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Creep trajectory transition of a nonstationary viscoelastic model onto a single rate parameter
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A system of three-variable differential equations, which has a nonstationary trajectory transition through the
control of a single rate parameter, is formulated. For the nondimensional system, the critical trajectory creeps
before a transition in a long-lasting plateau region in which the velocity vector of the system hardly changes and
then diverges positively or negatively in finite time. The mathematical model well represents the compressive
viscoelasticity of a spring-damper structure simulated by the multibody dynamics analysis. In the simulation, the
post-transition behaviors realize a tangent stiffness of the self-contacted structure that is polarized after transition.
The mathematical model is reduced not only to concisely express the abnormal compression problem, but also
to elucidate the intrinsic mechanism of creep-to-transition trajectories in a general system.
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I. INTRODUCTION

A system of nonlinear differential equations concisely
describes complicated physical phenomena with drastic tran-
sitions, such as bifurcations. Typical bifurcating behaviors can
be categorized as pitchfork bifurcations, transcritical bifur-
cations, saddle-node bifurcations, and Hopf bifurcations [1],
which are represented by a simple velocity form of ordinary
differential equations (ODEs) with control parameters.

The control parameters are the criteria of bifurcation; with
changes in the parameters, fixed points emerge, coalesce, and
collide and annihilate to reform the system stability. As an
example, a one-dimensional supercritical pitchfork bifurca-
tion is expressed by dx/dt = ∂U (x; λ)/∂x = λx − x3, where
U is the potential function and (x, λ) ∈ R2. Here, the origin
(x = 0) is stable when λ < 0, but is destabilized when
λ > 0, instead of there being two stable fixed points (x =
±√

λ) [2,3]. Thus, by increasing λ, the new fixed points
emerge and the nature of the original fixed point is altered.

One pitchfork bifurcation system applied in physics is
the buckling of static and dynamic structures, such as
multiple-linked rods and beam-column members [4–7]. Col-
umn buckling under the critical compression load, referred
to as Euler load [4], is a well known engineering problem
concerning structural instability and is a class of super-
critical pitchfork bifurcations. Another type of buckling,
snap-through buckling, occurs in a bistable state and is an
example of imperfect pitchfork bifurcation; an additional con-
trol parameter is used for the imperfection [8–10]. Similar
to analogous unstable phenomena, the collective buckling
behaviors of microstructures such as honeycombs have been
studied extensively [11–17], and the active harnessing of
buckling morphology of microstructures has been proposed
recently [18–20].
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In contrast, a one-dimensional transcritical bifurcation is
expressed by dx/dt = λx − x2. The system has the two fixed
points of x = 0 and x = λ for λ ∈ R\0. A stability assessment
around the fixed points shows that the origin is stable and the
point at x = λ is unstable when λ > 0, and vice versa when
λ < 0. Thus, by increasing λ, the fixed points coalesce as
λ = 0 and then reemerge such that their stability changes. If
λ and t are replaced with K and rt/K in the differential equa-
tion, the equation reduces to the logistic growth model [21]:
dx/dt = rx(1 − x/K ), where r and K are positive constants
in general. This conversion is an example in which the bifur-
cation mechanism mathematically has physical and ecological
applications, and the transcritical bifurcation really appears in
a control system of the logistic model [22].

As stated in our brief review of the two bifurcation groups
above, nonlinear systems have a variety of transition mech-
anisms and allow us to investigate actual phenomena with
multiple degrees of freedom, as in the example of mode
changes of an axial compression to deflection in continuum
column buckling. In this study, we present another concept
of transition behavior by developing the three-variable dif-
ferential equations of a nonequilibrium system without fixed
points. In our previous study, we proposed a compressive
transformability of a two-dimensional microstructure made up
of square linkages based on switching the coordinate square
rotation [23–25]. Modeling the microstructure under a peri-
odic framework with two degrees of freedom revealed that
the transition behavior is characterized by changes in the
hyperplane of a hyperbolic paraboloid when increasing the
internal spring constant [26].

Here we extend the static elastic model to the viscoelastic
model subjected to a uniaxial compression with a constant
loading rate. We thus derive a system of ODEs with three
variables and a control rate parameter. By analyzing the
initial value problem, we show that the critical trajectory
of time-dependent variables slowly traces a moving saddle
point and bifurcates in the positive or negative direction

2470-0045/2021/104(4)/045001(10) 045001-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1713-2734
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.045001&domain=pdf&date_stamp=2021-10-13
https://doi.org/10.1103/PhysRevE.104.045001


TANAKA, YAMANOKUCHI, AND SHIBUTANI PHYSICAL REVIEW E 104, 045001 (2021)

r

O
L

(a) (b)
F2 = – At

x  1

x  2

π 
2  – 2θ  sπ 

4  – 2θ  m

π 
2  + 2θ  s

2
u1

2
d1

2
u2

2
d2

c2

c1

x  1

x  2
π 
8  + θ  m –   θ  s

π 
8  + θ  m +   θ  s

0

L0

FIG. 1. (a) Proposed periodic bar-joint framework and (b) the unit cell with the first of four structural elements. The structure is linked by
rotational springs and linear dampers. The two angular variables, θm and θs, determine the transformation of the framework.

of divergence within a finite time. For this application, we
conduct the multibody dynamics (MBD) simulation of the
two-dimensional self-contacted microstructure and conclude
that different compression load rates polarize the tangent stiff-
ness after transformation.

II. MODEL EQUATIONS

Figure 1(a) presents a periodic framework made from two
types of rigid bar, pivotally connected through hinged joints
in a square-lattice fashion; a blue straight bar has twice the
length of a black bar [26], where the length of the identical
black bar is denoted � and the cell length is denoted L0 at
the undeformed state. Excluding shear motion, the mechani-
cal structure has two degrees of freedom, represented by the
internal angular variables θm and θs [see Fig. 1(b)]. The struc-
ture transforms into a square pattern with θm = −π/8 and
θs = 0 and a diamond pattern with θm = π/8 and θs = 0. The
structure has stiffness determined by the rotational springs and
two types of linear damper. The former components reinforce
the inside square linkages with a rotational spring coefficient
kθ and the latter components are inserted horizontally and
vertically between adjacent cells with damping coefficients c1

and c2, respectively [Fig. 1(b)].
We now consider the proposed structure subjected to the

vertical force F2 in the x2-axial direction. We assume the
proportional compressive loading as F2 = −At at time t for a
compression rate of A. We let t∗ be the nondimensional time,
expressed as t∗ = t/T0 with a time constant T0. We introduce
two dimensionless compression variables,

A∗ = A�T0

16kθ

, c∗
i = ci�

2

16kθ T0
, for i ∈ {1, 2}. (1)

For convenience, the angular variables θm and θs are converted
into three variables:

ξ (t∗) = q[θm(t∗) + θs(t
∗)] − p,

η(t∗) = −q[θm(t∗) − θs(t
∗)] + p, (2)

ζ (t∗) = A∗t∗,

where p = cos(π/8), q = sin(π/8) and the initial position
is denoted (ξ0, η0, ζ0) ≡ [ξ (0), η(0), ζ (0)] = (−p, p, 0). Re-
ducing the compression problem to its weak nonlinear form,
we obtain nondimensional ODEs with the three variables ξ , η,
and ζ ,

(ξ + η) − 2(pξ + 1)ζ + c∗
1 p2ξ̇ = 0,

(ξ + η) − qηζ + c∗
2 p2η̇ = 0, (3)

ζ̇ = A∗,

where the overdot symbol indicates a time derivative; i.e.,
Ẋ ≡ dX /dt∗. The detailed derivation of Eq. (3) is described
in Appendix A. In Eq. (3), the acceleration terms are ignored
under the assumption of slow viscoelastic behavior.

III. ANALYSES OF THE VELOCITY SYSTEM

The velocity form of Eq. (3) is expressed with the control
rate parameter A∗ as

ξ̇ = 1

c∗
1 p2

[−(ξ + η) + 2ζ (pξ + 1)],

η̇ = 1

c∗
2 p2

[−(ξ + η) + qζη],

ζ̇ = A∗. (4)

According to the initial-value problem of Eq. (4) with
(ξ0, η0, ζ0), which corresponds to θm = θs = 0 as t = 0 [see
Eq. (A15)], the nondimensional system obviously has the
nonstationary behavior that ζ increases proportionally with an
increase in t∗.

Let x(t∗) = [ξ (t∗), η(t∗), ζ (t∗)]T be the position vector.
Equation (4) is rewritten as ẋ = F(x(t∗); A∗) in a vector
fashion. The time-integrated trajectory is then obtained from
x(t∗) = x0 + ∫ t∗

0 F(x(τ ); A∗)dτ , where x0 = (−p, p, 0)T. Us-
ing the high-order Runge-Kutta method, we computed x(t∗)
with increasing A∗. For c∗

1 = c∗
2 = 1, Figs. 2(a)–2(c) show

three diagrams of the trajectories projected onto the (ξ, η)
plane, (ξ, ζ ) plane, and (η, ζ ) plane for A∗ ∈ [0.002, 0.07] at
intervals of �A∗ = 2 × 10−3. The time domain is t∗ ∈ [0, 14]
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FIG. 2. Trajectories of Eq. (4) with c∗
1 = c∗

2 = 1 from (−p, p, 0) within A∗ ∈ [0.002, 0.07]: (a) (ξ, η) plane, (b) (ξ, ζ ) plane, and (c) (η, ζ )
plane. The interval of A∗ is 2 × 10−3. The paths are truncated at t∗ = 10 (black), t∗ = 12 (red), and t∗ = 14 (blue). The center of each circle
indicates the initial position.

in each diagram and the black, red, and blue paths, respec-
tively, correspond to truncations at t∗ = 10, 12, and 14. For
the slow motions at small values of A∗, the ξ values tend to
decrease after increasing a little from the initial position, indi-
cated by a circle, while the η values increase monotonically
[see Fig. 2(a)]. With increasing A∗, the trajectory behavior
changes at the critical value of A∗; thus, the ξ values increase
monotonically and the η values decrease after increasing to
some extent. In the temporal progression of ξ and η in the ζ

direction [Figs. 2(b) and 2(c)], shifts in the trajectory behav-
iors are confirmed in the vicinity of the critical A∗.

To understand the trajectory transition, we investigate the
velocity field of Eq. (4) at each level of a fixed ζ , i.e., on
the hyperplane (ξ, η). At a constant ζ = ζc, the system has
a single stationary point that satisfies ξ̇ = η̇ = 0, except at the
initial position where ζc = 0. The stationary point (ξ ′, η′) is
expressed as

ξ ′ = − 2(qζc − 1)

2pqζc − (2p + q)
, η′ = − 2

2pqζc − (2p + q)
. (5)

Removing ζc from Eq. (5) and replacing ξ ′ and η′ with ξ and
η, we have

η = 2

q
(pξ + 1). (6)

Equation (6) gives the moving line of (ξ ′, η′) for a parameter
ζc. The first-order Taylor expansion of Eq. (4) at the point
(ξ ′, η′) yields

(
ξ̇

η̇

)
=

⎛
⎜⎜⎝

2pζc − 1

c∗
1 p2

− 1

c∗
1 p2

− 1

c∗
2 p2

qζc − 1

c∗
2 p2

⎞
⎟⎟⎠

(
ξ − ξ ′
η − η′

)
. (7)

We obtain the eigenvalues of the Jacobian matrix in Eq. (7) as
λ1 = (a + b)/2 and λ2 = (a − b)/2, where a and b are written
as

a = 2pζc − 1

c∗
1 p2

+ qζc − 1

c∗
2 p2

,

b =
[(

2pζc − 1

c∗
1 p2

− qζc − 1

c∗
2 p2

)2

+ 4

c∗
1c∗

2 p4

]1/2

. (8)
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FIG. 3. Phase portraits (streamline-wise plots) of Eq. (4) on the (ξ, η) planes of (a) ζc = 0.2 and (b) ζc = 0.6, where c∗
1 = c∗

2 = 1. The red
arrows indicate the eigenvectors multiplied by their eigenvalues at the stationary point, i.e., sλini (s = 0.15). The dashed line indicates a set of
stationary points expressed by Eq. (6). The center of a circle indicates the initial position.

When ζ < (2p + q)/(2pq) ≈ 3.1543, λ1 > 0 and λ2 < 0 be-
cause a2 < b2 and b > 0. Hence, the finite stationary point of
Eq. (5) has a saddle instability. The normalized eigenvectors
corresponding to λi∈{1,2} are

ni = yi

|yi|
, yi =

(±(qζc − 2 − c∗
2 p2λi )

∓(2pζc − 2 − c∗
1 p2λi )

)
, (9)

where i ∈ {1, 2}.
Figures 3(a) and 3(b) present streamline-wise plots in the

velocity field of Eq. (4) at ζc = 0.2 and 0.6, respectively,
where the red arrows located at (ξ ′, η′) are displayed with the
corresponding eigenvectors of Eq. (9) to λi∈{1,2}. To compare
Figs. 3(a) and 3(b), the stationary point (ξ ′, η′) is elevated with
increasing ζc, which changes the streamlines around the circle
indicating the initial position, i.e., the streamline positioned at
(ξ0, η0, ζc) shifts in the negative (positive) direction of ξ when
ζc is small (large). Therefore, when A∗ is high, the trajectory
can achieve a high level of ζc without being affected by the
flow field at the low level, which results in the transition seen
in Figs. 2(b) and 2(c).

IV. CHARACTERIZATION OF THE
VISCOELASTIC MODEL

We analyze the specific case of our proposed spring-
damper structure to characterize whether a trajectory transi-
tion occurs and what the transition behavior is. We conclude in
advance that the model with c∗

1 = 0 has a trajectory transition,
whereas there is no transition when c∗

2 = 0. We then discuss
the mechanism that depends on the critical rate parameter to
formulate the polar coordinate system for c∗

1 = 0.

A. Case of c∗
1 = 0

Considering only vertical damping (i.e., c∗
1 = 0), the first

equation of (3) becomes

(ξ + η) − 2(pξ + 1)ζ = 0 for ∀A∗

⇔ −(2pζ − 1)(pξ + 1) + (pη − 1) = 0 for ∀A∗. (10)

Equation (10) imposes on the system a constrained lin-
ear relation of ξ and η for an arbitrary A∗ at a fixed ζ .
The lines inevitably pass through the same point (ξ1, η1) ≡
(−1/p, 1/p). We now consider the narrow-angle domain �1

on the projected (ξ, η) plane sided by η = −ξ and η = η1,
corresponding to ζ = 0 and ζ = 1/2p in Eq. (10); thus,

�1 = {(ξ, η) ∈ R2 | ξ + η > 0, η < η1}. (11)

In the domain �1, which includes the initial position
(ξ0, η0) = (−p, p), the system runs within the finite time t∗ ∈
[0, 1/(2pA∗)).

Substituting the relation of Eq. (10) into the second equa-
tion of Eq. (4), we obtain equations without ζ and ξ :

η̇ = (ξ + η)[−2(pξ + 1) + qη]

2c∗
2 p2(pξ + 1)

(12)

or η̇ = ζ [(2pqζ − 2p − q)η + 2]

c∗
2 p2(2pζ − 1)

. (13)

Equation (13) shows that the system has a blow-up of so-
lutions at the finite time of t∗ ↑ 1/2pA∗, where ↑ indicates
that t∗ approaches from the left. The first derivative of ξ with
respect to t∗ is obtained from Eq. (10) as

d

dt∗

(
pη − 1

pξ + 1

)

= 2ζ̇ ⇔ (pη − 1)ξ̇ − (pξ + 1)η̇ = −2(pξ + 1)2A∗

⇔ ξ̇ = 1

2pζ − 1
[η̇ − 2(pξ + 1)A∗]. (14)

Equations (13) and (14) yield (ξ̇ (0), η̇(0)) = (2q2A∗, 0) at
the initial position of (ξ0, η0). In contrast, when ξ → ξ1, η →
η1 for ζ < 1/2p,

η̇ → pqζ

c∗
2

, ξ̇ → η̇

2pζ − 1
= pqζ

c∗
2(2pζ − 1)

. (15)

Equations (13) and (14) also yield the ξ -directional diver-
gence of the system: limζ↑1/2p ξ̇ = ∞ if η̇ < 0 and ξ > ξ1,
and limζ↑1/2p ξ̇ = −∞ if η̇ > 0 and ξ � ξ1.
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FIG. 4. Viscoelastic behaviors of Eqs. (13) and (14) with c∗
2 =

1. The normal and solid circles, respectively, indicate (ξ0, η0)
and (ξ1, η1). The yellow area corresponds to �1. The red line
indicates Eq. (10) for ζ = 0.2; the four trajectories of A∗ ∈
{0.015, 0.016, 0.0165, 0.0175} are numerically integrated up to
ζ = 0.2 in common. The rightward arrow indicates the initial
velocity.

From Eq. (12), we have two conditions of η̇ = 0:

ξ + η = 0 and − 2(pξ + 1) + qη = 0. (16)

Equations (16) determine the sign of η̇. By solving η̇ = 0
as a function of ζ in Eq. (13) with ζ �= 0, we have η =
−2/(2pqζ − 2p − q) ≡ η′ as in Eq. (5). Substituting η = η′
into Eq. (10) gives ξ = ξ ′, which does not correspond to
the stationary state of Eq. (5) because ξ̇ �= 0 as in Eq. (14)
with η̇ = 0. From Eq. (14), the velocity condition of ξ̇ = 0 is
η̇ = 2(pξ + 1)A∗ > 0 in �1.

Figure 4 illustrates the viscoelastic behaviors of the system
with c∗

1 = 0 and c∗
2 = 1, where the yellow area corresponds

to the domain �1. All of the trajectories begin with the
rightward velocity of 2q2A∗. A set of the temporal posi-
tions for all A∗ is represented by the linear equation (10) as
shown in Fig. 4 by the red line at ζ = 0.2. It is satisfied
that η̇ = 0 on the two dashed lines in Eqs. (16), and there
are two types of trajectories in �1; one type turns leftward
with η̇ > 0 and eventually passes through (ξ1, η1) and the
other type turns rightward, crossing the dashed line of the
second equation of Eq. (16). Hence, there is a critical value
between A∗ = 0.016 and 0.0165 that yields the trajectory
transition.

B. Case of c∗
2 = 0

In Eq. (3), the system with only horizontal dampers (c∗
2 =

0) for an arbitrary A∗ obeys

ξ

η
= qζ − 1 ⇔ η = 1

qζ − 1
ξ, (17)

-3 -2 -1 0
0
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2.5

3

Eq. (17)

Eq. (16)2

Eq. (16)1

FIG. 5. Viscoelastic behaviors of Eqs. (19) and (20) with c∗
1 =

1. Open and solid circles, respectively, indicate (ξ0, η0) and (0,0).
The yellow area corresponds to �2. The red line indicates Eq. (17)
at ζ = 1. The three trajectories of A∗ ∈ {0.5, 1, 2} are numerically
integrated up to ζ = 1 in common. The upward arrow indicates the
initial velocity.

and

ξ̇ = − (ξ + η)[−2(pξ + 1) + qη]

c∗
1 p2qη

(18)

or ξ̇ = ζ

c∗
1 p2

[
(2pqζ − 2p − q)ξ

(qζ − 1)
+ 2

]
. (19)

Equation (17) indicates the linearity between ξ and η at a
fixed ζ , passing through the origin. The slope of Eq. (17)
ranges from −1 to infinity in the region of ζ ∈ [0, 1/q). The
first derivative of both sides of Eq. (17) with respect to t∗
gives

d

dt∗

(
ξ

η

)
= qA∗ ⇔ η̇ = η

ξ
(ξ̇ − qηA∗). (20)

Equations (19) and (20) yield ξ̇ (0) = 0 and η̇(0) = pqA∗ at
the initial position. The conditions of ξ̇ = 0 in Eq. (18) are
consistent with Eq. (16) and it is satisfied that ξ̇ < 0 where
η > −ξ and qη > 2(pξ + 1).

Figure 5 illustrates the viscoelastic behaviors of the system
with c∗

1 = 1 and c∗
2 = 0, where the yellow area corresponds to

the domain �2, expressed by

�2 = {(ξ, η) ∈ R2 | ξ + η > 0, ξ < ξ0}. (21)

The red line shows that Eq. (17) governs the trajectory be-
haviors within �2. Because (ξ̇ , η̇) = (0, pqA∗) at ζ = 0 and
ξ̇ < 0 in �2, the trajectories for all A∗ are driven leftward such
that no bifurcating trajectory exists anywhere.

C. Polar coordinate system for c∗
1 = 0

In Sec. IV A, we mentioned the transition scenario of
Eq. (3) with c∗

1 = 0. We described the system behavior under
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FIG. 6. Schematic of the polar coordinated system.

the constrained equation (10) of (ξ, η, ζ ) such that ξ and
η are variables that are dependent on each other. Here we
introduce a polar coordinate system for c∗

1 = 0 to reduce the
three dependent variables to two independent variables, which
enables us to assess with high accuracy the critical value of A∗
for the shift in trajectory.

Figure 6 is a schematic of the polar coordinate system
with (r, θ ), where the initial position (r0, θ0) and the origin O′
correspond to (ξ0, η0) and (ξ1, η1) in the system of orthogonal
coordinates (ξ, η). The polar conversion is described by

r =
√

(ξ − ξ0)2 + (η − η0)2, tan θ = 2pζ − 1, (22)

where (r0, θ0) = (
√

2q2/p,−π/4) and θ ∈ [−π/4, 0) corre-
sponding to ζ ∈ [0, 1/2p). Using Eq. (22), η̇ of Eq. (12) and
ζ̇ = A∗ are, respectively, expressed as

ṙ = 1

sin θ

[
tan θ + 1

c∗
2 p2

(
r0 − r cos θ + q

2p
r sin θ

)

− 2prA∗ cos3 θ

]
,

θ̇ = 2pA∗ cos2 θ. (23)

-1.1 -1 -0.9 -0.8
0.8

0.9

1

1.1

1

0.98

FIG. 7. Trajectories computed using Eq. (23) with c∗
2 = 1; three

rate increments �A∗ = 2.5 × 10−4, 2.5 × 10−8, and 2.5 × 10−17 are
used for θ = −3π/16, −π/8, and −π/16.

Figure 7 shows the numerical time integration of Eq. (23)
with c∗

2 = 1 obtained using the MATLAB ODE solver [27].
We performed the calculation for three scales of the rate incre-
ment: �A∗ = 2.5 × 10−4, 2.5 × 10−8, and 2.5 × 10−17. The
minimum order is close to the limitation of the software with
16-significant-digit precision by default. These calculations
give the critical value

A∗ ≈ 0.016 164 160 369 603 70 ≡ A∗
cr. (24)

With an increase in θ , the range of the load rates that enable
the trajectories to attain the level of θ is reduced exponentially.
As an example, rising from θ = −π/8 to −π/16, the allow-
able range around A∗ = A∗

cr reduces from ∼10−7 to ∼10−16

(see the inset of Fig. 7).
The positions, velocities, and accelerations of the moving

radius, i.e., r(t∗), ṙ(t∗), and r̈(t∗), are calculated for the four
load rates of A∗ ∈ {0.01, A∗

cr ∓ δ, 0.02}, as shown in Figs. 8(a)
and 8(b), where c∗

2 = 1 and δ is the infinitesimal number of
1 × 10−17. In the critical behaviors when A∗ = A∗

cr ∓ δ, there
are long-lasting plateaus, and the values of the velocity and
acceleration are sufficiently low (in particular, r̈ is almost
zero) to compare with the value for the position around 0.22.
Let ε be an infinitesimal parameter as defined in Appendix A;
the second equation of Eq. (23) gives θ̇ ∼ A∗ ∈ O(ε2) and
θ̈ ∼ (A∗)2 ∈ O(ε4), which are higher than the order of ṙ and
r̈, respectively. Therefore, both the radial and circumferen-
tial accelerations, ar = r̈ − rθ̇2 and aθ = rθ̈ + 2ṙθ̇ , can be
ignored and each order of the three types of motion variable
in the time series matches the presumptions of Eqs. (A10)–
(A12) for leading the system equation (3). In other words,
in the vicinity of A∗

cr, there is creep before transition, but
rapid progress in the positive or negative direction after
transition.

V. DYNAMIC SIMULATION FOR A
SELF-CONTACT STRUCTURE

To compare with the analyses of the viscoelastic model
only with vertical dampers described in Sec. IV, we per-
form the MBD simulation of a unit cell including the inertial
terms of the members without trigonometric approximations.
We next extend the MBD simulation by taking member-
to-member contact into account and investigate the tangent
stiffness of the viscoelastic model after post-transition behav-
iors.

Physically, the momentum inertia and the self-contact
of the internal members are not ignored in general. To
resolve such a complicated problem, we employed MBD soft-
ware (Adams [28]). The details of the modeling of MBD
are described in Appendix B. Setting c∗

2 = 1, we obtain
a time constant and proportional compressive load from
Eq. (1) as

T0 = c2�
2

16kθ

, F2 = −16kθ A∗t

�T0
. (25)

The physical parameters used in this simulation are listed in
Table I.

Figure 9 compares the (θm, θs) curves calculated using
the viscoelastic model in Eq. (23) and those obtained from
MBD simulation. In the MBD simulation, the trajectory
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FIG. 8. Time responses of the moving radius with c∗
2 = 1 for A∗ ∈ {0.01, A∗

cr ∓ δ, 0.02}: (a) r vs t∗; (b) ṙ vs t∗ (blue dashed curves) and r̈
vs t∗ (red solid curves). A∗

cr is the critical value given by Eq. (24) and δ = 1 × 10−17.

transition arises in the range A∗ ∈ {0.0159, 0.0160}, which
agrees with the results of the viscoelastic model for A∗ ∈
{0.0161, 0.0162}. Therefore, the formulation of modeling
with approximations in Appendix A is adequate. The trans-
formed structure approaches a squarelike pattern as A∗ =
0.0159 or a diamondlike pattern as A∗ = 0.0160 (see the
insets of Fig. 9 and the Supplemental Material movies S1 and
S2 [29]).

If we consider member-to-member contact inside the struc-
ture, which is possible on the dashed lines in Fig. 9, the overall
tangent stiffness is altered drastically because of the strong
anisotropy of square cells; i.e., axially loaded squares have
high rigidity relative to the rigidity of diamonds [24,25]. We
let ε∗

2 denote the effective axial strain of a unit cell in the x2

direction as expressed by ε∗
2 = d2/L0 (with the tensile strain

being positive), where L0 = 2�(2p + q) is the length of the
unit cell in the initial configuration [Fig. 1(a)]. Figure 10
shows the relationship between the nondimensional force
and displacement (|F ∗

2 | vs |ε∗
2 |) for several values of A∗. As

A∗ � 0.015, the tangent stiffness rises at |ε∗
2 | ≈ 0.1, whereas

there is no rapid increase beyond A∗ = 0.016. Note that the
complete squares of (θm, θs ) = (−π/8, 0) correspond to ε∗

2 =
2/(2p + q) − 1 ≈ −0.1033, calculated using Eq. (A3). The
viscoelastic response of switching rigidity is induced by the

TABLE I. Geometric and material parameters.

Beam link length (�) 200 mm
width 40 mm
depth 20 mm

density 7.801 × 10−7 kg/mm3

Spherical joint radius 1 mm
density 4.380 × 10−7 kg/mm3

Rotational spring coefficient (kθ ) 10 N mm/deg
Damper coefficient (c2) 1.0 N s/mm
Repulsive force coefficient (α) 10−10 N mm13

geometry of the transformed microstructure as seen in the
insets of Fig. 9.

VI. CONCLUSIONS

We clarified that the nondimensional system of differential
equations with three variables represents a shifting trajectory
through the control of a rate parameter. At the critical value

- /8 - /16 0 /16 /8
- /8

0

/8

/4

FIG. 9. Comparison of the (θm, θs ) curves for the viscoelastic
model and MBD analyses, where A∗ ∈ {0.0161, A∗

cr ∓ δ, 0.0162} in
the model and A∗ ∈ {0.0159, 0.0160} in the MBD. The dashed blue
curves indicate the contact boundary of π/8 + θm ± θs = 0 and θm =
π/8 as in Fig. 1. The structure shapes in the inset are obtained by the
visualization of the MBD results.
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FIG. 10. |F ∗
2 | vs |ε∗

2 | in the self-contact MBD simulation. The
black solid curves indicate the post-transition transformations to-
ward a squarelike pattern for A∗ ∈ {0.001, 0.01, 0.015}; the blue
dashed curves indicate the post-transition transformations toward a
diamondlike pattern for A∗ ∈ {0.016, 0.025}.

of the parameter, the system behavior proceeds at a slow pace
and then diverges instantaneously after transition.

We first developed a nondimensional time evolution equa-
tion with ξ , η, and ζ by considering the compression problem
of the spring-damper structure with two degrees of freedom.
Using the velocity form of the viscoelastic model, we ana-
lyzed the initial-value problem and showed that the trajectory
is shifted at the critical value of the rate parameter A∗. We then
linearized the system around a saddle point. The streamlines
around the nonstationary point in the (ξ, η) hyperplane are al-
tered at each level of ζ = A∗t∗, which results in the transition
responses to A∗.

The specific cases of the system with c∗
1 = 0 or c∗

2 = 0
determine whether the system has a transition; thus, they
are reduced to two-variable differential equations including
a constraint condition. The trajectory diagram shows that the
former case requires a trajectory shift beyond a rate threshold,
whereas the latter case does not. The polar coordinate conver-
sion of the former system into (r, θ ) enables us to understand
the detailed behavior of the critical trajectory for A∗ = A∗

cr.
The time responses of r, ṙ, and r̈ make it clear that there is
a long-lasting plateau of a moving radius r before r shifts
to the positive or negative divergence in the finite time t∗.
This phenomenon verified the neglect of the inertial term and
the use of trigonometric approximations in formulating the
system equation.

Last, we presented MBD analyses of the spring-damper
structure, which gave transition behaviors similar to those
of the simple viscoelastic model. The self-contact imple-
mentation provided an interesting relationship between the
nondimensional force and displacement, showing polarized
tangent stiffness (being rigid in a slow response or soft in a
quick response; i.e., bistiffness of converse viscoelasticity).
The bistiffness property is attributed to the anisotropic feature

of the bifurcating geometry toward a squarelike or diamond-
like pattern.

Using the mathematical model reduced with proper ap-
proximations, we succeeded in describing the abnormal
compression behaviors of the microstructure that potentially
has bistiffness dependent on the loading rate. The system
of ODEs with three variables exhibits a different bifurcation
assembled with creep-to-transition trajectories, which is not
classified into the existing bifurcation groups. For the sake
of simplicity, the nonlinear equation modeling could be ap-
plied to unknown bifurcating phenomena in multidisciplinary
fields.
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APPENDIX A: DERIVATION OF THE NONSTATIONARY
VISCOELASTIC MODEL

Here we derive the ODEs in Eq. (3) from the spring-
damper structure illustrated in Fig. 1. For convenience, the
two angular variables are converted to

φ = θm + θs, ψ = θm − θs. (A1)

The horizontal and vertical displacements of a unit cell are
then

d1 = 2�

[
2 cos

(π

8
+ ψ

)
+ sin

(π

8
+ φ

)

− 2 cos
π

8
− sin

π

8

]
, (A2)

d2 = 2�

[
2 cos

(π

8
+ φ

)
+ sin

(π

8
+ ψ

)

− 2 cos
π

8
− sin

π

8

]
, (A3)

and the elongations of the horizontal and vertical dampers are

u1 = �
[
sin

(π

8
+ φ

)
− sin

π

8

]
, (A4)

u2 = �
[
sin

(π

8
+ ψ

)
− sin

π

8

]
. (A5)

The time derivatives of Eqs. (A4) and (A5) are expressed as

u̇1 = �
[
φ̇ cos

(π

8
+ φ

)]
, u̇2 = �

[
ψ̇ cos

(π

8
+ ψ

)]
,

(A6)

where we now set φ̇ = dφ/dt and ψ̇ = dψ/dt . Under the en-
ergy consideration per unit cell subjected to the x2-directional
force F2 (= −At ), the potential and dispersion function, de-
noted U and D, are expressed as

U = 32 · 1
2 kθ (2θs)2 + F2d2, D = 2

(
1
2 c1u̇2

1 + 1
2 c2u̇2

2

)
.

(A7)
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The kinetic energy per unit cell is expressed as

K = 1
2 Iφφ̇2 + 1

2 Iψψ̇2, (A8)

where Iφ and Iψ are the moments of inertia with respect to φ

and ψ .
Let L be the Lagrangian for the system, i.e., L = K − U .

The motion equations of the unit cell are

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
+ ∂D

∂φ̇
= 0,

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
+ ∂D

∂ψ̇
= 0. (A9)

To reduce the order of the motion equations (A9), we assume
that the two angular variables belong to φ ∈ O(ε) and ψ ∈
O(ε), where O is Landau’s symbol, meaning “of the order of,”
and ε is an infinitesimal parameter. We also assume that the
critical behavior of our interest proceeds slowly on the basis
of viscosity, and we define it by

t∗ = t

T0
∈ O(ε−1), A∗ = A�T0

16kθ

∈ O(ε2),

c∗
i∈{1,2} = ci∈{1,2}�2

16kθ T0
∈ O(1). (A10)

Note that T0 is uniquely determined by c∗
1 = c∗

2 = 1 if c1 = c2.
The definitions of Eq. (A10) are verified in Sec. VI C. Under
these assumptions, we introduce dimensionless variables,

φ̂ = φ

ε
, ψ̂ = ψ

ε
, t̂ = εt∗, Â = A

ε2
,

ĉi∈{1,2} = c∗
i∈{1,2}. (A11)

We then have

φ̇ = ε2

T0

dφ̂

dt̂
, ψ̇ = ε2

T0

dψ̂

dt̂
, φ̈ = ε3

T 2
0

d2φ̂

dt̂2
,

ψ̈ = ε3

T 2
0

d2ψ̂

dt̂2
. (A12)

Using Eqs. (A3), (A6)–(A8), and (A10)–(A12), we rear-
range Eq. (A9) to obtain dimensionless motion equations,

ε(φ̂ − ψ̂ ) − 2εÂt̂ (εpφ̂ + q)

+ ε2ĉ1 p2 dφ̂

dt̂
+ O(ε3) = 0,

(A13)
−ε(φ̂ − ψ̂ ) + εÂt̂ (−εqψ̂ + p)

+ ε2ĉ2 p2 dψ̂

dt̂
+ O(ε3) = 0,

where p = cos(π/8) and q = sin(π/8). Ignoring the high-
order terms belonging to O(ε3), it follows from Eq. (A13) that

(φ − ψ ) − 2A∗t∗(pφ + q) + c∗
1 p2 dφ

dt∗ = 0,

(φ − ψ ) − A∗t∗(−qψ + p) − c∗
2 p2 dψ

dt∗ = 0. (A14)

Converting to the three variables as in Eq. (2), Eq. (A14)
becomes Eq. (3), where the angular variables θm and θs are

FIG. 11. Front view of the MBD structure with the insertion of
two damper units (red elements) in the vertical direction.

represented with the additional variables as

ξ = q(θm + θs) − p, η = −q(θm − θs) + p

⇔ θm = ξ − η + 2p

2q
, θs = ξ + η

2q
. (A15)

The initial configuration of the structure has t = 0, θm =
0, and θs = 0, which correspond to [ξ (0), η(0), ζ (0)] =
(−p, p, 0).

APPENDIX B: MBD MODELING WITH
MEMBER-TO-MEMBER CONTACT

We built the solid-body kinetic system of our proposed
structure using MBD software (Adams [28]). The system has
40 beam links of equal length, which are pivotally connected
at each end by spherical joints. These links interact via 32
rotational springs and two vertical dampers. Figure 11 shows
the front view of the MBD structure in three dimensions. The
freestanding structure has multiple degrees of freedom. To
realize transformability equivalent to that of the viscoelastic
model with two degrees of freedom [Fig. 1(b)], we set the
displacement constraints of the nodes as

di
1 = −d j

1 , (i, j) ∈ {(E, G), (F, H)}, (B1)

di
2 = −d j

2 , (i, j) ∈ {(A, C), (B, D)}, (B2)

di
2 = d j

2 = dk
2 , (i, j, k) ∈ {(A, B, M), (C, D, N)}, (B3)

and

d I
1 = d J

1 = 0, dK
2 = dL

2 = 0, (B4)

where the superscript capitals of d1 or d2 correspond to the
respective nodes symbolized in Fig. 11; e.g., dA

1 indicates the
x1-axial displacement of node A. The constraint conditions
of Eqs. (B1)–(B4) impose on the transformation reflection
symmetry about the vertical and horizontal lines through the
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center of the structure (node O). The analysis is thus reduced
to the first of four structural elements, as shown in Fig. 1(b).

By representing simply the self-contact of the structure,
we consider a two-body interaction between nodes R-S, T-U,
V-W, and X-Y, which can be described by the Lennard-Jones
potential function,

V (ri j ) = α

r12
i j

− β

r6
i j

, (B5)

where ri j is the distance between nodes i and j, and (i, j) ∈
{(R, S), (T, U), (V, W), (X, Y)}. Provided that V has a min-

imum value in the initial configuration of ri j (0) = 2�q, the
relation β = 2α(2�q)−6 is obtained. Thus, the repulsive forces
acting between the two nodes (R-S, T-U, V-W, and X-Y) are
expressed by

R(ri j ) = − dV

dri j
= 12α

r7
i j

[
1

r6
i j

− 1

(2�q)6

]
. (B6)

Table I lists the geometric and material parameters of each
component in the MBD simulation. As a time-integration
technique, we employed Gear’s method with a time increment
of 0.1 s.
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