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Shear-induced mixing of granular materials featuring broad granule size distributions
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Granular flows during a shear-induced mixing process are studied using discrete element methods. The aim is
to understand the underlying elementary mechanisms of transition from unmixed to mixed phases for a granular
material featuring a broad distribution of particles, which we investigate systematically by varying the strain rate
and system size. Here the strain rate varies over four orders of magnitude and the system size varies from ten
thousand to more than a million granules. A strain rate-dependent transition from quasistatic to purely inertial
flow is observed. At the macroscopic scale, the contact stresses drop due to the formation of shear-induced
instabilities that serves as an onset of granular flows and initiates mixing between the granules. The stress-drop
displays a profound system size dependence. At the granular scale, mixing dynamics are correlated with the
formation of shear bands, which result in significantly different timescales of mixing, especially for those regions
that are close to the system walls and the bulk. Overall, our results reveal that although the transient dynamics
display a generic behavior, these have a significant finite-size effect. In contrast, macroscopic behaviors at steady
states have negligible system size dependence.
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I. INTRODUCTION

The mixing of granular particles has long been recog-
nized as a complex process which affects the performance of
many products in many industries including pharmaceutical,
food and cosmetic. The outcomes of a mixing process, or
more generically referred to as the flow properties, markedly
depend on the particle size distribution, density, roughness,
moisture and cohesion [1–5], as well as externally supplied
energy [6,7]. It is also a well-known reality that particles
with similar properties tend to segregate themselves from
others [8]. For granular particles, they also exhibit percolation,
whereby small particles under the influence of gravity ends
up staying at the bottom of a test bed, or they percolate
under the influence of shear. Experiments as well as computer
simulations have explored shear-induced percolation exten-
sively. Many different industrially relevant geometries are
examined such as ball mills, blenders, hoppers [9–11]. The
results obtained from such complex geometries are crucial;
however, these could be geometry specific. The complexity in
geometries poses a problem to rationalize the pure response
of particle properties from the geometric effects.

Over the years, especially in discrete element meth-
ods (DEM), minimal geometries such as simple shear or
plane shear have been extensively employed either via Lees-
Edwards boundary conditions or via simulation walls to ex-
plore the elementary mechanisms of flow behaviors [12–17].
These geometries have also been utilized to understand the
shear-induced transition dynamics of mixing in granular mate-
rials. Lu and Hsiau [18] imposed shear through rough parallel
walls and studied the mixing process of a binary assembly
starting from an unmixed phase. They concluded that the mix-
ing is governed by diffusion mechanisms. Aarons et al. [19]

adopted a similar sheared geometry with a binary mixture of
significantly high diameter ratio of 7:1, and investigated the
role of interparticle cohesive force on mixing. They found that
the homogeneity of the binary mixture is correlated with the
cohesive forces between small particles, even though locally
they did not find any correlation between solid volume frac-
tion and homogeneity. In addition, Obregón et al. [20,21] in
their periodic shear experiments found that faster mixing is
achieved with increasing particle size as the large diameter
reduces the frictional contact area. Similarly, they found that
particles near the moving walls mix better than the rest of the
system.

One major drawback in using DEM simulations is in its
inability to experimentally match the relevant scales of mixing
due to limited computational power. The standard procedures
to overcome such computational shortcomings involve either
enlarging the particle sizes by a constant factor or shortening
the simulation dimensions [22]. The majority of the DEM
studies on mixing focused on the binary assemblies of similar
size order. In real industrial products; however, this is not the
case as the sizes of the granular particles are often distributed
over a few orders of magnitude [23]. In these materials, such
ad hoc dimensional adjustments need to be implemented care-
fully as the wide distributions of sizes introduce different
length scales and timescales during the mixing processes.
Thus, an in-depth understanding on how to set an optimum
simulation scale to study the mixing of industrially relevant
granular products has a significant commercial impact, but it
has thus far received little research attention.

In this study, we investigate systematically the finite-size
effect of mixing in a cohesion-less granular assembly featur-
ing a broad distribution of particle sizes. We begin from an
unmixed phase and shear the system using a pair of parallel
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TABLE I. Characteristics of granular particles.

Type Diameter Mass Weight (%)

1 1.0 1.0 0.3
2 1.23 2.504 1.5
3 1.944 5.161 4.7
4 2.212 4.12 55.4
5 3.998 41.85 27
6 4.269 48.16 10.8
7 21.39 13157 0.2

flat walls, forcing the granules to be mixed. We then study
the transition dynamics from unmixed to mixed phases for
several strain rates in the absence of gravity. We show that the
shear-induced transition dynamics display qualitatively sim-
ilar behavior, however, quantitatively the transient behavior
depends on the system size. On further examination of the
steady-state regimes of the granular flows, we show that the
macroscopic variables are insensitive to the finite size effect.
Results obtained from this study display a significant influ-
ence of shear bands on mixing which is crucial in developing
a continuum model for granular mixing.

The rest of the paper is organized in following sections. In
the next section, we describe the granular model and details
of the DEM simulations. In the following section, we discuss
the mixing dynamics, effects of finite size and effects of strain
rates on mixing and steady-state properties. Finally, we sum-
marize the key findings in the summary section.

II. MODEL AND METHODOLOGY

A. Model specification

Inspired from industrially relevant powders [23], we pre-
pare a polydisperse granular assembly containing seven
different types of granules which are of significantly different
sizes and masses and present with unique weight proportions
(Table I). We select a cubic box with a volume fraction of
0.6, whereby volume fraction is defined as the ratio of the
total volume occupied by the granules to the box volume. We
prepare three different system sizes where the total number of
particles are 13 147, 131 441, and 1 314 378, respectively.

B. DEM modeling

In our modeling, we use the open source software
LAMMPS to perform discrete element simulations for the
shear-induced mixing studies [24]. Here the particles are as-
sumed to be soft spheres. Two particles exert a contact force
only when they overlap. The overlapped distance δi j is mea-
sured as the difference between the sum of radii Ri + Rj and
the center-to-center distance ri j , i.e., δi j = (Ri + Rj − ri j ).
The pair vector ri j = ri − r j is the vector difference between
the two position vectors ri and r j .

The contact force F i j is composed of a normal force
Fn term and a tangential force Ft term. The normal force,
Fn = Fne + Fnd , is further composed of an elastic force Fne

and a damping force Fnd . Both the forces are acting along
the normal direction of the pair n̂i j = ri j/ri j . We express the

elastic force using the Hertzian model,

Fne = kn

√
RiRj

Ri + Rj
δ

3/2
i j n̂i j, (1)

where kn is the stiffness coefficient of the interparticle bond,
having the dimension of pressure with the value set at 17×106.
The damping force is proportional to the relative velocity
between particle i and particle j,

Fnd = −ηn(vi − v j ) · n̂i j n̂i j, (2)

where ηn is the damping coefficient which follows the relation

ηn = α

√√√√ mimj

mi + mj
kn

√
RiRj

Ri + Rj
δi j, (3)

proposed by Tsuji et al. [25]. Here mi and mj are the masses
of particle i and j, and α is a constant, whose value depends
on the coefficient of restitution e, set to 0.5.

Similarly to the normal force, the tangential force, or more
precisely the friction force, Ft is also composed of two forces,
the Mindlin force Ftm [26] and a damping force Ftd , both
acting along the tangential direction with respect to the pair
vector ri j . The tangential force

Ft = − min (μ|Fn|, |Ftm + Ftd |)t̂i j, (4)

reaches the Coulomb limit when the sum of Mindlin and
damping force overcomes a fraction of the normal force. The
limit is controlled by the coefficient of friction μ, a scalar
quantity whose value is set to 0.5 in this study. t̂i j is the unit
vector along the tangential direction. The Mindlin force

Ftm = −kt

√
RiRj

Ri + Rj
(δi j )

1/2ξi j t̂i j, (5)

depends on both the overlapped distance δi j and the tangential
distance ξi j which further depends on the contact history. The
tangential displacement ξi j = ∫ tp

t0
vti j (t

′)dt ′ is the integration
of the relative tangential velocity vti j over time ranging from
the initial time of the contact formation t0 to the present
time tp. The history is erased and ξi j is set to zero once the
contact breaks. The tangential stiffness parameter, kt , is set to
6.5×106. The tangential damping force

Ftd = −0.9ηnvti j , (6)

is proportional to vti j , which includes translation velocities in
the form of relative velocity vi j = vi − v j along t i j , and the
rotation velocities ωi and ω j , and it is defined as

vti j = vi j − (vi j · n̂i j )n̂i j − (Riωi + Rjω j ) × n̂i j . (7)

From the schematic of the cubic simulation box in Fig. 1,
it can be deduced that the granular particles also experience
contact forces from the two parallel flat walls, implemented
at the bottom (rw = 0) and at the top (rw = Lẑ) of the cubic
simulation box (length L), to perform simple shear operations.
The other two dimensions, x and y, are not bounded, implying
that the particles can move back and forth based on the peri-
odic boundary conditions. The top wall moves with a constant
velocity vw = vaffx̂ along the horizontal direction, while the
bottom wall is static, i.e., vw = 0. The particle which comes
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FIG. 1. A schematic of a cubic simulation box of length L. The
top and bottom planes are covered by two smooth flat walls. The top
wall moves with a constant velocity and the bottom wall is static,
which generates a shear flow inside the simulation box.

into contact with the top wall will experience a shear force
due to vaff. Thus, the velocity facilitates generating a simple
shear profile in the simulation box across the z axis that can
be described by an imposed strain rate

γ̇ = vaff/L. (8)

It is, however, a known fact that the shear profile will not
be uniform. Rather than being a constant γ̇ profile, the sys-
tem will have a z-dependent strain rate profile [27]. It is
possible to achieve a uniform simple shear profile using the
Lees-Edwards boundary conditions, but this behavior is not
observable experimentally [28]. Note that with increasing sys-
tem size L, we increase vaff accordingly such that the imposed
γ̇ remains constant.

When a particle i comes into contact with a wall w, the
wall exerts: (i) a normal force,

Fnw = [knδiw − 50mi(vi − vw ) · n̂iw](Riδiw )1/2n̂iw, (9)

and (ii) a tangential force,

Ftw = − min(μ|Fnw|, |Ftmw|)t̂iw (10)

on the particle, where Ftmw = −kt (Riδiw )1/2ξiw t̂iw is the
Mindlin force, δiw = Ri − riw is the overlap distance, riw is the
magnitude of the vector riw = ziẑ − rw, zi is the z position of
the particle. Here all the parameters carry the same meanings
and values as defined in equations (1), (4), and (5).

Thus, the net force F i acting on a particle i is the sum of
all contact forces due to pair contacts F i j and due to walls
F iw. In addition, a damping force, which is proportional to
particle velocity −0.01vi, is added to F i. The damping term
restricts a particle to free flow, drains the kinetic energy out
of the system, and prevents the occurrence of any oscillatory
instability [29,30]. Similarly, the particle i experiences a net
torque T i which is the accumulation of torques induced by
tangential pair forces (4) (Ri − δi j/2)(Ft × n̂i j ), and torques

induced by tangential wall forces (10) Ri(Ftw × n̂iw ). The net
force and torque acting on a particle generate translation and
rotational motions, which are numerically estimated over time
using the standard velocity-Verlet algorithm. In this study, the
time step δt = 10−5 is selected for numerical integration to
ensure stable numerical computations.

In our DEM simulations, the cut-off distance is set equal to
the largest particle size in building the neighbor list, it results
in long computational times for the neighbors and long com-
munication times between the parallel processors. However,
the maximum number of neighbors per particle on average
is about 5, which is small because of our implementation
of a repulsive interaction. We have used 120 parallel CPUs
(Intel Xeon CPU E5-2690 2.6 GHz) to simulate our largest
system consisting of more than one-million particles, which
take approximately 0.011 s to compute one smallest time
step, addressing an important consideration in computational
efficiency and effectiveness. The fundamental mass (m) and
length (d) units in our simulations are defined by the mass and
diameter of the smallest particle (see Table I) and the time unit
(tcol) is defined by

tcol =
√

m

dkn
. (11)

C. Preparation protocol

We prepare an initial configuration where seven granule
types are stacked side by side, representing an unmixed gran-
ular phase. During the stacking process we keep the box
elongated along the x axis, while the other two dimensions are
kept constant at value L and start stacking each type of granule
one after another. We checked that the choice of stacking
orders of granular types has mere influence on the results
reported in this article. Once the stacking is completed, we
gently shrink the x dimension to length L. Next, we bring the
configuration at mechanical equilibrium, i.e., the net force and
torque acting on each particle become negligible. An unmixed
configuration prepared using the above protocol can be seen
in the top left panel of Fig. 2. Once the initial configuration is
prepared, we switch on the velocity vaff of the top wall of the
simulation box and start our shear-induced mixing study.

D. Local variables

Experimentally, the mixing status is evaluated by using a
statistical index, which determines the homogeneity of the
particle distribution. Normally a few subdomains from the
entire system are chosen for statistical sampling to conduct
the homogeneity test. The dimension of the subdomain is then
carefully selected such that it is much larger than the typical
size of particles but smaller than the experimental system [31].

In this study, we divide the simulation box into equal cubes
of dimension 27, which is 26% larger than the largest particle.
The length is large enough to accommodate all types of gran-
ules with right proportions. The mixing status at each cube is
then quantified by examining the relative density fluctuations
of the granules with respect to the global density. We define a
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FIG. 2. Granular flows at different stages of shear γ = γ̇ × time (top). Here the simulation box has length L = 114.94, contains 131 441
particles, and it is sheared at a constant strain rate γ̇ tcol = 2.4×10−5. vx , the average velocity of particles along x, as a function of z is plotted
for the above configurations (bottom).

dimensionless parameter δ� as follows:

δ� = 1

Ntype

Ntype∑
s=1

∣∣∣∣ρloc;s

ρloc
− ρs

ρ

∣∣∣∣, (12)

where ρ and ρs are the global densities for all granules and
only for granules of type s, respectively. Similarly, ρloc and
ρloc;s are the local densities for all granules and only for
granules of type s at the test cube, respectively. Ntype is the
total types of granules present in the system. The ideal mixing
proportions of the granules at the test cube correspond to
values of δ� equal to zero, whereas the nonzero values of δ�

indicate deviations from the ideal. In addition, we calculate
the local strain rate for each test cube

γ̇loc = 1

Nloc

Nloc∑
i=1

vx;i

zi
, (13)

where Nloc is the number of granules in the cube, zi and vx;i

are the z position and x velocity of granule i. Similarly, we
calculate the coordination number for each test cube

nc = 1

Nloc

Nloc∑
i=1

nc;i, (14)

where nc;i is the number of granules in contact with granule i.
Furthermore, in order to study the response of the three

local variables against shear, we compute the average δ�, γ̇loc

and nc over all of the cubes lying on the same z plane, denoted
as 〈δ�〉, 〈γ̇loc〉, and 〈nc〉, respectively.

III. RESULTS AND DISCUSSIONS

A. Dynamics of mixing

From the initial unmixed condition, particles move as
layers along the horizontal direction with shear strain γ =
γ̇ × time (see Fig. 2): It can be clearly observed that the
particles close to the top wall move fast as the wall moves with
a constant velocity vaff, while those particles at the bottom
are the slowest, which is unsurprising as the bottom wall is
static, so the wall-friction opposes the sheared motion. A layer
formation across the z axis is also apparent when looking at
the blue particles in the top panel, γ = 6. Eventually, those
particles close to the top and bottom walls start to mix (panels
γ = 60 and 600). The particles in the middle are mixed later
after applying a large amount of shear (panel γ = 6000).

Such layerwise motion can be quantified through the study
of velocity profile as a function of z. Here we divide the z di-
mension of the box into several layers with equal thicknesses.
Next we compute the average x velocity of the particles vx for
each layer. vx rescaled by vaff as a function of z/L is displayed
in the bottom row of Fig. 2. The mechanical equilibrium
state of the initial configuration results in zero velocity (panel
γ = 0). Once the shearing process starts, a nonzero velocity
profile is established. Theoretically, a straight line velocity
profile with slope one is expected for simple shear. Instead,
we find a nonlinear velocity profile signifying the formation
of shear bands, typically observed in amorphous and jammed
systems [32,33]. Here the nonlinear velocity profile can be
characterized into three regimes, namely, the top, bottom,
and middle or bulk regimes. The bulk regime appears nearly
flat with varying z/L as the particles move with a constant
velocity. The magnitude of the velocity at the bulk is smaller
than vaff, and it further drops with increasing γ . In comparison
to the bulk, the other two regimes display sharp nonzero
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FIG. 3. (a) The average local strain rate 〈γ̇loc〉tcol of test cubes
lying on the same z plane is shown as a function over γ for N =
131 441. The dashed line indicates the imposed strain rate γ̇ tcol =
2.4×10−5. (b) Similarly, the average coordination number 〈nc〉 is
plotted over γ .

slopes. The bottom regime appears always shorter than the
top regime. A similar type of shear band formation in granular
assemblies was previously reported by Shojaaee et al. [34].

The existence of shear bands restricts the system in having
a uniform strain rate profile locally. In understanding the local
strain rate behavior over strain, we study the average local
strain rate 〈γ̇loc〉, as defined in Sec. II D. In Fig. 3(a), we
discover an oscillatory profile for 〈γ̇loc〉, saturating to a plateau
at large strain intervals. It can also be observed that the oscil-
lations have a systematic z dependence, with the oscillation
amplitude increasing with increasing z. Even in the plateau
regime, we find that 〈γ̇loc〉 increases with z, and all of the
plateau values are higher than the imposed strain rate γ̇ .

On further examination, we also find that the average coor-
dination number 〈nc〉 dramatically drops over strain, and it is
sensitive with shear bands [Fig. 3(b)]. It is also evident that at
large strain intervals, 〈nc〉 displays two different regimes, i.e.,
one close to the walls, and the other at the bulk.

The above results suggest that the granular system evolves
from unmixed to mixed states under shear through the for-
mation of shear bands. Recently, Vasisht and Del Gado
numerically showed a strong correlation between shear band-
ing and macroscopic properties, for example pressure in soft
systems such as emulsions [35]. The authors established that
the evolution of pressure over strain, which is marked by
a plastic yielding followed by a steady-state response, is
associated with the emergence, disappearance and character-
istic shape changes of shear bands. We further investigate if
there exists any correlation between the pressure and mixing
dynamics.

We follow the standard definition of pressure P [36]

P = N

L3
T + 1

3
(σxx + σyy + σzz ), (15)

where the first term on the right-hand side is the kinetic term,
N is the total number of particles and T is the kinetic energy

FIG. 4. Pressure P (a), kinetic component of P (b), and shear
stress σxz (c) rescaled by kn and plotted over γ for N = 131 441 and
γ̇ tcol = 2.4×10−5.

from both the translation and rotation

T = 2

6N

(
1

2

N∑
i=1

mi
{
[vix − vx(zi)]

2 + v2
iy + v2

iz

}

+1

4

N∑
i=1

miR
2
i ω

2
i

)
, (16)

where we remove the bias velocity vx(zi ) from the x velocity
vix of each particle. vx(zi) is determined by averaging the x
velocities of particles within the same z plane as particle i.

The second term on the right-hand side of (15) is the
average contribution of the three normal stress components
of the virial stress tensor σαβ , which follows the definition

σαβ = 1

L3

[
N ′∑

i=1;i �= j

rα
i jF

β
i j +

N ′∑
i=1

rα
iwFβ

iw

]
, (17)

where N ′ is the sum of the particles in the simulation box
(N) and the image particles [37] within close proximity to the
simulation box. rα

i j is the α component of the pair vector either
between two particles, or between a particle and an image
particle, or between two image particles. Similarly, Fβ

i j is the
β component of the pair force between i and j. The stress due
to the walls is included in the second term on the right-hand
side, and the suffix w represents the two walls.

The results in Fig. 4 show that the initial value of P is
high. The P value decreases weakly until a sharp drop takes
place, then P displays a nonmonotonic behavior, and finally,
it reaches a steady state at around γ ∼ 3×103 as shown in
Fig. 4(a). We further confirm the steady state by conduct-
ing another simulation starting from a configuration where
the particles are placed randomly. The random system also
displays the same plateau value for pressure under shear. A
similar sharp drop around the same γ can be seen in both
kinetic pressure [Fig. 4(b)] and shear stress σxz [Fig. 4(c)], and
both the quantities reach plateaus also around the same γ as P.
The kinetic contribution on pressure is negligible as compared
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FIG. 5. 〈δ�〉, the density fluctuation parameter averaged over
cubes locating at the same z plane, versus γ for γ̇ tcol = 2.4×10−5

and N = 131 441.

to the contribution from the contact forces, while the other two
components of shear stress σxy and σyz, as expected, fluctuates
around zero with vanishing magnitude.

The sharp drop in P represents a static to dynamic transi-
tion of the whole system. The transition initiates granular flow,
and thus, particles start to mix, which can be seen in Fig. 5. We
study the average density fluctuation parameter 〈δ�〉, defined
in Sec. II D, for several z planes. 〈δ�〉 at the bottom z = 0 and
near the top walls z = 81 show a jump occurring around the
same γ when the P value drops. These low values of 〈δ�〉
indicate that the granular particles in these two planes reach
the mixed phases stage. 〈δ�〉 at the bulk takes longer shear
deformation for mixing to occur. It is also evident that the
strain value at which 〈δ�〉 drops increases with the distance
from the top wall. These results from our studies show similar
mixing behaviors characteristic as observed in the periodic
shear experiments [20] where the granular particles close to
the two walls were also found to be mixed fast compared to
the bulk particles. Here we found that the fast mixing occurs
due to the presence of the two shear bands which create slip
events. Slipping randomizes particle motion along the x, y,
and z directions.

B. Effects of finite size

In this section, we conduct a finite-size analysis to under-
stand how P, shear banding and mixing scenario are affected
by the finite size. The finite-size analysis involves three gran-
ular systems, whereby the smallest system contains more than
ten thousand particles and the largest system contains more
than one million particles. For the volume fraction of 0.6,
the respective dimension of the three simulation systems are
L = 54.241, 114.94, and 247.26. We also studied another
granular system with L = 28.728, i.e., 34% greater than the
largest particle diameter, containing 1318 particles. However,
the results of such a small system is distinctly different from
the rest and as such it is discarded.

We find that the pressure of our initial unmixed system,
resting at mechanical equilibrium, is the same for all of the
systems [Fig. 6(a)]. Here, we find qualitatively a similar re-

FIG. 6. P/kn (a) and σxz/kn (b) over γ at γ̇ tcol = 2.4×10−5 for
several system sizes N .

sponse of the pressure against strain behavior irrespective of
the system sizes. A significant pressure drop, which marks
the mobility of the system, is prevalent in all of the three
systems. The occurrence of pressure drop becomes signifi-
cantly delayed with increasing system size. The system later
gradually reaches steady states. We find that the steady-state
values of P have negligible dependence on the system size.
A similar significant drop and negligible dependence of the
steady-state values on the system size for σxz are also shown
in Fig. 6(b). Two shear banding regimes with a flat middle
regime in vx profile are also prevalent for all of the system
sizes over all values of γ . vx/vaff with z/L at steady states, is
shown in Fig. 7. The steady-state properties are averaged over

FIG. 7. vx rescaled by vaff is plotted against z/L at steady states
for γ̇ tcol = 2.4×10−5 for several system sizes N . Error bars are
smaller than the symbols.
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FIG. 8. 〈δ�〉 versus γ (a). The bottom plane (left), and the top
plane (right) of the final configuration (b). Here γ̇ tcol = 2.4×10−5

and N = 1 314 378.

the configurations saved in the last 300 strain intervals. Two
marked system size effects are observed: (i) the top regime
becomes broader and (ii) the magnitude of vx/vaff drops with
increasing N . To understand the finite-size effect on mixing
we plot 〈δ�〉 for the whole range of z planes of the largest
system as shown in Fig. 8(a). 〈δ�〉 at the top and the bottom
regimes drop fast compared to the bulk. In the bulk, the oc-
currence of drops is systematically delayed with decreasing
z. Note that the four regimes, just above z = 0, do not show
any decay. In order to achieve the decay we need to run longer
simulations which are extremely time consuming. Neverthe-
less, a qualitatively similar mixing behavior is recovered as
found in smaller systems. Interestingly for our largest system,
we observe a partial segregation. Granules of diameters ∼3–4
accumulate more at the top wall compared to the other parts
of the system [Fig. 8(b)].

C. Effects of strain rates

In this section, we study the effect of strain rate γ̇ on
mixing, especially, the correlation between P and 〈δ�〉. A
strong dependence of P on γ̇ is evident in Fig. 9(a). Note that
γ̇ is altered in this study by changing the value of vaff. We
find that the sharp drop in P, also observable in the previous
section, decreases with increasing γ̇ . At the highest γ̇ the drop
becomes insignificant, which is in stark contrast at the lowest
γ̇ where the drop is prolonged. Interestingly, at these small
values of the strain rate, the system reaches the zero pressure
state over straining where no particles are in contact with the
others including the walls.

FIG. 9. P/kn versus γ for several strain rates and N = 13 147 (a),
respective final configurations as shown in roman numerals (b). 〈δ�〉
versus γ at z = 0 (c, bottom panel) and z = 27 (c, top panel) for the
same strain rates. Here the box length L = 54.241.

Zero pressure results in no flows in the system, and thus,
a homogeneous mixed phase cannot be achieved. A nearly
unmixed final configuration for the lowest γ̇ is shown in
Fig. 9(b). The granular particles reach the mixed phases for
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FIG. 10. vx/vaff versus z/L at steady states for several strain rates
and N = 13 147.

other high strain rates near the steady states. 〈δ�〉 for two
regimes z = 0 and z = 27, where one regime lies on the bot-
tom wall, while the other lies close to the top wall, are shown
in Fig. 9(c). Initially, 〈δ�〉 remains constant, later it displays
an oscillatory pattern. The oscillation is originated from shear
deformation, implying a mass of particles periodically moving
about in the same position in the box. The oscillation dies
down with increasing γ as the initial mass of the particles fur-
ther mix with each other, creating a strain-independent mixing
phase. As expected, for the lowest strain rate, we do not ob-
serve such mixing dynamics. At the mixed phases, which also
coincide with the steady states, we observe permanent shear
bands for all of the strain rates (Fig. 10). Further by increasing
strain rate, vx/vaff collapses to a master curve pointing to the
microscopic dynamics being identical at high strain rates.

D. Steady-state properties

In this section, we investigate the effect of mixing on
the steady-state properties. The steady-state values of P and
σxz are shown in Fig. 11. Both the quantities asymptotically

FIG. 11. Steady-state values of P/kn and σxz/kn as a function of
γ̇ tcol.

follow the scaling of P ∼ 180t2
colγ̇

2 and σxz ∼ 62t2
colγ̇

2. The
quadratic scaling for stresses was first observed by Bagnold
in dense granular flows [38], which he rationalized using a
kinetic theory where both, the frequency of binary collision
and the momentum change per collision are assumed to be
proportional to the strain rate. Later from his studies, Camp-
bell concluded with the identification of three distinguished
regimes in granular flows, namely, quasistatic, purely inertial
and elastic inertial [39]. Cialvo et al. [40] then showed that
stresses below the critical volume fraction, i.e., the jamming
point φc, belongs to a purely inertial regime where kinetic
dynamics control the granular flow. In accordance with Cialvo
et al., we also find that the current shear-induced mixing
process results in a steady granular flow corresponding to a
purely inertial regime. To further confirm the flow regime of
the steady states, we estimate the relaxation time τr of the
granular systems by letting one of our final configurations
to relax in the absence of external shear. As a consequence,
all the macroscopic variables decay to zero. Further, we fit
pressure by P(t ) ∼ exp(−t/τr ), and find tcol/τr ≈ 2×10−6.
Here, tcol/τr is served as a critical strain rate. When the strain
rate is below the critical value, the flow is quasistatic, and it
has no dependence on the strain rate values. However, when
the strain rate is above the critical value the flow is purely
inertial, which is consistent with the results in Fig. 11.

IV. SUMMARY

In summary, we found that the transition dynamics of mix-
ing is sensitive to macroscopic dynamics. Starting from an
unmixed phase, it was shown that the granular system attains
a mixing phase typically at the similar strains at which the
granular system reaches steady states.

From the finite-size analysis we discovered a minimum
system size, typically twice the size of the largest particle,
above which the response of pressure and shear stress over
strain and strain rates are qualitatively similar. The steady-
state values display little dependence on the system size, while
the strain value, which marks the static to dynamic transition
associated with a contact stress drop, significantly increases
with the system size.

The mixing behavior is also qualitatively similar for all of
the system sizes. We observed that the mixing dynamics is
sensitive to shear band formation. Granules move fast around
the mobile wall and become slow around the static wall that
creates the three flow regimes at the top, bottom and bulk. The
amount of shear required to mix granules in the bulk regime
is significantly large as compared to mixing the granules in
the two regimes close to the walls, making the shear-induced
mixing a slow process.

The steady-state values of pressure and shear stress signif-
icantly depend on the strain rate, especially, we observed the
Bagnold’s scaling as found in purely inertial granular flow.
A critical strain rate was found which marks the transition
from the quasistatic to the purely inertial regime. Thus, any
strain rates below the critical value, the system will have zero
pressure, and as a result, it never reaches a mixed phase.

Overall, our results suggest that elementary mechanisms
underlying granular flows can be understood from a relatively
small system, which may further lead one to construct a
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continuum model to quantify the mixing process at indus-
trially relevant scales. Elementary mechanisms of mixing,
especially the correlation between mixing and shear bands
presented here should serve as a useful basis for future re-
search. It would be interesting to study how non-Hertzian
contact forces including cohesive forces and the particle
shapes affect the mixing mechanisms as it is known in the
literature that the formations of shear bands depend on the
intensity of cohesive forces [41] as well as the particle
shapes [42]. In addition, nonspherical particles, e.g., ellipsoids
in rotating drums display different transverse mixing behav-
iors with the imposed rate in comparison with the spherical

particles [43], which could also be a potential future research
topic in the context of simple shear geometry.

ACKNOWLEDGMENTS

Authors gratefully acknowledge Agency for Science, Tech-
nology and Research (A*STAR) for its financial support
(RIE2020 AME IAF-PP Grant No. A19C2a0019) and NSCC
for allocating computation time and data storage. All authors
thank Lee Mun Wai, Tey Jayren, Thaddie Natalaray, Yap Fung
Ling, Fang Yongwei, and Sim Jun Xian for their valuable
comments and discussion.

[1] C. S. Campbell, Elastic granular flows of ellipsoidal particles,
Phys. Fluids 23, 013306 (2011).

[2] N. Vlachos and I. T. H. Chang, Investigation of flow proper-
ties of metal powders from narrow particle size distribution
to polydisperse mixtures through an improved hall-flowmeter,
Powder Technol. 205, 71 (2011).

[3] J. Mellmann, T. Hoffmann, and C. Fürll, Flow proper-
ties of crushed grains as a function of the particle shape,
Powder Technol. 249, 269 (2013).
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