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Time scale disparity yielding acoustic nonreciprocity in a two-dimensional granular-elastic
solid interface with asymmetry
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We study nonreciprocal wave transmission across the interface of two dissimilar granular media separated
by an elastic solid medium. Specifically, a left, larger-scale and a right smaller-scale granular media composed
of two-dimensional, initially uncompressed hexagonally packed granules are interfacing with an intermediate
linearly elastic solid, modeled either as a thin elastic plate or a linear Euler-Bernoulli beam. The granular media
are modeled by discrete elements and the elastic solid by finite elements assuming a plane stress approximation
for the thin plate. Accounting for the combined effects of Hertzian, frictional and rotational interactions in the
granular media, as well as the highly discontinuous interfacial effects between the (discrete) granular media and
the (continuous) intermediate elastic solid, the nonlinear acoustics of the integrated system is computationally
studied subject to a half-sine shock excitation applied to a boundary granule of either the left or right granular
medium. The highly discontinuous and nonlinear interaction forces coupling the granular media to the elastic
solid are accurately computed through an algorithm with interrelated iteration and interpolation at successive
adaptive time steps. Numerical convergence is ensured by monitoring the (linearized) eigenvalues of a nonlinear
map of interface forces at each (variable) time step. Due to the strong nonlinearity and hierarchical asymmetry
of the left and right granular media, time scale disparity occurs in the response of the interface which breaks
acoustic reciprocity. Specifically, depending on the location and intensity of the applied shock, propagating
wavefronts are excited in the granular media, which, in turn, excite either (slow) low-frequency vibrations or
(fast) high-frequency acoustics in the intermediate elastic medium. This scale disparity is due to the size disparity
of the left and right granular media, which yields drastically different wave speeds in the resulting propagating
wavefronts. As a result, the continuum part of the interface responds with either low-frequency vibrations—when
the shock is applied to the larger-scale granular medium, or high-frequency waves—when the shock is applied
to the smaller-scale granular medium. This provides the fundamental mechanism for breaking reciprocity in
the interface. The nonreciprocal interfacial acoustics studied here apply to a broad class of asymmetric hybrid
(discrete-continuum) nonlinear systems and can inform predictive designs of highly effective granular shock
protectors or granular acoustic diodes.
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I. INTRODUCTION

Wave propagation in granular media composed of ordered
discrete elastic particles (granules) attracts considerable atten-
tion from the view of theoretical and experimental nonlinear
acoustics. Nesterenko pioneered the field of wave propaga-
tion in one-dimensional (1D) homogeneous granular chains
composed of initially uncompressed, ordered, linearly elas-
tic, and identical spherical granules interacting in Hertzian
contact. Analytical, numerical, and experimental studies vali-
dated the transmission of spatially localized, shape-preserving
and strongly nonlinear solitary waves—termed Nesterenko
solitary waves in these 1D media [1–4]. Due to the nonlin-
ear nature of the Hertzian interactions, the wave speed of
a Nesterenko solitary wave is highly dependent on its am-
plitude [4,5]. Moreover, since the linearized stiffness of the
Hertzian granular interactions is zero (in the absence of pre-
compression), the governing acoustics is essentially nonlinear
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(i.e., they do not admit linearization even in the limit of small
amplitudes), and the speed of sound as defined in classical
linear acoustics is zero in these media; hence their designation
as “sonic vacua” [1–4]. Also, the strong tunability with en-
ergy of the nonlinear acoustics enables interesting and unique
features, including frequency pass and stop bands tunable
with energy [6], countable infinities of families of standing
and traveling nonlinear waves [7,8], and intense nonlinear
exchanges [9], targeted energy transfers [10], and break of
reciprocity [11–13] in coupled granular chains. These unique
acoustic features pave the way for novel acoustic devices and
acoustic metamaterials, e.g., acoustic lenses [14,15], shock-
and energy-absorbing granular layers [16–18], passive acous-
tic filters [19], and acoustic switches [20].

Layers of granular materials separated by continuous elas-
tic sheets are commonly used in shock absorption applications
including civil engineering constructions. In particular, the
layered morphology is ubiquitously used in building retaining
walls reinforced by geogrid fabrics [21,22]. In this configu-
ration, alternating layers of soils and elastic fabrics—called
geofabrics—are used to reinforce constructions and stabilize
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them against dynamic loads, providing a much higher re-
silience in comparison with unconstrained homogeneous
soils. Similar concepts of layered materials are being eval-
uated for shock absorption outside the civil engineering
domains. Hence, in order to better utilize the unique perfor-
mance of granular media layered with elastic sheets, a natural
next step is to further investigate nonlinear wave scattering
between these highly discontinuous discrete media and elastic
continua, i.e., studying granular-elastic solid interfaces. This
requires the study the ordered granular media with nonstan-
dard flexible boundary conditions. Potekin et al. [23] first
developed an algorithm to study wave scattering at the in-
terface of a 1D granular chain with a linearly elastic cord
(tensioned wire), which incorporated interrelated iterations
and interpolations at successive time steps. Zhang et al. [24]
extended that algorithm to study nonlinear wave scattering at
the interface of a 1D granular chain with a linear membrane.
Both works showed that the energy transmitted to the elastic
media were highly discontinuous and dependent on the local
impedance mismatch at the interface.

The exploration of nonlinear wave propagation in two-
dimensional (2D) and three-dimensional (3D) ordered gran-
ular media is still limited. In addition to compressive (normal)
Hertzian granular interactions, tangential frictional forces
due to rotational effects are unavoidable in higher dimen-
sions. In fact, as shown by Yang and Sutton [25] the
omission of frictional interactions due to granular rotations
may lead to significant errors when modeling hexagonally
packed granular networks. Moreover, Goldenberg and Gold-
hirsch [26], Chattoraj et al. [27], and Charan et al. [28]
showed that the frictional force may lead to dynamical insta-
bilities. Hence, accounting for these effects may significantly
improve the agreement between numerical simulations and
experiments [12,26]. By incorporating the combined effects
of friction and the flexible boundaries, Wang et al. [29] ex-
tended the algorithm developed by Potekin et al. [23] and
Zhang et al. [24] to 2D granular-solid interfaces consisting of
closely packed, hexagonally ordered granules in contact with
thin plates. To avoid numerical instabilities due to frictional
effects, a smooth approximation was considered instead of
the discontinuous Coulomb friction forces, and a convergence
criterion based on the eigenvalues of a linearized iterative
map of the granule-plate interaction forces at each time step
was formulated to ensure the stability and robustness of the
algorithm [27]. That work paved the way for investigating the
nonlinear acoustics of 2D nonlinear wave propagation across
the interfaces between nonlinear discrete granular media and
linearly elastic continua.

Apart from other nonlinear acoustic features, in this
work we consider the break of reciprocity in the 2D
granular-elastic solid interfaces. Acoustic reciprocity is a
fundamental property of linear time invariant systems [30]
governed by Sturm-Liouville operators. Basic ways of break-
ing the reciprocity involve adding odd-symmetric external
biases [31–33], inducing time variant properties [34] or im-
posing nonlinearities in conjunction with some sort of system
asymmetry. Given the asymmetry and strong nonlinearity of
the considered interfaces it is anticipated that they will possess
nonreciprocal acoustics. Previous work mainly focused on
the nonreciprocal acoustics of 1D granular systems [11–13],

FIG. 1. Schematics of the granular-elastic solid interface subject
to shock excitation: (a) 3D isometric view, (b) 2D planar model with
boundary conditions, (c) granule-granule and granule-elastic solid
contact points, corresponding free body diagrams and notations for
normal and tangential interaction forces.

and in acoustical systems with nonlinearity, asymmetry, and
internal hierarchy [35–37]. In this work, we will numerically
study the break of acoustic reciprocity by applying the same
shock excitation to the free boundary of the left (larger scale)
and then of the right (smaller scale) granular medium and
compare the responses at the corresponding excitation posi-
tions. We will investigate how wave transmission in the larger
and smaller scale granular media and the intermediate elastic
solid affect nonreciprocity, given that the disparity in size of
the granules of the left and right granular media affects the
dominant time scales of the governing nonlinear acoustics in
the granular media. Accordingly, the main cause of nonre-
ciprocity in the interface is the excitation of low-frequency
vibrations or high-frequency acoustics in the elastic solid,
depending on the location and intensity of the applied shock
excitation. Moreover, the passive tunability of the acoustic
nonreciprocity on the intensity (energy) of the applied shock
will also be explored.

This work is structured as follows. In Sec. II we introduce
the model of the granular-elastic solid interface and describe
briefly the computational algorithm employed in the simula-
tions. In Sec. III we study the acoustic nonreciprocity of the
interface by directly computing the granular responses when
switching the excitation and measurement points. Following
this study, we systematically analyze wave transmission in
the elastic solid in Sec. IV and show that depending on the
location of the applied shock and the governing time scales
of the granular acoustics, the elastic solid undergoes either
vibrations (standing waves—vibration modes) or acoustics
(traveling waves). Last, in Sec. V we summarize the main
results of this work and discuss their potential applications.

II. SYSTEM DESCRIPTION

We consider the hierarchical 2D granular-solid interface
shown in Fig. 1. It is composed of two hexagonally packed,
initially uncompressed granular media, on the left with larger-
size granules and on the right with smaller-size granules,
separated in the middle by a thin elastic solid; this will be
modeled either as a thin elastic plate or as a slender Euler-
Bernoulli beam. The two left and right granular media are
hierarchical in the sense that both are composed of 14 iden-
tical granules which, however, differ in size. Three of the
four boundaries of each granular medium are clamped, as
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are the lateral boundaries of the intermediate elastic solid;
cf. Fig. 1(b). For simplicity, we refer to the three compo-
nents of the granular-solid interface as the large-scale granular
medium (LSGM), the elastic solid, and the small-scale gran-
ular medium (SSGM), respectively. This interface is excited
from the free edge of either the LSGM or SSGM by a shock
excitation. Moreover, the granular-solid interface is assumed
to be at rest before the excitation is applied. In this work, we
discuss only a special symmetric case, where the excitation is
applied to the middle granule of the boundary perpendicular
to the elastic solid; however, the computational formulation
applies to more general excitation scenarios, including asym-
metric and general transient excitations.

Moreover, to simplify the mathematical model we assume
that all granular motions are planar; in addition, assuming
that the intermediate elastic solid is sufficiently thin we con-
sider the plane stress approximation for the equations of
infinitesimal linear elasticity governing its dynamics, so the
that its corresponding deformations are also planar. Follow-
ing the models in the previous works [23,24], the discrete
element (DE) method is applied to model the acoustics of
the left and right granular media, and the finite element
(FE) method is applied to model the elastic solid. The two
computational models are decoupled by accurately comput-
ing the interaction forces that couple the discrete (granular)
and continuum (elastic solid) components of the interface at
successive time steps [23,24]. Last, the conservation of total
energy—including dissipative effects—is monitored at each
time step to verify the accuracy and validity of the algorithm.

A. Discrete element (DE) modeling of the granular media

Both the LSGM and SSGM are composed of 14 identical,
spherical granules that are in point contact with each other
without prior compression before the excitation is applied.
Each granule interacts with its neighbors and/or the elas-
tic plate through Hertzian normal interactions with normal
(viscous) dissipative and tangential frictional forces which
are caused by granule rotations. Hence, even though each
granule is assumed to be linearly elastic, the granular media
are governed by strongly nonlinear (in fact, nonlinearizable)
acoustics due to the geometric nonlinearities developing at
the contact points. Under certain assumptions related to small
elastic deformations [38–40], each granule is approximated as
a rigid body with three planar degrees of freedom (DOF), i.e.,
two translational DOFs and one rotational DOF. The model of
2D granular interactions developed in [29] is adopted in this
work as well; it incorporates the Hertzian model for normal
interactions and a continuous Coulomb-tanh friction model
for tangential (frictional) interactions.

In the DE model, the equations of motion of a single
granule are given by [note that unless otherwise noted bold
symbols denote (2×1) vectors]

mi s̈i =
∑

j

(Ni j + f i j ) +
∑

k

(Nik + f ik ),

Iiθ̈i =
∑

j

(Rini j × f i j ) +
∑

k

(Rinik × f ik ), (1)

where mi, Ri, and Ii denote the mass, radius, and the mo-
ment of inertia of the ith granule, respectively; specifically,

Ii = 2
5 miR2

i for spherical granules. Also, si denotes the dis-
placement vector of the center of the ith granule, and θi = θik
the angular rotation pseudovector of the ith granule, where
θi denotes the rotation amplitude and k the unit pseudovector
with anticlockwise rotation designated as the positive direc-
tion. Overdot denotes differentiation with respect to the time
variable τ . As shown in Fig. 1(c), Ni j , f i j are the normal
and tangential forces exerted to the ith granule by the jth
granule, respectively, whereas Nik , f ik denote the normal and
tangential forces applied on the ith granule by the kth contact
point with the thin plate, respectively. In (1) ni j denotes the
unit position vector between granules that points from the
center of the ith granule to the center of the jth granule and
is given by ni j = (s j − si )/|s j − si|; similarly, nik denotes the
unit position vector between a granule and a contact point at
the edge of the thin plate, pointing from the center of the ith
granule perpendicular to the kth contact point on the edge of
the plate.

The normal force Ni j generated from the compressive in-
teraction between the ith and jth granules obeys the Hertzian
law [25,39,40] with viscous dissipation,

Ni j = −(
Ai jδ

3/2
n,i j + γi j δ̇n,i j

)
ni j, (2)

where δn,i j denotes the relative normal deformation be-
tween the ith and the jth granules given by δn,i j =
max(Ri + Rj − |s j − si|, 0). Note that δn,i j is greater than zero
only if the distance |s j − si| between the centers of the gran-
ules at the current time instant is smaller than the distance
between these centers at the initial state when the granules
are in contact without compression. Otherwise, the granules
lose contact and the normal force Ni j is zero. The elastic and
damping coefficients Ai j and γi j are dependent on the material
properties of the granules, the sizes of the granules, and the
relative normal deformation δn,i j ,

Ai j = (4/3) E∗
i j

√
R∗

i j, γi j = αn(m∗
i jAi j )

1/2
δ

1/4
n,i j, (3)

where αn is a constant coefficient related to the restitution co-
efficient [39], and E∗, R∗, and m∗ denote the effective Young’s
modulus, effective radius, and effective mass, respectively.
These are defined as

1

E∗
i j

= 1 − ν2
i

Ei
+ 1 − ν2

j

E j
,

1

R∗
i j

= 1

Ri
+ 1

Rj
, (4)

1

m∗
i j

= 1

mi
+ 1

mj
,

where Ei( j), νi( j), Ri( j), and mi( j) denote the elastic modulus,
Poisson ratio, radius, and mass of the i(j)th granule, respec-
tively.

The Hertzian model with viscous dissipation (2) also ap-
plies for the contact between a granule and the boundaries
of the elastic solid or the lateral fixed walls by replacing
the normal relative deformation δn,i j by the relative normal
deformation δn,ik between the center of the granule and the
corresponding boundary [cf. Fig. 1(c)]. The corresponding
unit normal vector ni j is also replaced by the unit normal
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vector nik . We assume that the clamped boundaries of the
rigid walls are rigid and therefore Ek → +∞, Rk → +∞ and
mk → +∞, which yields E∗

ik = Ei

1−ν2
i
, m∗

ik = mi, and R∗
ik =

Ri at the contact points between the granules and the three
clamped boundaries. To determine the effective mass m∗

ik ,
modulus E∗

ik , and radius R∗
ik , for the flexible boundaries with

the elastic solid we assume that a small, flat, massless, rigid
layer is perfectly bonded to the edge of the elastic solid at the
kth contact point; this helps to overcome any inconsistencies
in the contact between a granule and an elastic body [29,41].
Since the rigid layer is flat, massless, and rigid, it holds that
Ek → +∞, Rk → +∞, and mk → 0. In this case the coeffi-
cients Aik and γik are defined similarly to Eq. (3) with E∗

ik =
Ei

1−ν2
i
, m∗

ik = 0, and R∗
ik = Ri (given that the flat boundary of

the thin plane has infinite radius of curvature).
The Hertzian model is valid for frictionless granular con-

tacts under purely compressive interactions. Considering the
effect of friction, for (typically) small friction coefficients
the magnitudes of the tangential forces are much smaller
than the normal forces. In this case, shear deformations of
the granules can be neglected, and so the Hertzian model
is still applicable. A continuous (smooth) Coulomb-tanh
model [42,43] is adopted to model the tangential forces ap-
plied to the granules, yielding the following frictional force
applied to the granules (cf. Fig. 10 in Appendix B):

f i j = −μ|Ni j | tanh(ksδ̇t,i j )t i j, (5)

where μ denotes the friction coefficient of the Coulomb
model, ks is a coefficient that determines the smoothness of
the Coulomb-tanh model, t i j denotes the unit vector in the tan-
gential direction of the contact given by t i j = k × ni j , and δ̇t,i j

is the relative tangential velocity between interacting granules
(between a granule and the kth contact point on the edge of
the plate) given by

δ̇t,i j = [(ṡi + Riθ̇i × ni j ) − (ṡ j + Rj θ̇ j × n ji )] · t i j . (6)

Clearly, the friction model (5) is also applicable for the
tangential force f ik between a boundary granule and the thin
plate by replacing the relative tangential velocity between
granules, δ̇t,i j , with the relative tangential velocity δ̇t,ik =
[(ṡi + Riθ̇i × ni j ) − u̇ki] · t ik between the contact granule and
the plate.

Compared to the discontinuous Coulomb friction model,
the Coulomb-tanh model provides a continuous relation be-
tween the friction force and the relative tangential velocity
which as discussed in [27] is beneficial for the numerical
stability of the computational algorithm. When the magnitude
of the relative tangential velocity δ̇t,i j(ik) is large, the tanh term
approaches the limits of ±1 and converges to the Coulomb
model. Moreover, when the relative tangential velocity δ̇t,i j(ik)

is small, Eq. (5) converges to the viscous damping model.
It follows that the introduction of the coefficient ks in the
numerical simulation represents a trade-off between the nu-
merical stability and the convergence of the friction force to
the Coulomb model. On the one hand, large values of ks make
the Coulomb-tanh model converge to the Coulomb model,
but at the same time they render the computations difficult to
converge and to require very small time steps and prohibitive

computational effort. Therefore, a proper choice for ks ensures
that ksvch � 1, where vch is the characteristic velocity for
the acoustics [27]. In that case, the Coulomb-tanh frictional
model captures successfully the dissipative effects of friction
in the granular-elastic solid interface and approximates well
the Coulomb model [29].

B. Finite element (FE) modeling of the intermediate elastic solid

In this work the intermediate elastic solid will be modeled
in two different ways: either as a thin elastic plate or a slender
Euler-Bernoulli beam. The rationale behind this dual model
approximation is to study the efficacy of the simpler beam
model or the more accurate plate model to capture the strongly
nonlinear and highly discontinuous acoustics of the granular
interface of Fig. 1; moreover, given the expected improved
accuracy of the plate model, we wish to investigate the limit
of applicability of the simpler (and less computationally ex-
pensive) beam model on capturing the transient stress wave
scattering at the interfaces of the elastic solid with the left and
right granular media.

We consider first the thin plate model. As in [27], in this
work we consider the case where the thickness of the interme-
diate plate is much smaller than its length or width, so that the
plane stress approximation is applicable [44]. In this case, the
3D infinitesimal linear elasticity equations for the plate model
is adopted but with stress components σz = σxz = σyz = 0,
where the z denotes the thickness direction. The plane-stress
assumption yields 2D governing equations of motion, which
are compatible with the 2D DE equations governing the gran-
ular media,

ρ(üx, üy )T =
(

∂σx

∂x
+ ∂σxy

∂y
,
∂σxy

∂x
+ ∂σy

∂y

)T

,

(εx, εy, γxy)T =
(

∂ux

∂x
,
∂uy

∂x
,
∂ux

∂y
+ ∂uy

∂x

)T

,

(σx, σy, σxy)T = E

1 − ν2

⎛
⎝1 ν 0

ν 1 0
0 0 (1 − ν)/2

⎞
⎠(εx, εy, γxy)T ,

(7)

where (ux, uy) denotes the displacement vector, εx, εy, γxy the
normal and shear strains, respectively, and σx, σy, σxy the nor-
mal and shear strains, respectively. In (7) E , ν, and ρ denote
the Young’s modulus, Poisson’s ratio, and density of the ma-
terial of the thin plate. Note that the effects of dissipation are
not considered in (7), since the (linear) wave propagation in
the solid medium is much faster than the (nonlinear) wave
propagation in the granular media [29]; in addition, selecting a
thin plate made of steel ensures very small levels of structural
(internal) dissipation so the lossless assumption for the thin
plate is justified.

The boundaries of the plate are either free or clamped
except for its contact points with the boundary granules of the
LSGM and the SSGM; cf. Fig. 1. Accordingly, the boundary
condition at a clamped boundary is (ux, uy) = (0, 0), while
at the free boundary is σ · n = (0, 0), where σ denotes the
2D stress tensor and n the outward unit normal vector at
the edge of the plate. However, at a contact point with a
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granule, the contact area is assumed to be circular, and the
plate deformation is not uniform along the thickness direction.
Therefore, the plane stress assumption is not assumed to hold
at the contact points between the granules and the plate. To
overcome this inconsistency, we assume that the small rigid
layers bounded to the plate cover the thickness direction so
that the plate deformation along the thickness direction is
assumed to be uniform; in that case only translational and
rotational motions are allowed for the rigid layers. Moreover,
given that the deformation of the plate at a contact point is
assumed to be small, the contact forces exerted to the plate
by the contacting granule are approximately applied at the
middle of the rigid layer, and the directions of the normal
and tangential unit vectors at the interface, nik and t ik , are
invariant [cf. Fig. 1(c)]. Under these conditions, the normal
and tangential forces between the granules and the plate at the
contact points are distributed by the rigid layers so that the
plane-stress condition is approximately satisfied.

We note that St. Venant’s principle guarantees that the
small rigid layers do not have any significant effect on the far-
field acoustical response of the plate. However, if the length
of the rigid layer approaches zero, the displacements of the
rigid layer diverge to infinity; hence, to overcome this incon-
sistency, it is necessary to select appropriately the length of
the rigid layer in order to avoid the singularities associated
with a concentrated force. Accordingly, the length of the rigid
layer is selected as R/10, where R denotes the radius of the
granule in contact with the plate. This value is comparable to
the contact diameter at the interface, which leads to reasonable
results [29].

The finite element (FE) method is applied to discretize the
plate and solve the 2D planar plane stress infinitesimal elas-
ticity (7). To this end, eight-node quadrilateral isoparametric
elements are employed in the FE discretization. Moreover,
multipoint constraints are imposed upon the nodes on the
rigid layers since only rigid body motions are allowed for
these components. The translational DOFs (in the x and y
directions) of the node at the middle point of each rigid layer
as well as the rotational DOF of the rigid layer are considered
as driven DOFs, so that all other DOFs of the nodes on the
rigid layer can be expressed as linear combinations of the
driven DOFs. Therefore, the (linear) equations of motion of
the discretized plate (incorporating the rigid layers at the con-
tact points with the granules as well as the clamped boundary
conditions) can be expressed as follows:

Mẍ + Kx = F (8)

where K and M denote the stiffness and mass matrix of
the FE model, respectively, x the displacement vector of
the corresponding generalized displacements and rotations
at the nodes of the plate, and F the force vector that in-
corporates the contact forces exerted at the contact points
by the interacting granules of the LSGM and SSGM. Since
these forces are applied only at the middle nodes of the rigid
layers, F is a sparse vector, composed of the normal and shear
forces applied at the middle points of the rigid layers given
by (2) and (5). Clearly, the displacement vector uk at the kth
contact point is identical to the translational displacements
at the middle nodes of the corresponding rigid layer at that
contact point.

As mentioned previously, an alternative simpler (and less
computationally demanding) model considered for the thin
elastic solid is a slender Euler-Bernoulli beam, based on the
fact that it has small width compared to its lateral dimension.
In considering this alternative model we wish to perform a
comparative study of the effects of the different modeling of
the intermediate elastic solid on the overall nonlinear acous-
tics of the integrated granular-solid interface. To this end, and
keeping the notation introduced for the plate, the following
Euler-Bernoulli beam model is considered:

ρA
∂2ux

∂t2
+ EI

∂4ux

∂y4
= f , (9)

where ρ and E denote the density and Young’s modulus of the
beam, respectively, A its cross section, I the second moment
of area of the cross section about the bending axis, and f
the contact force distribution provided by the interactions of
the beam with the contacting granules of its left and right.
In this case—contrary to the previous plate model (7)—the
axial deformation, uy, is neglected since the axial rigidity is
assumed to be much larger than the flexural rigidity. Comple-
menting (9) are the standard boundary conditions ux = 0 and
∂ux
∂y = 0 at the clamped lateral boundaries.

As mentioned, the distributed force f is dependent on the
beam-granule interactions. Different from the plate model,
however, the response of the beam is finite even subject to
a concentrated force. Therefore, the contact forces are as-
sumed to be directly applied to the neutral axis of the beam
as concentrated loads. Under this assumption, the tangential
forces do not induce any deformations of the beam. The
normal forces and the tangential forces are also computed
by (2) and (5), respectively, where the displacement vector
at the edge of the beam uk is approximated by the vector of
deformations of the neutral axis at the contact points.

To discretize this alternative beam model, the deflection
ux is interpolated through the use of a cubic function. The
resulting discretized equation of motion has a form similar
to (8), however, with different displacement vector x, force
vector F, stiffness matrix K, and mass matrix M. Compared
with the plate model, the force vector F is also a sparse vector
containing the normal interaction forces as its only nonzero
elements.

C. Coupling forces at the granular-elastic solid interfaces

In synopsis, the governing equations of motion of the
granular-solid interface of Fig. 1 are Eqs. (1) and (8) which
are coupled by the normal (Hertzian elastic with viscous
dissipation) and tangential (frictional) interaction forces at
the contact points between the LSGM and SSGM and the
elastic solid. Given the large disparity of the DOFs of the
linear FE (8) and the nonlinear DE (1), these are solved
separately. Key to this computation is the accurate computa-
tion of the highly discontinuous, nonlinear coupling forces.
This is accomplished through a robust iterative-interpolative
computational algorithm whose basic elements are discussed
in Appendixes A and B, and more details can be found in [27];
here we provide only a brief synopsis.

The β-Newmark method is used to solve the FE (8), while
the Runge-Kutta method is employed to solve the DE (1).
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The most critical step of the computation is the accurate
computation of the interaction forces at the interface between
the granular media and the elastic solid at each time step. To
this end, a nonlinear map is generated, iterating the vector of
normal and tangential interaction forces at each time step of
the computation, until convergence is reached; details of this
map are given in [27], and the main steps of the algorithm are
summarized in Appendix A. Note that when the plate model is
considered, the nonzero terms in the interaction force vector F
in (8) involves the friction force as well, which is not involved
in the beam model. Since the friction force is highly sensitive
to the relative tangential velocity, a stability analysis is neces-
sary for the convergence of the nonlinear map for the case of
the plate model. With a few assumptions [27], the nonlinear
map of the interaction force vector can be divided into several
local maps, each corresponding to a separate contact point (cf.
Appendix A and [29]). Assuming an adaptive (variable) time
step τ for the computation, a pair of linearized eigenvalues
for each of the local maps is analytically computed, and the
following approximate stability criterion is formulated ensur-
ing stability of the computation of the friction forces at the
interface with the plate:

|λki,t | = 1
2 μ ks|Nik| τ T i,t

(
M + 1

4 Kτ 2
)−1

T i,t
T

× cosh−2(ksδ̇t,ik,s) < 1. (10)

In the above criterion λki,t denotes the linearized eigen-
value of the local map at the kth contact point at the interface,
corresponding to the iteration of the friction force between
the ith granule and the edge of the plate (it turns out that
the corresponding linearized eigenvalues associated with the
iterations of the normal interaction forces are always less that
unity in modulus). In (10) T i,t denotes a sparse vector that
has only one nonzero element with unit value located at the
tangential driven DOF of the rigid layer at the kth contact
point. Whenever the modulus of the linearized eigenvalue,
|λki,t |, tends to reach unity, the time step is varied (adapted)
to ensure that the stability criterion (10) is satisfied. Specifi-
cally, from (10), the modulus |λki,t | is proportional to the time
step τ . Therefore, the self-adaptive algorithm introduced
in [29] is followed, yielding a critical time step τcr at each
time step of the computation; then, by selecting the time
step increment τ < τcr convergence of the simulation is
achieved; an example of the use of adaptive steps to impose
the criterion (10) is given in Appendix B. By applying this
computational protocol for all contact points at both edges of
the plate (i.e., at the interfaces with the left LSGM and right
SSGM), the convergence of the computational algorithm is
achieved and numerical instabilities are robustly eliminated
from the computation.

Last, energy measures are also computed to provide an
overall (global) indicator for convergence of the computa-
tional algorithm at each time step. To this end, we compute the
instantaneous energy of each component of the interface (i.e.,
the LSGM, the intermediate elastic solid, and the SSGM) in
order to study the energy transmission through, and scattering
at the interface, and also verify the accuracy and robustness of
the simulation. The energy of each component is evaluated as

follows:

Ee = 1

2
ẋT

e Meẋe + 1

2
xT

e Kexe,

Egi = 1

2
mi|ṡi|2 + 1

2
Iiθ̇

2
i + 1

5

∑
j

Ai jδ
5/2
n,i j + 2

5

∑
k

Aikδ
5/2
n,ik,

Ep(b) =
∑

Ee = 1

2
ẋT Mẋ + 1

2
xT Kx,

Eg = Eg,LS + Eg,SS =
∑
i∈LS

Egi +
∑
i∈SS

Egi, (11)

where Ep(b) denotes the instantaneous energy of the elastic
plate (beam), Ee the instantaneous energy of an element of the
plate (beam), Eg the instantaneous energy of the granular sys-
tem, Egi the total instantaneous energy of a granule, and Eg,LS

and Eg,SS the instantaneous energies of the LSGM and SSGM,
respectively. The vector xe and matrices Me and Ke denote
the nodal vector and mass and stiffness matrices, respectively,
of an element of the elastic solid. Moreover, the dissipated
energy is evaluated based on the work that is performed by
the dissipative forces as follows:

Wviscous,i(τ0) =
∑

i

∫ τ0

0

[∑
j

(γi j δ̇n,i j ni j · ṡi )

+
∑

k

(γik δ̇n,ik nik · ṡi )

]
dτ,

Wfriction,i(τ0) =
∑

i

∫ τ0

0

{∑
j

[ f i j · (ṡi + Riθ̇it i j )]

+
∑

k

[ f ik · (ṡi + Riθ̇it ik − u̇k )]

}
dτ,

D(τ0) = −Wviscous,i(τ0) − Wfriction,i(τ0), (12)

where Wviscous,i(τ0) and Wfriction,i(τ0) denote the dissipative
work by the viscoelastic (structural) damping of the granule
material, and the friction from the time instant 0 to time instant
τ0, and D(τ0) denotes the total dissipated energy at time τ0.
Since the power performed by the dissipative forces is always
nonpositive, the dissipated energy is always nonnegative and
monotonically increasing. Considering the expressions (11)
and (12), the total instantaneous energy of the granular-elastic
solid interface that includes the dissipated energy, E (τ0),
should be equal to the initial impulsive energy Eimpulsive,

Ep(τ0) + Eg(τ0) + D(τ0) ≡ E (τ0) = Eimpulsive, (13)

and be conserved at each time step of the computation after the
excitation is applied. Hence, this conservation relation is an
additional (global) check for the accuracy of the simulation.

III. NONRECIPROCAL ACOUSTICS OF THE
GRANULAR-ELASTIC SOLID SYSTEM

In the following computational study of the nonreciprocal
acoustics of the granular-elastic solid of Fig. 1, the granules
and the elastic solid are composed of steel with modulus
of elasticity E = 200 GPa, density ρ = 7850 kg/m3 and
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FIG. 2. Computational modeling of the granular-elastic solid in-
terfaces: (a) FE mesh when the elastic solid is modeled as a slender
Euler-Bernoulli beam—note that the contact forces are applied at
nodes of the FE mesh; (b) FE mesh when the elastic solid is modeled
as a thin plate—note the denser mesh close to each contact point with
a granule; small rigid layer at a contact point between a granule of
(c) the LSGM and (d) the SSGM and the thin plate model.

Poisson’s ratio ν = 0.3. Based on previous studies of the
granular-solid interfaces [25,29,39,42], the friction and vis-
coelastic damping coefficients of the granular medium are
selected as μ = 0.099, αn = 6.313×10−3, and ks = 100 s/m,
where the notation of the previous section holds. The planar
dimensions of the elastic solid medium are 0.1 m × 0.01 m,
with a (small) thickness of 0.001 m. The radii of the granules
of the LSGM are 0.01 m, whereas the ones of the SSGM
0.005 m. The FE mesh of the elastic solid medium is shown
in Fig. 2.

For the case when the elastic solid medium is modeled as
Euler-Bernouli beam, it is discretized into 40 beam elements
[cf. Fig. 2(a)], whereas when it is modeled as a thin plate is
discretized into 570 plate elements [cf. Fig. 2(b)]. The beam
model is valid mainly for low-frequency/wavenumber vibra-
tions (standing waves), whereas the plate model is valid for
vibrations as well as higher-frequency/wavenumber acoustics
(traveling waves). As such, the plate model provides a more
accurate result at the expense of more computational effort
due to the better modeling of the acoustics of the interface,
the larger amount of DOFs and implementation of the strict
convergence criterion (10).

The length of the rigid layer at each interface of a boundary
granule of the LSGM and the SSGM and the elastic solid is
selected as R/10, where R denotes the radius of the granule at
the contact point. Accordingly, the FE mesh of the plate model
is refined near each contact point, with two finite elements

being connected on the rigid layer as shown in Figs. 2(c)
and 2(d). Since the top and the bottom boundaries of the
elastic plate are clamped, the nodes on the top and bottom
boundaries are fixed as well. This results in 3618 degrees of
freedom in total for the plate model. The FE modeling of the
slender beam model is much simpler (as no variable finite
elements are needed in that case), resulting in just 78 degrees
of freedom, after the boundary conditions and the multi-point
constraints with the rigid layers are taken into account. This
provides an indication of the simplicity and the much less
computational effort required for the slender beam model.

In Fig. 3 we depict the velocity of granule 3 of the LSGM,
v3C , when a shock excitation is applied to granule C of the
SSGM; and also the response of granule C, vC3, when an
identical shock excitation is applied to granule 3 (i.e., when
the forcing and measurement positions are interchanged); the
labeling of the granules is indicated in Fig. 1(b) and is re-
peated in the inset of Fig. 3(a). The intermediate elastic solid
is considered to be a thin plate for this simulation, which is
performed in order to highlight the nonreciprocal nature of
the nonlinear acoustics of the hierarchical granular interface
(since for a linear interface the responses in the two cases
should be identical, i.e., v3C = vC3). The excitation consists
of a half-sine pulse applied for a duration of 0.01 ms with
maximum amplitude Fmax = 1591.6 N [cf. Fig. 3(a); this cor-
responds to a high excitation intensity as discussed below].
From the responses depicted in Fig. 3(b) it is clearly seen
that the interface is highly nonreciprocal. The source of this
acoustic nonreciprocity can be traced in the combined ef-
fects of nonlinearity and asymmetry [34]. Indeed, nonlinearity
of the interface is induced from three sources: (1) Hertzian
granule-to-granule and granule-to-solid interactions, (2) col-
lisions following separations between granules and at the
granule-solid contact points, and (3) frictional effects due to
granule rotations. Moreover, the symmetry of the interface is
broken by the hierarchical structure of the LSGM and the
SSGM. We note that the convergence of the computational
results is ensured by checking and stability criterion (10) at
each time step and adapting the variable time step (cf. Fig. 10
in Appendix B).

Considering the time series of the velocities vC3 and v3C

we notice an initial time lag when we compare the arrival of

FIG. 3. Acoustic nonreciprocity in the granular-elastic solid (modeled as a plate) interface of Fig. 1: (a) The Strong shock excitation and
(b) velocities of granule 3 of the SSGM, v3C , and granule C of the LSGM, vC3, for excitations as described in the text and in the inset of (a).
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the acoustic waves in the two cases. Specifically, the earlier
arrival of the pulse in granule 3 of the LSGM indicates that the
acoustic waves propagate faster from right-to-left compared
to left-to-right. Moreover, the frequency content appears to
be different in the two time series, with a lower frequency
content being noted for v3C compared to vC3 (especially for
τ > 0.6 ms). We provide below a brief scaling argument
that justifies the apparent difference in the wave speeds for
right-to-left and left-to-right wave transmission, which should
originate from the difference in scales between the LSGM and
the SSGM. Indeed, since the radii of the spherical granules
in the (left) LSGM are twice as large compared to the ones
in the (right) SSGM, the corresponding granular masses are
eight times as heavy in the LSGM compared to the SSGM.
Also, since the duration of the shock excitation is extremely
small, the energy of the applied shock can be estimated ap-
proximately as E ≈ I2/m, where I is the intensity of the
applied impulse and m the mass of the excited granule; there-
fore, for the same shock excitation, the shock energy that
is induced to the SSGM is nearly eight times as large as
the corresponding shock energy induced to the LSGM. Con-
sidering that the nonlinear exponent of the Hertzian elastic
interaction force between two contacting granules is 3/2 > 1,
the effective stiffness of the granular interaction increases for
larger energy, i.e., it exhibits a stiffness-hardening constitu-
tive relation, which, in turn, increases the wave speed for
increasing energy [4,5,38]. This argument shows that when
the shock excitation is applied to the SSGM (on the right), the
resulting nonlinear acoustic wave propagates faster compared
to when the excitation is applied to the LSGM (on the left);
this explains the earlier arrival of the pulse in granule C of the
LSGM.

As a preliminary general comment, we note that the com-
bined effects of nonlinearity and scale asymmetry (hierarchy)
in the granular interface considered yields different wave
speeds for right-to-left and left-to-right wave transmission,
which accounts for the time lag in the velocity signals of
Fig. 3(b) and acoustic nonreciprocity. Compared to previ-
ous works which do not incorporate an intermediate elastic
medium [45,46], in this work there is a novel type of nonre-
ciprocity based on the disparity of time scales in the nonlinear
acoustics of the granular media and the response of the inter-
mediate elastic layer. Specifically, depending on the location
and intensity of the applied shock, the elastic layer respond
either in terms of (slow) vibrations or (fast) acoustics; accord-
ingly, the intermediate elastic medium plays a central role in
the acoustics of the entire interface as it acts as a “filter” for
the frequency and wavenumber content of the waves that it
transmits. To get a physical insight into the different frequency
contents of the two velocity signals in Fig. 3(b) (which also
contribute to the break of acoustic reciprocity) it is necessary
to consider the wave scattering (transmission and reflection)
at the two granular interfaces of the intermediate elastic solid
with the left LSGM and the right SSGM.

Hence, we proceed to study the nonreciprocal acoustics
of the granular interface when an identical shock excitation
is applied either in granule 3 of the LSGM or granule C of
the SSGM, generating acoustic waves propagating from left-
to-right or right-to-left, respectively. To this end we consider
three different shock intensities: weak, moderate, and strong.

In each case the shock excitation has the half-sine shape
shown in Fig. 3(a) and is applied for a finite duration of τexc =
0.01 ms; its peak forcing amplitude, Fmax, is then selected
as 63.67 N for weak, 318.3 N for moderate, and 1591.6 N
for strong shock excitation [this later value corresponds to
the result of Fig. 3(b)], respectively. Moreover, in our study
we consider both the plate and beam models to simulate the
acoustics of the intermediate elastic solid.

In Fig. 4 we depict the instantaneous normalized energies
(with respect to the initial shock energy in each case) of
the LSGM, the SSGM, and the elastic solid for the three
shock excitations considered. In addition, we present the to-
tal normalized energy of the entire granular interface when
dissipative effects (that is, viscoelastic, and frictional effects)
are taken into account or when they are added to the total
energy; this latter case is considered in order to verify that at
each time instant the total instantaneous normalized energy
sums up to 100% and, hence, ensure the accuracy of the
computation. We note that in Figs. 4(a), 4(c), and 4(e) we
present the results for shock excitation applied to granule 3 of
the LSGM, whereas in Figs. 4(b), 4(d), and 4(f) for application
of the same shock excitation (in each case) to granule C of
the SSGM; in all cases considered the intermediate elastic
solid is modeled either as a thin plate (solid lines), or as a
simplified slender Euler-Bernoulli beam (dashed lines). Last,
the total simulation time is selected as 0.8 ms in all cases,
and the numerical stability of the numerical simulation is
ensured by selecting adaptively the variable time step so that
the convergence criterion (10) is satisfied at each time step.
We note that at all shock intensity levels only a moderate
portion of shock energy ends up being transmitted across the
interface, for both right-to-left and left-to-right acoustic wave
transmission, which highlights the efficacy of the granular
interface as robust shock mitigator. In all cases, the elastic
solid acts as an intermediary medium, which receives incident
energy from the excited granular medium and scatters it, i.e.,
releases (transmits) part of this energy to the granular medium
on the other side, confines (localizes) another part of this
energy, and reflects the remaining part of the incident energy
back to the granular medium where it is originally generated.

For the case where the shock excitation is applied to gran-
ule 3 of the LSGM [cf. Figs. 4(a), 4(c), and 4(e)], we observe
clear energy transmission and reflection, and the energy trans-
mitted in the SSGM and the energy retained (localized) in the
elastic solid reach their peaks almost simultaneously. How-
ever, when the excitation is applied to granule C of the SSGM,
the shock energy appears to be scattered into the whole in-
terface. The time scale of the acoustics in this case seems to
be faster compared to the previous case, and the elastic solid
is excited by the propagating wavefront from the right much
earlier. In addition, irrespective of the side of application of
the shock the speed of the propagating wavefront (i.e., the
dominant governing time scale of the nonlinear acoustics)
strongly depends on the excitation level (or energy); this is
anticipated for such a strongly nonlinear acoustical system.
Indeed, from Fig. 4(a) (case of weak shock) we note that the
wavefront initiated at the LSGM reaches the interface with
the elastic solid after approximately ∼ 0.2 ms, compared to
∼ 0.1 ms in Fig. 4(e) corresponding to strong shock excitation
from the same side.
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FIG. 4. Instantaneous normalized energies (with respect to impulsive energy) of the LSGM, the SSGM, the elastic solid (modeled as plate
or beam), and the entire granular interface (with and without dissipation effects added): (a), (c), (e) excitation is applied to granule 3 of the
LSGM for weak, moderate, and strong shocks, respectively; and (b), (d), (f) excitation is applied to granule C of the SSGM granule for weak,
moderate, and strong shock excitations, respectively; the inset in (f) is an enlargement of the energy of the elastic solid in this case when
modeled as plate or beam.

The same can be observed when the excitation is applied
to the SSGM, e.g., compare the plots in Figs. 4(b) and 4(f).
This result can be understood when one takes into account that
the hardening-stiffness nonlinearity of the Hertzian granular
interactions yields higher speeds for the nonlinear acoustic
waves in the granular media when the energy increases. In
addition, regardless of the location of the shock excitation, the
higher the excitation level is, the greater is the rate of shock
energy dissipation; however, the energy dissipation is larger
and faster when the excitation is applied to the SSGM.

In Appendix C we provide animations of the nonlinear
acoustical responses of the granular interface for weak, mod-
erate and strong shock excitations, and for the cases when the
elastic solid is modeled as a thin plate or as a slender beam.
To gain better physical insight into the nonlinear acoustics of
the granular interface we need to consider in more detail the

dynamics of the intermediate elastic solid when it is modeled
either as a thin plate or (a simpler) slender beam. In particular,
it is of interest to study how the elastic solid transmits, reflects
or localizes shock energy that impedes from its left or right
sides, since this will lead to a better understanding of the gen-
eration of acoustic nonreciprocity in this discrete-continuum
system.

IV. SCALE DISPARITY IN THE RESPONSE
IN THE INTERMEDIATE ELASTIC SOLID

The nonreciprocal acoustics of the granular interface of
Fig. 1 are influenced by two main sources: First, the dissimilar
wave speeds and frequency contents of the nonlinear transmit-
ted waves (or the propagating wavefronts) in the right and left
different-scale granular media; and second by the nonlinear
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scattering of the propagating wavefronts at the interfaces of
the granular media with the elastic solid. The first source
of nonreciprocity is attributed to the stiffness-hardening non-
linear behavior of the granular interactions, as well as on
the scale disparity of the granule geometries of the LSGM
and SSGM, which drastically affect the initial formation and
propagation of the primary wavefronts, i.e., the waves that are
generated in the granular media immediately following the
applications of the shocks on the right or left. The second
source has to do with the transmission and reflection of the
primary wavefronts at the discrete-continuum interfaces when
they reach the boundaries with the elastic solid. In this section
we wish to study in detail this nonlinear scattering of the pri-
mary wavefronts and establish how it influences the acoustic
nonreciprocity.

We start by noting that based on the results of Fig. 4
the efficacy of the simplified beam model for the acous-
tics of the intermediate elastic medium can be assessed. In
Figs. 4(a), 4(c), and 4(e), it is observed that the results pre-
dicted by the beam model are in good agreement with the ones
predicted by the more accurate (and computationally expen-
sive) plate model when the shock is applied on granule 3 of the
LSGM, especially for weak and moderate shocks. By contrast
the difference between the predictions of the beam and plate
models is considerable when the shock is applied to granule C
of the SSGM; cf. Figs. 4(b), 4(d), and 4(f). Hence, for energy
transmission from the SSGM to the LSGM, the beam model
fails to accurately capture the nonlinear wave scattering at
the discrete-continuum interface, with the maximum disparity
with the plate model occurring for strong shock [i.e., when the
primary wavefront propagating from right-to-left reaches the
boundary with the elastic solid at ∼ 0.05 ms; refer to the inset
in Fig. 4(f)].

The failure of the beam model to model the wave trans-
mission from the SSGM to the LSGM hints on the time
scale disparity of its response when the shock is applied to
the left or right boundaries of the interface. To gain better
physical insight into the nonlinear acoustics of the granular
interface we need to consider in more detail the response of
the intermediate elastic solid when it is modeled either as a
thin plate or (a simpler) slender beam. In particular, it is of
interest to study how the elastic solid transmits, reflects or
localizes shock energy that impedes from its left or right sides,
since this will lead to a better understanding of the generation
of acoustic nonreciprocity in this discrete-continuum system.
To highlight the difference in the dynamics of the elastic solid
when modeled as a thin plate (in plane stress) or as a slender
beam we compare snapshots of instantaneous normalized en-
ergy densities of the elastic solid for strong shock excitation
applied to either side of the granular interface. In Appendix C
we provide links to animations of the nonlinear acoustical
responses of the granular interface for weak, moderate, and
strong shock excitations, and for the cases when the elastic
solid is modeled as a thin plate or as a slender beam. To this
end, the energy density is normalized by the initial maximum
energy density of the excited granule (i.e., granule 3 of the
LSGM or granule C of the SSGM):

ŵ = w

w0
= Ee/V e

(1/2)mv2
0

. (14)

In (14) ŵ and w denote the normalized and nonnormal-
ized energy density, w0 the maximum energy density of the
excited granule, and Ee and V e the instantaneous energy and
volume of each element (either FE for the elastic solid or
granule for the LSGM and SSGM), m the mass of the excited
granule, and v0 the maximum instantaneous velocity of the
excited granule. Special consideration needs to be given to
the energy density of the beam element along the direction
of its width and height; this is due to the fact that, since the
finite elements of the beam are 1D, we need to perform a
2D spatial interpolation of the energy density of the beam
in order to compare it to the energy density of the plate. We
note at this point that in the Euler-Bernoulli beam model a
planar cross-section is implicitly assumed (i.e., cross sections
remain planar after deformation) and also that the normal
stress is a linear function of the beam’s width. It follows
that the potential energy density is a parabolic function along
the beam’s width—with the potential energy on the neutral
axis of the beam being zero. Moreover, the velocity along
the direction of the beam’s height is constant, and therefore
the kinetic energy is uniformly distributed along the beam’s
height. Therefore, we can compute the energy density along
the width direction of each beam element based on the FE
result, and then interpolate the energy to the height direction
based on the implicit assumption of the planar cross section.

In Fig. 5 we depict the comparison of two snapshots of
the normalized energy densities for the case of strong shock
applied to either side of the granular interface, with the elastic
solid being modeled as a thin plate or beam. The snapshots
are taken when the energy density in the elastic solid reaches
its maximum, that is, at τ = 0.2 ms for left-side excitation
and τ = 0.05 ms for right-side excitation. Comparing the
results of Figs. 5(a) and 5(c), we note that the wave patterns
for excitations applied to the LSGM and the SSGM are dif-
ferent. When the shock is applied to the SSGM the energy
density in the plate model indicates wave transmission from
the three middle granules of the SSGM in contact with the
elastic solid, to the corresponding three middle contacting
granules of LSGM. This reveals the excitation of a traveling
wave propagating from the right to left and the realization of
high-frequency or wavenumber acoustics in the thin plate; this
is more evident in the animations of energy densities whose
links are provided in Appendix C. However, such a traveling
wave pattern is not observed in the case of excitation from
LSGM, where the response of the thin plate is in the form of
lower frequency or wavenumber vibrations, i.e., dynamics.

This is confirmed when comparing the results of Figs. 5(a)
and 5(b): when the shock is applied to the LSGM we note that
the energy density distribution in the elastic solid predicted
by the beam model is similar to that of the plate model,
confirming the realization of vibrations. However, when the
same shock is applied to the SSGM [cf. Figs. 5(c) and 5(d)]
the beam model fails to predict the distributions of energy
densities in the elastic solid. In both cases, in the beam model
the strain is linearly distributed along the width and so the
energy density distribution is symmetric with respect to the
neutral axis of the beam (indicating vibrations); however, for
the case of the plate model the energy density is not sym-
metric with respect to the neutral axis (indicating acoustics).
In the latter case, due to the disparity in the time scales of

044906-10



TIME SCALE DISPARITY YIELDING ACOUSTIC … PHYSICAL REVIEW E 104, 044906 (2021)

FIG. 5. Normalized energy density snapshots of the granular-elastic solid interface for the case of strong shock excitation: (a), (b) τ =
0.2 ms with the excitation applied to granule 3 of the LSGM, and the elastic solid modeled as thin plate or Euler-Bernoulli beam, respectively;
(c), (d) τ = 0.05 ms with the excitation applied to granule C of the SSGM, and the elastic solid modeled as thin plate or Euler- Bernoulli beam,
respectively; note the much faster acoustics in the latter case.

the responses of the contacting granules in the LSGM and
SSGM, the resulting paths of the traveling waves through the
elastic solid are not symmetric with respect to its neutral axis.
These observations motivate us for a closer examination of the
response of the elastic solid when modeled either a thin plate
or a slender beam subject to the two shock scenarios shown in
Fig. 5.

To this end, we hypothesize that when the shock is applied
on the left (to the LSGM), the duration of the interaction
forces at the interface between the LSGM and the left lateral
boundary of the elastic solid is relatively long, the elastic
solid performs relatively low-frequency vibrations where the
leading bending modes with low frequency (and large wave-
lengths) are excited and standing waves are generated. On the
contrary, for the same shock excitation applied to the right
side (the SSGM), the acoustics is much faster, so a larger
number of higher-frequency modes of the elastic solid are
excited (some of which nonbending), which instead of vibra-
tions supports elastic wave propagation within it at a much
faster time scale (and much lower wavelengths). Hence, for
shock excitation on the left the elastic solid undergoes mainly
vibrations (standing waves) while for shock excitation on the
right, it supports acoustics (traveling waves).

To verify this hypothesis, we analyze the frequencies,
shapes and energies of the modes of the elastic solid. We

notice that all modes of the beam model are bending ones
as it is governed by the Euler-Bernoulli partial differential
equation. The modal analysis of the plate model shows that
the first leading (lowest frequency) mode is a bending mode
[cf. Fig. 6(b)], while the second, third, fifth, and sixth modes
(sorted by their natural frequencies in the ascending order)
are also bending modes and can find their analogs in the beam
model of the elastic solid. However, apart from these bending
modes, the plate model also possesses families of modes that
are not captured by the simplified beam model; these are axial
modes and bulk modes. In Fig. 6(c) the fourth axial mode of
the plate is depicted, where the elastic solid vibrates along the
vertical (axial) direction; this is the lowest frequency mode
of the family of axial modes of the thin plate, which are
absent from the beam mode. Also, in Fig. 6(d) the seventh
bulk mode of the plate is shown, where the elastic solid is
squeezed (or expanded) along the horizontal direction; again,
this is the lowest frequency mode of the bulk family which is
not supported by the beam model.

At this point we note that since in this work we consider
only a symmetric shock excitation scenario, the fourth axial
mode of the plate cannot be excited due to its antisymmetry
and does not participate in the nonlinear acoustics. However,
the bulk modes have a significant effect on the energy trans-
fer. We note that the bending modes and bulk modes exhibit
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FIG. 6. Selected modes of the thin plate model of the elastic solid
of the granular interface of Fig. 1: (a) Undeformed FE mesh, (b) first
bending mode with natural period 0.199 ms, (c) fourth axial mode
with natural period 0.0395 ms—due to its antisymmetry it cannot
contribute to the acoustics, and (d) seventh bulk mode with natural
period 0.0198 ms—due to its symmetry it may participate in the
acoustics.

different symmetries. The bending modes exhibit antisymmet-
ric mode shapes with respect to the neutral axis, whereas the
bulk modes exhibit symmetric mode shapes. Since the energy
distribution in the elastic solid at τ = 0.05 ms for strong exci-
tation from SSGM [cf. Fig. 5(c)] is asymmetric, both the sym-
metric axial modes and the antisymmetric bending modes are
excited. It follows that if such bulk modes are excited in the
plate model by the impeding wavefronts, the simplified beam
model could not accurately predict the dynamics of the elastic
solid, nor the nonlinear scattering of the impeding wavefronts
at the boundaries with the left and right granular media. There-
fore, the failure of the beam model is related to the generation
of traveling waves (acoustics) in the elastic solid.

Furthermore, we investigate the family of modes excited in
the acoustical response of the elastic solid by considering its

instantaneous modal energies defined as follows:

Ees,n = 1
2 Ẋ 2

n φn
T Kφn + 1

2 X 2
n φn

T Kφn, (15)

where K and M denote the stiffness and mass matrices, re-
spectively, Ees,n the energy of the nth mode of the elastic
solid, Xn and Ẋn the corresponding modal amplitude and its
derivative with respect to time, respectively, and φn the nth
eigenvector.

In Fig. 7 we depict the normalized accumulated energy
captured by the leading modes of the plate model and compare
it to total instantaneous energy. The individual modal energies
are computed by (15) and the energy normalization is per-
formed with respect to the total energy that is induced to the
system by the shock. To this end, an identical strong excitation
is applied to either side of the granular interface in order to
compare the convergence of the modal energy accumulation
in the two excitation scenarios. In both excitation scenarios
a peak of the total plate energy is observed corresponding to
the arrival of the primary wavefront generated following the
application of the strong shock to the LSGM or SSGM. In
both cases, the amplitude of the peak is around 20% of the
input energy, however, since the time scale of the acoustics for
right-side excitation is faster, an earlier arrival of the primary
waveform and a shorter duration of the peak is observed in that
case [cf. Fig. 7(b)]. When the strong shock is applied to the left
side the duration of the peak is longer and the accumulation
of modal energy compared to total energy appears to be faster.
Note that in Fig. 6 we showed that the leading six modes of
the thin plate model consist of the leading five bending modes
and an antisymmetric axial mode that has no counterpart in
the thin plate model; however, that low-frequency axial mode
seems not to be excited by the primary waveform (due to its
antisymmetry) and so most energy is localized in the leading
order bending modes. Since these modes are also predicted
by the beam model, the difference of the energy distribution
between the plate and the beam model shown in Figs. 5(a)
and 5(b) is small. In this case, standing waves are realized,
and the elastic solid mainly undergoes vibrations.

The convergence of modal accumulated energy is slower
when the strong shock is applied on the right-hand side

FIG. 7. Normalized accumulated modal energy in the elastic solid when modeled as a thin plate in plane stress, subject to strong shock
applied (a) at granule 3 of the LSGM, and (b) granule C of SSGM; in each case the accumulated total energy and modal energies of the leading
6, 100, and 1000 plate modes are depicted as functions of time.
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FIG. 8. Instantaneous normalized total, elastic, and kinetic energies of the elastic solid when modeled as a thin plate in plane stress subject
to strong shock excitation applied to (a) granule 3 of the LSGM and (b) granule C of the SSGM.

[cf. Fig. 7(b)], indicating that the nonlinear acoustics of wave
scattering at the interface of the elastic solid and the gran-
ular media is different. Indeed, in this case the plate energy
reaches its early maximum at τ ≈ 0.05 ms, and the accu-
mulated modal energy converges slowly to the total energy
within this primary peak. With more modes being excited
by the primary wavefront in this case, the convergence of
modal energy in the peak is slow, even when considering as
many as 1000 leading modes (a number of modes which is
comparable to the total 3618 degrees of freedom of the plate
model). The slow modal accumulation mainly occurs in the
primary peak, since following that the convergence is seen to
satisfactory. In this case the elastic solid does not merely un-
dergo vibrations as numerous modes with large wavenumbers
(or short wavelengths) are excited. Instead, we observe the
occurrence of acoustics, i.e., elastic waves propagating along
the width of the elastic solid when the excitation is applied
to the SSGM (for links to animations showing clearly this
acoustical response we refer to Appendix C). Therefore, we
observe strong acoustic nonreciprocity in the granular inter-
face for shock excitations applied to both sides: For excitation
applied to the left LSGM the elastic solid (when modeled as a
thin plate in plate stress) undergoes mainly (low-frequency or
wavenumber) vibrations, whereas for an identical excitation
applied to the right SSGM it undergoes (high-frequency or
wavenumber) acoustics. To the authors’ best knowledge this is
the first report of a nonreciprocal system which, depending on
the location of the applied shock excitation, undergoes either
vibrations (standing waves) or acoustics (traveling waves).
The source of nonreciprocity is the strong nonlinearity of
the granular media in synergy to the asymmetry caused by
the different scale composition of the left and right granular
media.

Considering that the length of the plate model of the elastic
solid is 0.1 m and its width 0.01 m, the resulting slenderness
ratio is small so the natural frequencies of the leading axial
and bulk modes are comparable to the natural frequencies of
the lowest bending modes. Specifically, the natural period of
the first (bending) mode of the plate model is 0.199 ms, while
that of the seventh (bulk) mode is 0.0198 ms (the antisym-

metric lowest axial mode does not participate in the acoustics
due to the symmetry of the applied shock excitation). Clearly,
the accuracy of the beam model is dependent on whether the
leading bending modes are dominant in its response, which, in
turn, is determined by the dominant time scales of the imped-
ing wavefronts, and of the granular-elastic solid interaction.
As mentioned previously [4,5], subject to the same shock
applied to either side of the granular interface, the resulting
propagating primary wavefront in the SSGM is much faster
compared to the one transmitted in the LSGM. This means
that that the time scales governing the nonlinear scattering of
the wavefront at the granular-solid interface are much faster
when the shock is applied to the right (SSGM is excited). In
turn, this results in the excitation of a higher range of modes of
the elastic solid, over a wider range of frequencies. Therefore,
the bulk modes and the traveling waves are excited, and the
simplified beam model does not agree with the plate model.
For the shock applied to the LSGM, the time scales governing
the nonlinear scattering of the wavefront at the granular-solid
interface are relatively slow, and therefore only the leading
bending modes of the elastic solid are excited (in the form of
standing waves), so the simplified model agrees well with the
plate model.

The slenderness ratio of the intermediate elastic solid is
also critical factor. For larger slenderness ratios, the natural
frequencies of the leading bulk modes are much larger than
the natural frequencies of the leading bending modes. In this
case, the elastic solid acts as a beam and only standing waves
are excited (involving the bending modes) irrespective of the
location of the applied shock (left or right). However, for
smaller slenderness ratios, traveling waves are initiated and
the beam model fails irrespective of the location of the shock.
Therefore, the previously discussed time scale disparity of the
nonlinear acoustics depends also on the slenderness ratio of
the intermediate elastic solid.

Another interesting aspect of the nonreciprocal acoustics
is gained by studying the partition of the instantaneous total
energy of the elastic solid in terms of kinetic and potential
energies. In Fig. 8 we depict the normalized kinetic, poten-
tial, and total energies of the elastic solid when modeled
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FIG. 9. Accumulated energy captured by the leading modes, as defined in (16): (a) weak (Fmax = 63.67 N), (b) moderate (Fmax = 318.3 N),
and (c) strong (Fmax = 1591.6 N) shocks.

as a thin plate in plane stress, with the same strong shock
excitations applied on either side. With the excitation applied
to the LSGM [cf. Fig. 8(a)] the potential energy overweighs
the kinetic energy throughout the duration of the response
of the elastic solid. Given that the natural period of the first
bending mode of the plate is ∼ 0.2 ms, i.e., comparable with
the duration of the primary (main) peak, the elastic solid is
excited “pseudostatically” predominantly in its first bending
mode, and, as mentioned previously undergoes relatively low-
frequency vibrations. This provides another evidence that the
standing waves are generated with the excitation from LSGM.
However, a different picture is obtained when the excitation
is applied to the SSGM [cf. Fig. 8(b)], where the potential
energy overweighs the kinetic energy only in the primary
peak, which in this case is much shorter in duration compared
to the previous case; this indicates that more modes than the
fundamental bending ones are now excited by the imped-
ing primary wavefront; this confirms the acoustical (rather
than vibrational) response of the elastic solid in this case.
Moreover, note that after the main peak, the elastic solid con-
tinuously exchanges kinetic and potential energies resembling
a “global oscillator” effect [29]. This behavior opens the way
for conceiving nonreciprocal systems with response features
dominated by either vibrations or acoustics, depending on the
location of the excitation shock. In turn, this can enhance
the capacity of such systems to passively confine and locally
dissipate a significant portion of input shock energy at a given
frequency range, examples of which have been demonstrated
theoretically and experimentally in previous studies [47,48].

Last, we study the dependence of the acoustic nonreciproc-
ity of the granular interface on the level of the shock. To
this end, we consider the half-sine pulse excitation depicted
in Fig. 3(a) with the aforementioned three levels of forcing
amplitude, Fmax = 63.67 N, 318.3 N, and 1591.6 N, cor-
responding to weak, moderate, and strong excitation levels,
respectively, and fixed shock τexc = 0.01 ms. In Fig. 9 we
depict 12 cases of shock excitation applied either from the left
(at granule 3 of the LSGM) or the right side (granule C of the
SSGM) of the granular interface, and with the intermediate
elastic solid being modeled either as a thin plate or a slender
beam. In these plots we consider the normalized accumulated
energy captured by the leading 1 < N < 103 modes of the

elastic solid for each excitation scenario, averaged over time
as follows:

N∑
n=1

∫ τ0

0 Ees,ndτ∫ τ0

0 Eesdτ
. (16)

In (16) Ees,n denotes the modal energy of the n−th mode
of the elastic solid, Ees the total energy of the elastic solid,
and τ0 the total simulation time, taken as τ0 = 0.8 ms in
all simulations. In each case we plot the proportion of total
energy accumulated by N modes.

For weak shock excitation [cf. Fig. 9(a)] the proportion
of energy is close to unity even for as low as N = 3 modes
irrespective of the location of the shock (that is, left or right),
and the difference in accumulated energy almost vanishes for
N > 3, regardless of the model that we adopt. Hence, we
observed quick convergence for the accumulated modal en-
ergy in this case, with higher-order modes in the plate model
being nearly unexcited excited, and with the beam model
agreeing well with the plate model. Given the small number
of modes required for weak shock excitation we conclude
that the elastic solid undergoes low-frequency vibrations in
this case, irrespective of the location of application of the
shock.

However, a different picture is obtained for moderate and
strong shocks [cf. Figs. 9(b) and 9(c)] as the responses of
the granular interface exhibit strong nonreciprocity. In these
cases, the plate modal energy accumulates much slower when
the excitation is applied on the right side, compared to when
the same excitation is applied on the left side. For moderate
shock applied to the left side the energy on the leading modes
dominates the total energy in the elastic solid irrespective if it
is modeled as a plate or beam, indicating that the response of
the plate model agrees well with that of the beam model; in
this case the plate mode undergoes low-frequency vibrations
with only a limited number of modes being excited. However,
for the moderate shock applied to the right side the plate
modal energy converges much more slowly to the total energy,
with more energy spread to higher modes, whereas the beam
model does not agree well with the plate model. In this case
the response of the elastic solid is acoustical rather than vibra-
tional, as it involves the excitation of a much higher number of

044906-14



TIME SCALE DISPARITY YIELDING ACOUSTIC … PHYSICAL REVIEW E 104, 044906 (2021)

modes of the elastic solid. Clearly, in this case the beam model
fails, as it is incapable of capturing the acoustical response of
the elastic solid. These conclusions hold even more for the
case of strong shock excitation, where the nonreciprocity of
the response subject to left or right shocks is much stronger.
Indeed, in Fig. 9(c) the excitation of the higher-order modes
of the elastic solid is evident for strong shock applied to the
right, and the differences between the beam model and the
plate model are significant. However, the accumulated modal
energy converges much faster when the strong excitation is
applied to the left, compared to when it is applied on the right,
a result that highlights even further the nonreciprocal response
of the granular interface. Again, in this case we excite vibra-
tions when forcing from the left and acoustics when forcing
from the right. These results reveal the strong dependence of
nonreciprocity on the energy level of the response, which was
to be expected given the strong nonlinearity of the system and
demonstrates the passive adaptivity of the response of the non-
linear granular interface on energy (or shock intensity). Even
more interesting, the results reported in this work indicate that
it is possible to conceive nonreciprocal nonlinear and asym-
metric systems that undergo either low-frequency vibrations
or high-frequency acoustics depending on the intensity and
location of the applied shock excitations.

As mentioned previously, the strong dependence of nonre-
ciprocity on energy originates from the strong nonlinearity of
the granular system. With higher impulsive energy, the wave
speed in the granular medium is faster both for shock excita-
tions from the left and the right sides, and the corresponding
time scales of the acoustical interactions at the interfaces
between the LSGM and SSGM and the elastic solid are faster.
Moreover, the time scales of the granular-solid interactions are
always faster when a shock is applied to the SSGM compared
to the LSGM. Therefore, for low impulsive energy, the time
scales are relatively slow irrespective of the location of the
shock, and only the leading order modes of the elastic solid
are excited. For moderate and high impulsive energy, the time
scales are much faster and traveling waves are excited in the
elastic solid for the case of the SSGM excitation. In this case,
the beam model fails to predict the response of the elastic
solid. Given the disparity in the sizes of the granules in the
SSGM and LSGM, the effects of the higher-order modes are
different depending on the location of the shock excitation
from due to the different governing time scales of nonlinear
primary wavefront scattering (transmission and reflection),
and discrete-continuum interfaces, yielding nonreciprocity in
the response.

V. CONCLUDING REMARKS

We studied the nonreciprocal acoustics of an 2D initially
uncompressed, strongly nonlinear granular-elastic solid in-
terface with asymmetry and internal hierarchy, subject to a
half-sine shock excitation applied to either side of the in-
terface. The computational algorithm developed in [29] is
adopted and extended here to compute the nonlinear acous-
tical response of this system, taking into account rotational
and frictional effects in the granule responses, and the highly
discontinuous nature of the discrete-continuum interactions
at the two interfaces of the intermediate elastic solid. The

elastic solid was modeled either as a thin plate in plane
stress, or as a much simpler slender beam. The aim of this
study was to study the efficacy of the beam model which
is mainly valid for low-frequency or wavenumber vibrations,
compared to the thin plate model which is valid both for vi-
brations as well as higher-frequency or wavenumber traveling
waves (acoustics).

The break of acoustic reciprocity is studied by examining
the responses of the granular media and the intermediate elas-
tic continuum, when the location of the excitation is switched.
Due to the strong nonlinearity of the granular media, there
occurs a time scale disparity in the propagating wavefronts
following the application of the shock when its location is
switched. In turn, this yields strong nonreciprocity in the
response of the elastic solid, which responds either in the
vibration or the acoustics regime. Specifically, when the ex-
citation is applied to a boundary granule of the large-scale
granular medium (LSGM) the elastic solid undergoes vibra-
tions with only a few low-frequency or wavenumber modes
participating in its response. In this case, the response of
the beam model agrees well with the plate model, and the
energy of the elastic solid is mainly confined to a few leading-
order modes. Moreover, since the time scale of the interaction
force between the granules and the solid is relatively slow,
the elastic solid is nearly quasistatically excited, and the
potential energy overweighs the kinetic energy in this case.
However, completely different physics occurs when moderate
or strong shock excitations are applied to a boundary granule
of the small-scale granular medium (SSGM). In this case, the
governing time scales of the interaction forces between the
granules and the elastic solid are much faster, and traveling
waves propagate within the elastic solid, with its response
being in the acoustic regime with many high frequency or
wavenumber modes participating. In this case the simpler
beam model is not capable of accurately modeling the acous-
tics of the interface.

Hence, the cause of nonreciprocity in the granular-solid
interface can be directly traced to the time scale disparity
in the transient response of the intermediate elastic solid
either in the vibration or acoustic regime, depending on the
location and intensity of the applied shock. In turn, this time
scale disparity is due to the strong tunability (with energy)
of wave transmission in the component granular media of the
interface due to the essentially nonlinear (nonlinearizable)
Hertzian contact law governing the granule-to-granule and
granule-to-elastic solid interactions. The main features of
the acoustics of the elastic solid is then determined by the
governing time scales of the granular-elastic solid interactions
which are strongly dependent on the excitation levels. In the
granular interface considered, traveling waves (acoustics) in
the elastic solid occur for moderate and strong shocks applied
to the SSGM, whereas vibrations in the elastic solid occur for
weak excitations or when the excitations are applied to the
LSGM.

Hence, the presented granular-solid interface is a new
paradigm of a completely passive (hybrid) discrete-continuum
system, which, depending on the location and intensity of the
shock excitation exhibits completely different nonreciprocal
response regimes: (1) acoustics in the granular media and
vibrations in the elastic continuum or (2) acoustics in both the
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granular media and the elastic continuum. To our knowledge,
such a tunability of the response to either vibrations and/or
acoustics depending on the type and location of the excitation,
is presented for the first time for a passive mechanical system.
It is clear that what enables the coexistence of dynamics and
acoustics in the interface is the break of classical reciprocity
through the synergy of asymmetry (different-scale granular
media on the right and left) and strong nonlinearity (of the
granular media).

The reported nonreciprocal acoustics of the considered
2D granular-elastic solid interface may guide the designs of
new types of efficient granular mitigators or granular-based
“acoustic diodes” supporting unidirectional (preferred) wave
transmission in specific energy and frequency ranges. It would
be of interest to extend of the interface to narrowband loads
(e.g., harmonic excitations), in order to study the tunability
of the response and the break of acoustic reciprocity sub-
ject to this type of excitations as well. In addition, it would
be of interest to study if the coexistence of vibrations and
waves could be achieved for narrowband loads as well. In
a more general context, the passive tunability of acoustic
nonreciprocity to energy could be exploited when designing
nonlinear interfaces with performance tailored to the fre-
quency or wavenumber and energy contents of the applied
broadband or narrowband excitations. This could also find ap-
plications to new types of vibration energy harvesters whose
operation would be based on the nonreciprocal features of
such interfaces.

ACKNOWLEDGMENT

This work was supported in part by NSF Emerging Fron-
tiers Research Initiative (EFRI) Grant 1741565. This support
is gratefully acknowledged.

APPENDIX A: BRIEF DETAILS OF THE
COMPUTATIONAL ALGORITHM [27]

Referring to the governing equations of the granular me-
dia (1) and the elastic solid (8), these are coupled through the
interaction force vector F. Given the solution of the system at
the time instant τ = τs, the iteration-interpolation algorithm
calculating the interaction forces at the next time step τ =
τs+1 can be summarized in the following steps:

Step 1: We start with an initial guess for the interaction
force vector F (1)

s+1 = FC
s , where the subscript (s + 1) refers to

evaluation at time instant τs+1, the superscript (1) denotes the
first iteration, and FC

s denotes the converged force vector at
the previous time instant τs (for the initial time instant τ0 = 0
we consider the trivial initial guess, FC

0 = 0).
Step 2: Based on the initial guess of F (1)

s+1, we compute the
response of the elastic solid at the time instant τs+1 based on
the β-Newmark method. To this end, the governing equation
of motion are expressed as

ẋ(1)
s+1 = ẋC

s + [
(1 − γ )ẍC

s + γ ẍ(1)
s+1

]
τ,

x(1)
s+1 = xC

s + ẋC
s τ +

[
1 − 2β

2
ẍC

s + β ẍ(1)
s+1

]
τ 2

Mẍ(1)
s+1 + Kx(1)

s+1 = F (1)
s+1, (A1)

where x(1)
s+1 denotes the first iteration of the displacement

vector x at the time instant τs+1, xC
s denotes the converged

value of the displacement vector x at the previous time instant
τs, and β = 1/4 and γ = 1/2 are the two coefficients of the β-
Newmark method, yielding the constant averaged acceleration
variant. The solutions of Eqs. (A1) are given by

ẍ(1)
s+1 =

(
M + 1

4
Kτ 2

)−1

×
[

F (1)
s+1 − K

(
xC

s + ẋC
s τ + 1

4
ẍC

s τ 2

)]
,

ẋ(1)
s+1 = ẋC

s + ẍC
s + ẍ(1)

s+1

2
τ,

x(1)
s+1 = xC

s + ẋC
s τ + 1

2

(
ẍC

s + ẍ(1)
s+1

2

)
τ 2, (A2)

where τ = τs+1 − τs denotes the time step between succes-
sive time instants.

Step 3: Interpolate the response of the elastic solid with
constant averaged acceleration (ẍC

s + ẍ(1)
s+1)/2. The response

between time instants τs and τs+1 is given by

ẋ(1)(τ ) = ẋC
s + ẍC

s + ẍ(1)
s+1

2
(τ − τs),

x(1)(τ ) = xC
s + ẋC

s (τ − τs) + 1

2

(
ẍC

s + ẍ(1)
s+1

2

)
(τ − τs)2.

(A3)

Step 4: Given the response of the elastic solid, x(1)
s+1(τ ), the

response of the flexible boundary u(1)
ki at contact point k of the

elastic solid is determined. Therefore, the DE equations of the
granular medium (1) subject to the constitutive relations (5)
and (6) and the boundary conditions uki = u(1)

ki can be solved
using the fourth-order Runge-Kutta method. This provides the
first iteration for the responses of the granular media.

Step 5: Compute the interaction forces through the rela-
tions (5) and (6) based on the first iteration of the granular
responses and the boundary responses u(1)

ki of the elastic solid
Assemble the external force vector applied to the elastic solid
medium with the interaction forces being computed based on
the second iteration of the force vector, F (2)

s+1.
Step 6: Repeat steps 1–5 until the interaction force vector

converges. The convergence condition is given by

∣∣F ( j+1)
(s+1),n − F ( j)

(s+1),n

∣∣ < Abstol,

∣∣F ( j+1)
(s+1),n − F ( j)

(s+1),n

∣∣∣∣F ( j)
(s+1),n

∣∣
< Reltol, (A4)

where F ( j)
(s+1),n denotes the nth element of the jth iteration of

the interaction force vector F at the time instant τs+1, and
Abstol and Reltol preset absolute and relative tolerances, re-
spectively. The force vector Fs+1 is assumed to be converged
as long as (A−4) is satisfied for all of its nonzero elements.

Step 7: Once the interaction forces at the time instant τs+1

has converged, and the force vector Fs+1 = FC
s+1 is computed,

the converged response of the elastic solid at time instant
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τs+1 is computed by (A2) and the converged responses of the
granular media at the same time instant are computed by the
Runge-Kutta method. Then we repeat steps 1–6 in order to get
the responses at the time next instants τs+2, τs+3, . . . until the
simulation time is completed.

As a result of steps 1–5 a nonlinear map Fs+1 → Fs+1

is constructed. The stability of this map is crucial for the
numerical convergence of the computational algorithm and
needs to be carefully considered, since this ensures that the
iteration in step 6 converges to the fixed point of the map.
To this end, we assume that there are N nonzero elements in
Fs+1, then the previous vector map yields an N-dimensional
nonlinear map. The stability condition for the iteration is all
moduli of the N eigenvalues are smaller than unity. A special
consideration is given to the plate model for large ks values,
which is a parameter in the Coulomb-tanh friction force (5),
i.e., when the friction forces at the boundaries are sensitive to
the relative tangential velocity. At this point we note that the
Jacobian matrix of the N-dimensional nonlinear map is given
by

∂F ( j+1)
s+1

∂F ( j)
s+1

= ∂F ( j+1)
s+1

∂
(
x( j)

s+1, ẋ( j)
s+1

) ∂
(
x( j)

s+1, ẋ( j)
s+1

)
∂F ( j)

s+1

. (A5)

Notice that the term
∂ (x( j)

s+1,ẋ
( j)
s+1 )

∂F ( j)
s+1

is solely determined by the

FE equations of the elastic solid, and the term
∂F ( j+1)

s+1

∂ (x( j)
s+1,ẋ

( j)
s+1 )

by

the DE granular equations. Hence, for large values of ks, a
small variation in the boundary condition u( j)

ki yields a large
variation in the corresponding interaction forces. In the limit
of the Coulomb frictional model when ks → +∞, the term

∂F ( j+1)
s+1

∂ (x( j)
s+1,ẋ

( j)
s+1 )

becomes unbounded and the computational algo-

rithm cannot converge and becomes numerically unstable.
In the following analysis we provide a brief discussion

of the numerical stability of the computational response of
the thin plate model which involves friction forces (no such
forces are involved in the slender beam model), and for a more
detailed analysis we refer to [29]. To start with, we introduce
several assumptions to simplify the previous expressions.

Assumption 1: Since the time step τ is small, we assume
that the variation of the interaction forces at time instant τs+1

has only a local effect on the response of the plate. That is, the
variations of the interaction forces at a contact point between
the plate and the granular medium at τs+1 has negligible ef-
fects on the responses of the plate at the other contact points
at the same time step τs+1.

Assumption 2: Since the effects of the interaction forces
are assumed to be local and the interaction forces are applied
at the middle points of the small rigid layers [cf. Figs. 2(c)
and 2(d)], the normal and tangential responses of the rigid lay-
ers are decoupled due to symmetry. That is, normal interaction
forces do not yield tangential responses of the rigid lay-
ers, and tangential interaction forces do not generate normal
responses.

Assumption 3: Given the great disparity in mass between a
single contacting granule and the finite elements of the plate
attached to the contacting rigid layer, the response of the rigid
layer is much more sensitive to changes in the interaction
forces compared to the response of the contacting granule.

Therefore, we neglect the sensitivities related to the granule
responses.

Based on these three assumptions, the nonlinear ND global
map Fs+1 → Fs+1 is simplified as N decoupled nonlinear 1D
local maps since the variation of each element of Fs+1 does
not affect the other elements. We pay special attention to the
local maps related to friction forces. The linearized eigenvalue
λki,t,(s+1) of the local map of the friction interaction force
between the kth contact point of the plate and the ith granule
can be evaluated as

λki,t,(s+1) = ∂ f ( j+1)
ki,(s+1)

∂ f ( j)
ki,(s+1)

= ∂ f ( j+1)
ki,(s+1)

∂ ẋ( j)
ki,(s+1)

∂ ẋ( j)
ki,(s+1)

∂ f ( j)
ki,(s+1)

, (A6)

where f ( j+1)
ki,(s+1) denotes the ( j + 1)th iteration of the tangential

interaction force applied from the ith granule to the kth con-
tact point of the plate at time instant τs+1, and ẋ( j)

ki,(s+1) denotes
the relative tangential velocity between the kth contact point
of the plate and the ith granule at time instant τs+1. The pos-
itive direction of f ( j+1)

ki,(s+1) and ẋ( j)
ki,(s+1) agrees with the positive

direction of the tangential degree of freedom of the rigid layer
at the contact point. Based on the constitutive relation (5) of
the DE granular equations and with the sensitivity of granule

response neglected, the first term
∂ f ( j+1)

ki,(s+1)

∂ ẋ( j)
ki,(s+1)

is approximated by

∣∣∣∣∣∂ f ( j+1)
ki,(s+1)

∂ ẋ( j)
ki,(s+1)

∣∣∣∣∣ = μks

∣∣N ( j+1)
ik,(s+1)

∣∣cosh−2
(
ksδ̇

( j+1)
t,ik,(s+1)

)
, (A7)

where the sign is dependent on whether the unit vector t ik

defined in the DE equations agrees with the direction of the
tangential driving DOF of the rigid layer in the FE model. The

second term
∂ ẋ( j)

ki,(s+1)

∂ f ( j)
ki,(s+1)

is determined by the FE equations, which

can be explicitly expressed from (A2) after some algebraic
manipulations as

∂ ẋ( j)
ki,(s+1)

∂ f ( j)
ki,(s+1)

= 1

2
τT i,t

(
M + 1

4
Kτ 2

)−1

T i,t
T , (A8)

where T i,t is a sparse vector such that ẋ( j)
ki,(s+1) = T i,t ẋ

( j)
s+1.

The only nonzero element of T i,t with value equal to unity is
located on the tangential driving DOF of the rigid layer at the
kth contact point between the ith granule and the boundary
of the plate. The modulus of the eigenvalue associated with
the frictional interaction force is computed based on (A7)
and (A8). For convenience we replace the variables at the time
instant τs+1 with the variables at the time instant τs, so that the
modulus of the eigenvalue is approximated as

|λki,t,(s+1)| = 1

2
μks

∣∣NC
ik,s

∣∣τT i,t

(
M + 1

4
Kτ 2

)−1

T i,t
T

× cosh−2
(
ksδ̇

C
t,ik,s

)
. (A9)

It can be shown that all eigenvalues of the local nonlin-
ear maps associated with the normal interaction forces are
unconditionally stable, so they do not need to be considered
in the stability analysis [27]. The eigenvalues corresponding
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FIG. 10. Force-velocity constitutive relation of (a) the smooth Coulomb-tanh friction model and (b) the discontinuous Coulomb dry friction
model.

to all k contact points between the plate and the LSGM and
SSGM can be evaluated by (A9) and need to be evaluated
at each time instant and for every contact point; otherwise
the simplified local map diverges and the interaction force
at the current time instant diverges leading to numerical
instability

APPENDIX B: DETAILS OF THE SELF-ADAPTIVE
PROCESS AND A NUMERICAL EXAMPLE

In Fig. 10 we depict the tanh-Coulomb friction model used
in this study and compare it to the discontinuous Coulomb
dry friction model. As discussed in the paper, the latter one
is unconditionally unstable, i.e., it yields linearized eigen-
values (A9) that exceed unity in certain time steps, which
prevents numerical convergence of the computational algo-
rithm. On the contrary, the smooth tanh-Coulomb model
enables adaptive selection of the time step of the numerical
simulation that ensures numerical stability of the algorithm.
This is described below by means of a numerical example

to show the details of the numerical simulation as well as
the way that we check of moduli of the eigenvalues (A9).
In all simulations the initial time step is selected as τ0 =
4×10−8 s, and set as constant when using the beam model
for the elastic solid. When the plate model is adopted, the
eigenvalue moduli (A9) are checked at each time instant.
Due to the symmetry of the acoustics, only the eigenvalues
corresponding to frictional interactions between granules 10,
11, and 12 of the LSGM [cf. Fig. 10(b)] and the left edge of
the plate are labelled as λ10, λ11, and λ12, respectively, and
are checked to satisfy the stability condition (10). Similarly,
the eigenvalues corresponding to the frictional interactions
between the granules J, K, and L of the SSGM and right edge
of the plate are checked and named labelled as λJ , λK , and λL,
respectively.

The eigenvalues at these six contact points are available
by plugging the initial time step increment τ = τ0 =
4×10−8 s into (10). As one of the six eigenvalues is greater
than 0.5, a smaller time step τ = τ1 = 1

2τ0 is adopted.
Note that the eigenvalues being proportional to the increment

FIG. 11. Moduli of the six eigenvalues for strong shock applied to the granule C of the SSGM, at the three contact points (a) on the left
boundary of the plate and (b) on the right boundary of the plate; note the discontinuous nature of the eigenvalues due to the adaptive change of
the time step.
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in the time steps, become smaller as the time step is decreased.
The general rule for adaptively selecting the time step incre-
ment τn is by satisfying the following two criteria:

τ = τ0, max (λ(τ0)) � 1

2
,

τ = τn = τ0

2n
,

1

4
< max (λ(τn)) = max (λ(τ0))

2n
� 1

2
. (B1)

That is, the initial time step τ0 is divided by a sufficiently
large integer power of 2 so that the corresponding moduli
of all eigenvalues are smaller or equal than 1

2 ; this ensures that
the iteration converges fast to the fixed point of the nonlinear
map and the algorithm converges quickly to the solution of the
given time step.

To check the validity of our algorithm, we pick the case
for strong shock applied to granule C of the SSGM; cf.
Figs. 4(f), 6(c), 7(b), and 8(b). This corresponds to the
most critical case since the corresponding iteration is the
more challenging from a convergence point of view. From
Figs 7(b) and 8(b) we note that the primary wavefront reaches
the intermediate plate and starts getting scattered at around
∼0.02 ms. The corresponding moduli of the six eigenvalues
are plotted in Fig. 11 for τ = 0–0.2 ms, and are all smaller

than unity, which ensures the convergence of the simulation.
Note that the eigenvalues are not smooth due to the neces-
sary (adaptive) change in the time step increment τ during
successive time steps to ensure convergence as discussed
previously.

APPENDIX C: ANIMATIONS OF
THE ENERGY DISTRIBUTIONS

Here we provide the animations that better visualize the
nonlinear acoustics of the granular-elastic solid interface for
weak, moderate, and strong shock excitations (these cor-
respond to the results presented in the main text) in the
Supplemental Material [49]. The animations are grouped into
two main categories: (1) videos of deformations and (2) an-
imations of instantaneous normalized energy densities. For
better visualization, the magnification factor for the anima-
tions of the deformations are ×5000 for weak, ×1000 for
moderate, and ×200 for strong shock excitation. At each
shock level we consider the excitation of either granule 3 of
the LSGM of granule C of the SSGM.

The animations are also available through the following
links: links for animations of the deformations [50] and links
for animations of the normalized energy densities [51] .
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