scaling proportional to a2

1, while a2 is still propor-
tional to a2

1, which once again points towards NCNL behavior.
Beyond a certain applied stress value, the response becomes
noisy and does not fit well with quadratic or cubic fits. We
have denoted these by the pink circle symbols in Fig. 10(b).

V. DISCUSSIONS

In Figs. 5(b) and 9 we observe a small sudden transition
region in the frequency shift. This seems like an anomalous

region which is typically not reported in experimental re-
sults. We believe this arises from the nonlinearity due to the
breakaway. According to the Granato-Lücke model, beyond
breakaway, we have a large increase in loop length, which
results in hysteresis and nonlinearity. The threshold stress for
this breakaway is instantaneous and once this stress value is
attained, the dislocation unpins and the loop length increases
to network length. We believe this anomalous region is a result
of the sudden increase in loop length. We assume that the
dislocation unpins instantly, which results in sudden increase
of the nonlinearity parameter as shown in Fig. 5(a). This
argument is supported by the fact that if we only consider non-
linear damping, α, then we do not see this anomalous region
(Fig. 7). If we, however, assume a more progressive unpinning
action, then this region could possibly disappear. On the other
hand, a more realistic solution will be to consider a statisti-
cal distribution of dislocation characteristics. The breakaway
length from the Granato-Lücke model considers an average
length based on the distribution. If, however, we consider a
statistical distribution of breakaway lengths, and solve the
current model for this distribution, we might get a smoother
curve, which will be closer to what is typically observed
for NCNL materials. Such a statistical distribution has been
explored by several authors with good success [28,46,47]. As
mentioned earlier, the transition between CNL and NCNL
might not happen at a distinct stress value. This transition
stress depends on the scale at which we evaluate the response,
i.e., at very small length scales, the transition stress might be
distinct due to the smaller distribution of break-away lengths,
whereas at bulk scales, a larger statistical ensemble might
give a distribution of breakaway lengths, which can give us
a distribution of transition stresses and an overall smoother
transition. The statistical approach might also provide us with
more physical insights on the transition between the different
stress ranges. This will be explored in future works.

NCNL behavior of metallic structures has been barely
explored in the literature. Metallic and crystalline structures
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FIG. 9. Frequency shift of the primary resonance with the applied stress amplitude σ0 for (a) T = 0.8 × 10−4, with variable Q, showing a
linear frequency shift in the NCNL region, (b) Q = 0.2, with variable T , showing hardening behavior for elevated values of T in the NCNL
region, and (c) simultaneous increases in Q and T . Larger values of Q correspond to larger frequency shifts, while larger values of T correspond
to more pronounced hardening, and smaller effective frequency shifts.

typically exhibit low levels of nonlinearity (β = 5–20) and
have been sidelined compared to geomaterials which are
typically three to four orders of magnitude more nonlinear
(β = 103) [12]. Due to their low nonlinearity, metallic struc-
tures have been typically categorized as classical nonlinear
materials. While there are several previous works which have
reported experimental results for NCNL behavior of metallic
structures [25,30,48–51], by far, there has been no physics
based model to explain this behavior in metals. The results
from Sec. IV show that accounting for dislocation dynamics
allows us to model the NCNL behavior and categorized metal-
lic structures as nonclassical nonlinearity. More importantly,
the model presented here shows that the apparent NCNL
behavior can be captured without the use of an explicit hys-
teretic function as given by Eq. (2). This explicit form and
the PM space model have become a staple in explaining the
NCNL behavior for geomaterials. However, the present work
demonstrates that the same effect can be accomplished by ac-
counting for stress amplitude dependent coefficients. In other
words, from a macro or bulk phenomenological perspective,

the frequency shift behavior is controlled by coefficients of
Eq. (19). By introducing a stress amplitude dependence on
the coefficients, i.e., φ(σ0), γ (σ0), and α(σ0), the apparent
frequency shift becomes dependent on the applied stress. This
can result in apparent frequency shifts which can take up any
power law, i.e., linear, quadratic, or any real value. We use
the term apparent to describe the frequency shift since it is
not explicit like the CNL response, which has a quadratic
relationship with applied stress given by Eq. (29).

While the present model accurately captures three of four
characteristics of NCNL materials, it cannot capture slow
dynamics by itself. We believe this model needs updated coef-
ficients which become functions of relaxation time. Since this
would require a deeper investigation, we prefer to explore this
as a stand-alone work. Other authors have also explored this
approach with good success [52]. The present model could
also be used to verify experimental observations by fitting the
dislocation coefficients. However, an extensive study will be
required to validate the dislocation characteristics. The current
model will also accommodate three-dimensional experimental
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FIG. 10. Higher order harmonic scaling for combined variations in β and α obtained for Q = 0.3 and T = 1.2 × 10−4. (a) Second order
harmonic amplitude a2 scaling with the corresponding fundamental harmonic amplitude a1; a2 ∝ a2

1 over the entire range. (b) Third order
harmonic amplitude a3 scaling with the corresponding fundamental harmonic amplitude a1; a3 ∝ a3

1 as long as the parameters remain constant
(CNL region), and a3 ∝ a2

1 when the parameters increase as described (NCNL region). The black squares represent response before breakaway,
and blue diamond markers represent after breakaway. The data shown in pink circles were noisy and could not be fit with either a3

1 or a2
1.

setups as long as the first order flexural mode is chosen as
demonstrated earlier [10]. The model can further be modified
for specific modes and displacements.

While the model presented here uses lattice defects for a
crystalline structure, it can be easily extended to geomaterials
which also have crystalline grains. Previous studies show us
that the geomaterials have hysteretic bonds [23] connecting
the larger crystalline structures. The nonlinearity arising from
these bonds will be much larger than the nonlinearity within
the crystalline structure. This raises an interesting question:
What can be classified as NCNL behavior? By definition,
any behavior which deviates away from CNL behavior can
be classified as NCNL. For example, previous experimental
results on the influence of dislocations show a sinusoidal
behavior in the resonance frequency shift [30]. Furthermore,
the influence of “Buck hook” behavior, once again results
in an “apparent” NCNL behavior. This was also successfully
modeled using dislocation dynamics [30]. The focus of most
of the research in NCNL behavior has been limited to power
law scaling which uses integer values. Similar to the fre-
quency shift, the higher order harmonic scaling laws need
to be revisited for different physical phenomena for a wide
category of NCNL behavior.

VI. SUMMARY AND CONCLUSIONS

The current work presents a physical model to capture non-
classical nonlinearity of metallic and crystalline structures.
The model’s dynamic response was evaluated by coupling
the dislocation model to a resonant system. The resulting
meso-macroscale model manages to capture all three char-
acteristics of NCNL materials: (i) linear frequency softening,
(ii) increase in internal friction, and (iii) quadratic third order
harmonic scaling with fundamental harmonic. Furthermore,

this model is an instance where all three strain ranges of a
NCNL material, i.e., linear, classical nonlinear, and nonclas-
sical nonlinear, have been captured using a single physics
based model. The stress amplitude dependent coefficients
point towards different scaling laws which can be a function
of applied stress and the physical phenomenon. The model
presented here can be further modified for different types of
lattice defects and other physical features spread over multiple
length scales to capture the NCNL behavior.
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APPENDIX A: DERIVATION OF THE
DYNAMIC EQUATION

We begin with the extended Hamilton principle,

δ

∫ t

0
(K − � + Wnc)dt = 0, (A1)

where K is the kinetic energy, � is the potential energy, and
Wnc is the work done by nonconservative forces. The potential
energy can be rewritten as � = U + V , where U is the elastic
strain energy and V is the potential energy change from con-
servative external forces. The resulting equations of motion
take the form [53]

∂Nxx

∂x
= I0

∂2u0

∂t2
, (A2)

∂

∂x

(
Nxx

∂w0

∂x

)
+ ∂2Mxx

∂x2
+ F = I0

∂2w0

∂t2
, (A3)
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where Nxx and Mxx are the force and moment resultants, re-
spectively; F is the externally applied force; and I0 is the mass
moment of inertia, derived from the density ρ0 of the material.
These quantities take the form

Nxx =
∫ h/2

−h/2
σxxdz, (A4)

Mxx =
∫ h/2

−h/2
σxxzdz, (A5)

I0 =
∫ h/2

−h/2
ρ0dz. (A6)

Rewriting the strain-displacement relationship, Eq. (18), in
simpler notation, with primes denoting partial differentiation
with respect to x,

εxx = u′
0 − zw′′

0 . (A7)

Using Eq. (A7) in the stress-strain relationship, Eq. (7), and
substituting the result into Eqs. (A4) and (A5) gives

Nxx = A11u′
0 − B11w

′′
0 + M1(u′

0)2 − 2M2u′
0w

′′
0

+ M3(w′′
0 )2 + μu̇′′

0 − mu′ẇ′′
0 , (A8)

Mxx = B11u′
0 − D11w

′′
0 + M2(u′

0)2 − 2M3u′
0w

′′
0

+ M4(w′′
0 )2 + μ′u̇′′

0 − mu′′ẇ′′
0 , (A9)

where

(A11, B11, D11) =
∫ h/2

−h/2
C11(1, z, z2)dz, (A10)

(M1, M2, M3, M4) =
∫ h/2

−h/2
M111(1, z, z2, z3)dz, (A11)

(μ,μ′, μ′′) =
∫ h/2

−h/2
η(1, z, z2)dz. (A12)

We simplify the derivation by neglecting the axial inertia,
such that the in-plane force resultant becomes independent of
x, i.e., ∂Nxx/∂x = 0, and considering negligibly small in-plane
displacements, i.e., u0 ≈ 0. The force and moment resultants
in Eqs. (A8) and (A9) are now purely in terms of the transverse
displacement w0. We express the transverse displacement as

w0(x, t ) = p(x)q(t ), (A13)

where p(x) corresponds to the spatial function and q(t ) to the
temporal function. Substituting Eq. (A13) into the reduced
forms of Eqs. (A8) and (A9), substituting the resulting ex-
pressions into the equation of motion (A3), simplifying, and
integrating the resulting equation over the length of the beam
yields the nonlinear dynamic equation

q̈ + ω2q + φq2 + γ q3 + αq̇ + κqq̇ = F, (A14)

where

ω2 = D11

�I

∫ L

0
p(pIV )dx, (A15)

φ = B11

�I

∫ L

0
p(p′′)2dx + 2M4

�I

∫ L

0
p[p′′ pIV + (p′′′)2]dx,

(A16)

γ = M3

�I

∫ L

0
p(p′′)3dx, (A17)

α = μ′′

�I

∫ L

0
p(pIV )dx, (A18)

κ = μ′

�I

∫ L

0
p(p′′)2dx, (A19)

�I = I0

∫ L

0
p2dx. (A20)

Equation (A15) defines the resonant angular frequency ω of
the linear dynamic equation, Eqs. (A16) and (A17) give the
coefficients of the quadratic and cubic nonlinear terms, and
Eq. (A18) defines the damping parameter. The spatial function
p(x) is found by considering the linear vibration mode shape
of a cantilever beam, and is given by

p(x) = 1√
L

[
cosh

rnx

L
− cos

rnx

L
+mi

(
sinh

rnx

L
− sin

rnx

L

)]
,

(A21)

where rn is the nth root of the characteristic equation 1 +
cos r cosh r = 0, and mi is given by

mi = cos rn + cosh rn

sin rn + sinh rn
.

For the current work, we consider the first order bending
mode, which returns a value of 1.8751 for rn.

APPENDIX B: DETAILS OF THE MTS SOLUTION
OF THE DYNAMIC EQUATION

1. Primary resonances

Substituting Eqs. (24)–(26) into Eq. (28) and separating the
coefficients of ε0 and ε1 returns

D2
0q0 + ω2q0 = 0, (B1)

D2
0q1 + ω2q1 + 2D0D1q0 + φq2

0 + γ q3
0 + αD0q0

= F sin (ωT0 + ςT1). (B2)

The general solution to Eq. (B1) is given by

q0 = A(T1)eiωT0 + Ā(T1)e−iωT0 , (B3)

where A is an undetermined function dependent purely on T1,
and Ā is its complex conjugate. Substituting Eq. (B3) into
Eq. (B2), and isolating the secular terms, i.e., terms in e±iωt ,
which must vanish allows us to write the solvability condition
as

2iω
∂A

∂T1
+ 3γ A2Ā + iωαA + i

F

2
eiςT1 = 0. (B4)

We express A in polar form as

A = 1
2 aeiψ, (B5)

and introduce a parameter θ which enables us to transform the
solvability condition to an autonomous equation, given by

θ = ςT1 − ψ. (B6)
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Substituting Eqs. (B5) and (B6) into Eq. (B4) and separating
the real and imaginary parts allows us to write

a
∂θ

∂T1
= F

2ω
sin θ + aς − 3

8

a3γ

ω
, (B7)

∂a

∂T1
= − F

2ω
cos θ − 1

2
aα. (B8)

At steady state, ∂a/∂T1 = 0 and ∂θ/∂T1 = 0, allowing us to
drop the left-hand side (LHS) from both Eqs. (B7) and (B8).
Now, isolating the terms in sin θ and cos θ to one side of the
resulting equations allows us to write

− F

2ω
sin θ = aς − 3

8

a3γ

ω
, (B9)

− F

2ω
cos θ = 1

2
aα. (B10)

2. Higher order harmonic resonances

Substituting Eqs. (24)–(26) into Eq. (36) and separating the
coefficients of ε0 and ε1, as in the solution for the primary
resonances, now gives

D2
0q0 + ω2q0 = F sin (
T0), (B11)

D2
0q1 + ω2q1 + 2D0D1q0 + φq2

0 + γ q3
0 + αD0q0 = 0.

(B12)

The general solution to Eq. (B11) is given by

q0 = A(T1)eiωT0 + i�e−i
T0 + Ā(T1)e−iωT0 − i�ei
T0 ,

(B13)
where A and Ā have the same meanings as in the previous
section, and � = 1

2 F (ω2 − 
2)−1.

a. Second order harmonic

Using the detuning parameter from Eq. (37) in Eq. (B13),
substituting the resulting expression in Eq. (B12), and isolat-
ing the secular terms in eiωt allows us to write the solvability
condition as

2iω
∂A

∂T1
+ 3γ A2Ā + iωαA + 6γ�2A − φ�2eiςT1 = 0.

(B14)

Using Eqs. (B5) and (B6) in Eq. (B14), as defined in
Appendix B 1, and separating the real and imaginary parts
enables us to write

a2
∂θ

∂T1
= φ�2

ω
cos θ + a2ς − 3

8

a3
2γ

ω
− 3

a2γ�2

ω
, (B15)

∂a2

∂T1
= φ�2

ω
sin θ − 1

2
a2α. (B16)

Again, at steady state, we drop the terms in the LHS of
Eqs. (B15) and (B16) to write

−φ�2

ω
cos θ = a2ς − 3

8

a3
2γ

ω
− 3

a2γ�2

ω
, (B17)

−φ�2

ω
sin θ = −1

2
a2α. (B18)

b. Third order harmonic

Again, using the detuning parameter from Eq. (39) with
Eqs. (B13) and (B12) and isolating the secular terms gives

2iω
∂A

∂T1
+ 3γ A2Ā + iωαA + 6γ�2A + iγ�3eiςT1 = 0.

(B19)
Using Eqs. (B5) and (B6) in Eq. (B19) and separating the real
and imaginary parts enables us to write

a3
∂θ

∂T1
= γ�3

ω
sin θ + a3ς − 3

8

a3
3γ

ω
− 3

a3γ�2

ω
, (B20)

∂a3

∂T1
= −γ�3

ω
cos θ − 1

2
a3α. (B21)

Again, at steady state, we drop the terms in the LHS of
Eqs. (B20) and (B21) to write

−γ�3

ω
sin θ = a3ς − 3

8

a3
3γ

ω
− 3

a3γ�2

ω
, (B22)

−γ�3

ω
cos θ = 1

2
a3α. (B23)
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