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Classification of emerging patterns in self-assembled two-dimensional magnetic lattices
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Self-assembled granular materials can be utilized in many applications such as shock absorption and energy
harvesting. Such materials are inherently discrete with an easy path to tunability through external applied forces
such as stress or by adding more elements to the system. However, the self-assembly process is statistical in
nature with no guarantee for repeatability, stability, or order of emergent final assemblies. Here we study both
numerically and experimentally the two-dimensional self-assembly of free-floating disks with repulsive magnetic
potentials confined to a boundary with embedded permanent magnets. Six different types of disks and seven
boundary shapes are considered. An agent-based model is developed to predict the self-assembled patterns for
any given disk type, boundary, and number of disks. The validity of the model is experimentally verified. While
the model converges to a physical solution, these solutions are not always unique and depend on the initial
position of the disks. The emerging patterns are classified into monostable patterns (i.e., stable patterns that
emerge regardless of the initial conditions) and multistable patterns. We also characterize the emergent order
and crystallinity of the emerging patterns. The developed model along with the self-assembly nature of the
system can be key in creating re-programmable materials with exceptional nonlinear properties.
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I. INTRODUCTION

Granular media have inspired an extensive number of stud-
ies on the interplay between nonlinearity and discreteness [1]
with many potential applications in shock absorption, acoustic
sensing, switching, and energy harvesting [1–6]. In addition
to their potential as a fascinating platform to study nonlinear
dynamics [7–10], they can be easily prototyped from simple
basic particles such as beads and disks. The inherent dis-
creteness in such media makes them an ideal candidate for
fabrication through self-assembly processes [10–17,17–21].
However, the statistical nature of the self-assembly process
can hinder their practicality as the final assembly depends
highly on the initial positions of the system elements [22,23].
Even for highly repeatable patterns, a certain amount of disor-
der usually emerges within the assembly. The present study
considers the interplay between the symmetry of granular
elements, their confining boundary shape, and resulting final
pattern. The repeatability, stability, and inherent order in the
self-assembled emergent patterns are studied.

In this paper we study the self-assembly of various types
of free-floating magnetic disks in two dimensions confined to
a fixed boundary with embedded magnets. In particular, the
repeatability, stability, and crystallinity of these emerging pat-
terns under different boundary conditions is considered. The
free-floating disks are subject mainly to repulsive magnetic
interactions among themselves and their confining boundary
in two dimensions (i.e., with negligible friction). We develop
a numerical model to predict the final assembly of the free-
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floating disks based on an agent-based model. We consider
six different types of disks, with the number of embedded
permanent magnets ranging from 1 to 6. We consider seven
types of boundaries, with the number of sides varying from
3 (triangle) to 8 (octagon) in addition to a circular boundary
(Fig. 1). The model is executed multiple times with different
initial positions of the disks and their final assembly after
convergence is recorded. The final assemblies are classified as
monostable (the same pattern emerges regardless of the initial
position of the disks) or multistable (where the initialization
plays a crucial rule in the final pattern) patterns. To classify
the stability of these emerging patterns as monostable or mul-
tistable, we calculate the relative position between the disks
(i.e., relative distance and angles between the disks) at their

FIG. 1. Concept. The self-assembly of six disk types (left) with
embedded identical magnets is considered. The disks are confined to
different boundary shapes (middle). The boundaries also have identi-
cal permanent magnets with the same polarity as the disks. The final
self-assembly can be mono- or multistable, crystalline or amorphous
depending on the number and type of disks and the boundary shape.
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final assemblies. We consider a pattern to be monostable if
the same pattern emerges for the same number of disks and
boundary type, despite the different random initial positions of
the disks; otherwise, the pattern is considered multistable. In
addition, if a pattern is monostable, we quantify the variability
in the final positions of the disks between various simulations
with different initial positions.

II. AGENT-BASED MODEL

An agent-based model [24] is developed to numerically
simulate the self-assembly of free-floating disks confined
within different boundaries with magnetic potentials in two di-
mensions. Each disk acts as an autonomous agent that has the
ability to make a decision about its position and orientation,
on its own. The disks individually assess their utility function
and make the decision based on predefined rules. The utility
function Ediski that each disk tries to minimize represents the
absolute value of the repulsive forces they experience from
all the other agents, in addition to the boundary magnets.
The decisions available to each agent include a move of a
distance ε from its current position to the left, right, up, or
down or a valid combination of two directions (i.e., up and
left or down and right). The agent calculates the change in
the utility function based on the possible moves and executes
a jump to the new position with the lowest possible energy.
Disks are penalized with a high utility function cost not to
consider a jump outside the predefined boundary. This rule
guarantees the confinement of all disks to the boundary and
simulates the presence of a physical boundary. In the case of
having more than one magnet per disk (i.e., dimer, trimers,
etc.) the disk also evaluates a change in its orientation angle,
while staying in the same position, and chooses the orientation
with the lowest energy. The disks start at random positions
and the model evolves autonomously based on the interactions
between the different agents according to the predefined rules.
The simulation terminates once the change in the total energy
of the system Etot is negligible.

The total energy of the system is calculated as the summa-
tion of the energy of individual disks, which takes into account
the repulsive forces between the permanent magnets following
an inverse power law. All magnets are oriented in the same
way (e.g., north pole facing up); therefore, all magnets act as
monopoles in two dimensions. The total energy of the system
can be represented as

Etot =
N∑

i=1

{Ediski}, (1)

where the individual disk utility function Ediski is

Ediski =
M∑
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wik
|
}

, (2)

where N is the number of free-floating disks (i.e., agents),
M ∈ [1, 2, . . . , 6] is the number of magnets per disk, dwi j

is the distance between the position of magnet i in disk w

and magnet j, B is the number of boundary magnets, and
A = 3μβ2/4π , where μ is the permeability of air and β is
the magnetic moment [6].

III. MODEL VALIDATION

We simulate the self-assembly of free-floating disks for
the combination of the following cases: (i) seven different
boundaries with the number of sides ranging from 3 (triangle)
to 8 (octagon) in addition to a circular boundary and (ii) six
different disk configurations (one magnet, two magnets, three
magnets, four magnets, five magnets, and six magnets) per
disk. In each of these 42 configurations (seven boundaries and
six disk types), we simulate the self-assembly of disks from 1
to 50 disks per assembly, totaling 2100 different simulations.
Each of these 2100 simulations is repeated for ten different
random initial disks’ positions. We record the final position
in each of the 21 000 simulations and analyze the emerging
patterns using different indices. The boundary side length
Sx, where x represents the number of sides is S3 = 176 mm,
S4 = 200 mm, S5 = 176 mm, S6 = 150 mm, S7 = 130 mm,
and S8 = 114 mm and the circle radius R = 150 mm. The
number of magnets per side on all the boundaries is equal to 6,
except for the square boundary (7). The number of magnets on
the circle is 38. The magnet parameters are A = 6.6 × 10−11

and γ = −4.
The convergence of the agent-based model is analyzed by

considering the average energy per disk defined as Ē∗
tot/N ,

where Ētot is the total energy of the system excluding the
boundary energy [i.e., the second term in Eq. (2)]. The ( )∗
indicates the lowest energy values between the ten simulations
of each identical case (i.e., with random initial positions of
the same number of disks, disk type, and boundary shape).
Figure 2 shows the Ē∗

tot/N separated by boundary type. The
lower corner of Figs. 2(a) and 2(c)–(h) shows the correspond-
ing boundary shape. For all boundaries, we observe a constant
rise in the average energy per disk as the number of disks is
increased across all disk types (1–6 magnets per disk). The
rise in the energy per disk is consistent with the increase of
disk density calculated as the number of disks in a constant
area enclosed by the boundary. The only discrepancy emerges
in the average energy per disk for the triangular boundary
in the vicinity of the self-assembly of 15 disks. This dip in
the average energy per disk is consistent for all disk types,
suggesting a boundary anomaly rather than a modeling one.
By closely examining the emerging patterns for the number
of disks between 10 and 20, the extreme dependence of the
final pattern on the initial disk positions is noted. The three
acute angles at the corners of the triangle along with the fixed
magnets in their vicinity create an energy barrier that can only
be penetrated in special cases (when the total repulsion force
acting on the disk closest to the triangle corner is greater than
the repulsion force of the three corner magnets). Once a disk
crosses this energy barrier, it cannot exit, as its total energy
is smaller at the corner. This can be observed by closely
considering the emerging patterns with the lowest total energy
when simulating the self-assembly of 14–16 disks with two
magnets per disk. The emerging patterns in the case of 14
and 15 disks are identical, with the exception of the vacant
vs occupied corner [Fig. 2(b)]. The added disk at the corner
(in the case of 15 disks assembly) does not add any significant
energy to the total energy of the system when normalized by
the number of disks. By adding an extra disk (i.e., 16 disks)
the pattern changes, in comparison to the case with 15 disks,
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FIG. 2. Model convergence. The lowest average energy Ē∗
tot/N in

ten different self-assembly numerical simulations for each boundary,
type of disk, and number of disks (total 21K) for (a) triangular,
(c) square, (d) pentagonal, (e) hexagonal, (f) heptagonal, (g) octago-
nal, and (h) circular boundaries. (b) shows the reason for the dip in
the energy levels for 14–16 disks with dimers starting to fully occupy
the corners of the triangular boundary.

and the amount of energy per disk starts to rise systematically
again.

IV. EXPERIMENTAL VERIFICATION

While the numerical validation through the average energy
per disk suggests a consistent convergence of the model in all
cases, it motivates the following question: While the model
converges, does it simulate reality? In other words, is the
solution physical? To experimentally verify the numerically
simulated self-assembly and its final patterns, seven studied
boundaries are fabricated with the same parameters as the
simulations out of acrylic glass using a laser cutter (Full-
spectrum 24 pro-series). The magnets embedded within the
boundary and the magnets in the disks are oriented with the
north pole facing upward. To minimize friction, a glass slide
is attached at the bottom of each disk and floated on an air
bearing (New way S1030002). The disks experience minimal
to no friction as they hover over a thin layer of laminar flow
once the air bearing is activated (similar to an air hockey
table). The motion of the disks and the resulting images are
captured using a computer vision camera (Blackfly S USB3)
and are analyzed using the digital image correlation software
(DICe).

FIG. 3. Experimental verification. Experimentally assembled
14–16 dimers (disks with two magnets each) with (a) all the cor-
ners of the triangular boundary occupied and (b) two, (c) one, and
(d) zero corners occupied. The same emerging pattern is highlighted
with various shapes. For example, 16 disks with 3 occupied triangle
corners is the same pattern with 15 disks and 2 occupied triangle
corners and 14 disks with 1 corner occupied, all of which resemble a
peace sign with three magnets parallel to the triangle sides.

We start the experimental verification by considering the
self-assembly of 14–16 disks with two magnets each within
the triangular boundary [the same case proved to be chal-
lenging in the numerical simulation in Figs. 2(a) and 2(b)].
We first position the triangular boundary on the air bearing
surrounding the disks at random positions relative to each
other and to the boundary. The air bearing is then activated to
allow the disks to free-float, significantly reducing the friction
between the disks and the bearing surface and allowing the
repulsion forces between the magnets to dominate the reposi-
tioning process. The system is left unperturbed for 15 s (i.e.,
enough time for the disks to reach their equilibrium positions)
and the resulting pattern is recorded. Afterward, the system is
significantly perturbed, forcing every disk to leave its position
and to form a new equilibrium state. The process is repeated
for 100 times taking an image each time the system reaches
the equilibrium point. The same phenomenon, previously in-
dicated in the numerical verification section, is observed. The
final assembly depends greatly on the initialization position.
The disks can, and do, enter the corner energy potential well
and can easily stay inside. In all three cases (i.e., 14–16 disks),
the four different potential patterns ranging from all corners
(occupied to vacant) are stable and physical and do take place
(Fig. 3). Remarkably, the same pattern emerges in the differ-
ent disk numbers if we omit the corner confined disks. For
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FIG. 4. Analysis of the emerging pattern. (a) Initial position of 37 disks within a hexagonal boundary writing “We-Xite” and their
numerically calculated final assembly as a triangular lattice. An overlay of four concentric circles are used to count the number of disks
within the layers of the final assembly to distinguish different emerging patterns. (b) Histogram of the angles between the disks in their final
assembly position using the Delaunay triangulation. The inset shows the final assembled pattern with superimposed Delaunay triangulation
and Voronoi tessellation. (c) Histogram of the distances between 37 disks in their final assembly position using the Delaunay triangulation.
The inset shows an overlay of the same four concentric circles to count the layers within the experimentally assembled pattern. (d) Two
initial positions of 16 disks within the same hexagonal boundary and their numerically calculated final assembly into two different patterns.
An overlay of three (left) and two (right) concentric circles are used to count the number of disks within the layers of the final assembly to
distinguish different emerging patterns. (e) Histogram of the angles between the disks in their final assembly position using the Delaunay
triangulation. (f) Histogram of the distances between 16 disks in their final assembly position using the Delaunay triangulation. The inset
shows an overlay of the same three concentric circles to count the layers within one of the experimentally assembled patterns.

example, the pattern of 16 disks with three occupied corners
[Fig. 3(a), right] is identical to the pattern of 15 disks with two
occupied corners [Fig. 3(b), middle] and the 14 disks with one
occupied corner [Fig. 3(c), left]. It is worth noting however, if
we omit the corners of the triangle, we turn it into a six-sided
polygon, defeating the purpose of the study.

V. ANALYSIS OF THE EMERGING PATTERNS

With the model convergence into plausible assemblies
experimentally verified, we start analyzing the emerging pat-
terns, in particular, comparing the emerging patterns of the
same number of disks to determine the pattern repeatability,
stability, and inherent order with different initial positions.
We attempt to classify the emerging patterns into two cate-
gories: (i) monostable, where, regardless of the initial position
of the disk, the exact pattern always emerges (with minute
variation), and (ii) multistable, where, depending on the initial
positions, the solution can bifurcate into two or more stable
assemblies. To perform our analysis we depend on two met-
rics: (a) the number of disks within concentric layers from the
center of the pattern to determine if the patterns are similar

or different and (b) the distances and angles between disks in
similar patterns to estimate any long-range order within the
pattern (i.e., crystallinity).

VI. PATTERN STABILITY

To present these two metrics, we consider the self-
assembly of 16 and 37 disks within a hexagonal boundary.
Each disk has one embedded permanent magnet (Fig. 4). We
start by randomly positioning the disks within the boundary.
In the case of the 37 disks, regardless of the initial position, the
emerging pattern is always a triangular packing of the disks.
Even when the initial position of the disks reads the laboratory
name, “We-Xite” [Fig. 4(a)], it emerges into a perfect triangu-
lar lattice (see movie 1 in [25]). In the case of the 16 disks,
two random initial positions are shown [Fig. 4(d)] emerging
into two topologically distinctive patterns. The left pattern in
Fig. 4(d) has a disk at its center, while the pattern on the right
does not. To distinguish between two such patterns, we use
concentric rings starting from the boundary center to count the
number of layers within the pattern and the number of disks
within each layer. For example, the pattern in Fig. 4(d) (left)
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FIG. 5. Pattern classification. The bars are the number of disks within the concentric layers in a hexagonal boundary for disks with one
magnet per disk. The layer order is presented in the inset. The numbers on top of the bars are the repeatability percentage of the pattern. The
monostable patterns with 100% repeatability are written in red. For monostable patterns, the variation in the distance between the disk positions
(magenta) and angles (green) are presented right above their 100%. The top two rows represent the crystallinity index for the distance (orange)
and angle (light blue) between the disks in the reported pattern. The layer counting parameters are ε = 17 mm and δ = 14 mm.

can be decoded into (1,5,10), meaning in the left pattern there
exist one disk in the center layer, five disks in the middle layer,
and ten disks in the outermost layer. Similarly, the pattern
on the right would be (5,11): only two layers, with 5 at the
center and 11 in the outer layer. The emerging patterns in both
cases (37 and 16 disks) are experimentally verified [Figs. 4(c)
and 4(f) (inset)]. The experimental images are analyzed in the
same way showing identical numbers of layers and occupy-
ing disks within each layer. The layers within the emerging
patterns are estimated as follows. (i) Locate the disk closest
to the center of the boundary. (ii) The first layer covers that
disk plus a distance ε. (iii) Count the number of disks within
that circle as layer one and then remove these disks and start
over; until all disks are counted. If two layers are closer than
a distance δ we merge the two layers into one. We apply the
layer counting principle on the emerging patterns in each of
the 21 000 cases (seven boundaries, six disk types, 1–50 disks,
ten times each). If the emerging patterns have the same layer
count and the same number of disks in each layer, despite the
different initial positions of the disks, the pattern is considered
monostable; if not, it is multistable.

VII. PATTERN ORDER

In addition to the repeatability of the assembly, we quantify
the crystallinity of the emerging patterns. We calculate the
distance between disks d and the angles θ between them
using Delaunay triangulation. We represent these angles and
distances in a histogram for both the 37 [Figs. 4(b) and 4(c)]
and the 16 [Figs. 4(e) and 4(f)] disks cases. Due to the clear

long-range order in the case of 37 disks with the triangular
lattice, the distances between all the disks are almost identical
(between 36 and 38 mm) and the angles between the disks are
almost all identical (between 55◦ and 65◦). In contrast, in the
case of 16 disks, both angles and distances span a much larger
range of values (between 35 and 68 mm and between 40◦ and
90◦). We define our metric of crystallinity as the summation
of the two highest histogram bars. In the case of 37 disks,
the crystallinity index is approximately equal to 100% for the
37 disks case in both angle and distance distributions (97%
for distance and 95% for angles). In contrast, the crystallinity
index for the 16-disk case is 50% for distance and 41% for
angles. Such an index can be used to easily identify patterns
with high crystallinity for further investigations, particularly
when combined with a high repeatability percentage.

VIII. NUMERICAL CLASSIFICATION PLOTS

To classify the emerging patterns accordingly, we plot the
calculated metrics of repeatability or stability of the assembly
and the crystallinity indices for both angle and distance in
one plot per boundary per disk type. An example plot of our
classification plots for a hexagonal boundary and one magnet
per disk is presented in Fig. 5. The bar colors represent the
different layers starting from the center of the pattern. The bar
height, and the number within, represents the number of disks
in that particular layer. Immediately on top of the bars for
each pattern is its repeatability (the percentage of times where
the pattern with the same number of layers and disks within
each layer emerges). The multistable pattern percentages are
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FIG. 6. Monostable patterns. All the patterns proven stable in both numerical simulation and experimental testing are grouped by
(a) boundary shape and (b) disk type. The y axis in (a) represents the number of magnets within each disk starting with one magnet per
disk until six magnets per disk. The y axis in (b) represents the number of sides per boundary starting with the triangular boundary (three sides)
to the octagonal boundary (eight sides) and the circular boundary (infinite sides). The markers in both panels indicate a stable pattern for a
given boundary shape, disk type, and number of disks.

black. If more than one pattern occurs, we present the pattern
with the higher repeatability. If two patterns have the same
repeatability percentage the percentage is written in dark blue.
In the case of a monostable pattern, the 100% repeatability is
written in red. Additionally, for the numerically monostable
patterns, we calculate the variation in the distance and angles
between the final positions of the disks in the multiple runs;
both numbers are located above the 100% repeatability rate
of the monostable patterns. The crystallinity indices for all
patterns (mono- or multistable) are located at the very top
of the layering bars. Figure 5 is only one example of 42
plots (six disk types in seven boundaries). The remaining 41
classification plots are included in the Supplemental Material
[25]. In the case of more than one magnet per disk, a variation
in the phase angle of the disk is also included at the top of
the plot for each case. It is worth noting that both centered
hexagonal numbers [or magic numbers following the equation
of 3n(n − 1) + 1, where n is the number of disks per side [26]]
of 19 and 37 appear as monostable patterns within a hexagonal
boundary (100% repeatability), with very high crystallinity
indices greater than 95% (Fig. 5), indicating the presence of
a highly ordered lattice. For the number of disks 24 and 27,
for example, the repeatability index is 100%; however, the
crystallinity indices are rather low, less than 55%, indicating a
monostable amorphous assembly. It is also worth noting that
in the case of disks with more than one magnet, the orien-
tation angle of the disk plays a significant role in its energy
minimization. Such orientation dependence can give rise to in-
triguing physics within the system such as frustration [21,27].

IX. EXPERIMENTALLY VERIFIED STABILITY

Finally, the stability or repeatability of the emerging pat-
terns is tested experimentally. The disks are placed within the
boundary, with the embedded magnets, at random positions.
The air bearing is then activated to allow the disks to free-float,
significantly reducing the friction between the disks and the
bearing surface and allowing the repulsion forces between the
magnets to dominate the repositioning process. The system
is left unperturbed for 15 s (i.e., enough time for the disks
to reach their equilibrium positions) and the resulting pattern
is recorded. Afterward, the system is perturbed significantly,
forcing every disk to leave its position and to form a new
equilibrium state. The process is repeated ten times, taking an
image each time the system reaches the equilibrium point. The
ten images are then compared with each other to determine the
repeatability of the pattern. The same layer counting principle
applied in the numerical simulations is followed for the result-
ing images. Many of the patterns that were predicted by our
numerical analysis proved stable. However, a similar amount
turned out to be multistable. The patterns proven stable in
experiments along with the numerical analysis are included
in Fig. 6. Remarkably, a very small number of patterns are
proven repeatable within the triangular boundary. This can
be justified by the corner observation discussed in Fig. 3. In
addition, the emerging patterns within the circular boundary
proved not very repeatable. Mainly, as observed in the exper-
iments, it is very easy for a disk to migrate from one layer to
another, deeming the pattern multistable.
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X. CONCLUSION

The two-dimensional self-assembly of free-floating disks
with different numbers of embedded magnets confined to
different fixed boundaries with constant magnetic potentials
was studied. An agent-based model has been developed
to simulate the self-assembly process, where each disk is
represented as an agent trying to minimize its own energy.
This individualistic behavior of each disk reduces the total
energy of the system to a stable and physical final pattern.
The validity of the model was verified experimentally using
an air-bearing table to minimize friction and clearly elucidate
the repulsive magnetic interaction between the disks. While
the model converges to a physical solution, these solutions
are not unique and depend on the initial position of the disks.
Such dependence is classified into stable patterns that emerge
regardless of the initial conditions (monostable patterns and
multistable patterns). The crystallinity of the emerging pat-
terns was also characterized. The developed model along with
the self-assembly nature of the system can be key in creating
reprogrammable materials with exceptional properties [11]. In
addition, the inherent nonlinear potentials between the differ-

ent disk types can be harnessed to demonstrate phenomena
with no linear parallel such as amplitude-dependent energy
management.

The data that support the findings of this study are available
within the article and the Supplemental Material [25]. Addi-
tional data are available from the corresponding author upon
reasonable request.
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