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Nonlinear ion transport mediated by induced charge in ultrathin nanoporous membranes
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Ultrathin membranes with nanoporous conduits show promise for ionic separations and desalination appli-
cations, but the mechanisms underlying the nonlinear ionic transport observed in these systems are not well
understood. Here, we demonstrate how induced charge at membrane interfaces can lead to nonlinear ionic
transport and voltage-dependent conductance through such channels. The application of an electric field on a
polarizable membrane leads to induced charges at the membrane interfaces. The induced charges in turn are
screened by diffuse charges in the electrolyte, which are acted upon by the electric field. For extremely thin
membranes, the induced charge effect can be significant even for moderate applied voltages commonly used in
experiments. We apply a continuum Poisson-Nernst-Planck model to characterize the current-voltage behavior
of ultrathin membranes over a wide parameter space. The predictions of the model are compared to recent
experiments on graphene and MoS2 membranes in an electric field. We expect the role of induced charge to be
especially pronounced in the limit of atomically thin membranes.
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I. INTRODUCTION

Recent advances in synthesis and fabrication techniques
enable the creation of well-defined nanopores in two-
dimensional (2D) materials such as graphene and MoS2,
which allows for the control of mass transport on the molec-
ular level [1]. These nanoporous atomically thin membranes
show molecular selectivity between gas species, salt ions,
and dye molecules while allowing for high fluxes due to
their extreme thinness, which, together with their demon-
strated high mechanical strength and chemical robustness,
makes them promising for a wide range of applications [2–6].
These include CO2 capture, natural gas purification, sol-
vent/petrochemical separations, desalination, dialysis, DNA
sequencing, and energy harvesting [7–12].

Despite such development, the fundamental transport
mechanisms across the nanopores have not been fully un-
derstood. The last decade has seen an increase in studies
attempting to understand the transport of molecules and ions
through these nanopores using both experimental and sim-
ulation techniques. One of the most commonly performed
experiments to understand ion transport involves measuring
the current (I) of ions under an applied electric potential (V ),
and determining the conductance (G) of the nanopore using
these I-V curves using the relationship I = GV . Molecular
dynamics and continuum Poisson-Nernst-Planck (PNP) sim-
ulations have been used to explain the experimental results
[12–16]. Most of these studies focus on the linear portion of
the I-V curve, where the conductance is constant, even though
many experimental I-V curves across different systems (over
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a wide range of pore sizes and different materials) have signif-
icant nonlinear characteristics. The nonlinearity is often only
briefly discussed, and is attributed to the surface charge on
the nanopore or the breakdown of the ion’s hydration shell at
high voltages that is difficult to test [13,14]. These previous
discussions have overlooked an effect quite common in the
electrokinetics literature—the induced charge (IC) effect—
that could help explain the nonlinearity and provide a scaling
model for the I-V relationship.

Induced charge effects have been widely studied as an elec-
trokinetic phenomenon especially in microfluidic systems,
where miniaturization is associated with favorable scal-
ing [17,18]. These include induced-charge electro-osmosis
(ICEO), where flow is created by an applied electric field act-
ing on free charge induced by the field itself on double layers
on the surface of polarizable objects [19–21], and induced-
charge electrophoresis, where a polarizable object moves
by an electric field acting upon the induced double layers
[22–24]. These have various applications in microfluidic mix-
ing and pumping, electrical actuation and sensing, and con-
trolling electrolysis and electrodeposition [25–27]. The IC ef-
fect also influences the transport characteristics of membranes
with micro- and nanoscale pores. Notably, electric fields near
the corners of polarizable membranes and conduits lead to
ICEO vortices that affect corner deposition of colloids and
microfluidic mixing [28–30]. Mao et al. noted the IC effect in
their continuum simulations of nanochannels in a thin silica
membrane, but focused primarily on the fluid flow field rather
than the I-V characteristics [31]. Further, the role of induced
charges has been investigated in terms of membrane stability
[32,33] and for conduction through conical nanopores [34].
Based on these previous studies, the IC effect appears espe-
cially relevant for membranes in the atomically thin limit.
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For polarizable membranes, which includes graphene and
MoS2, an externally imposed electric potential difference
would induce charge displacement in the membrane as it
polarizes in response to the electric field. Oppositely charged
counterions accumulate in the solution adjacent to the mem-
brane surfaces, leading to higher ionic charge densities and
thus higher conductivities around the membrane pore, irre-
spective of the fluid flow. The nonlinearity of the I-V curves
could then stem from the voltage-enhanced conductance due
to the IC effect.

Ultrathin membranes, especially atomically thin ones such
as graphene and MoS2, exhibit high capacitance because ca-
pacitance scales inversely with membrane thickness, which in
turn is expected to lead to more pronounced induced charge
effect compared to thicker membranes. Although their mea-
sured and calculated permittivities could vary across studies,
typical values are in the range of εm ∼ 3ε0 for MoS2 and
∼6ε0 for graphene, and would also depend on the pore/defect
density and chemical doping [35–38]. This leads to per area
capacitance on the order of Cm ∼ 100−101 μF/cm2.

Researchers have shown that surface charges affect 2D
membrane transport properties and can impart selectivity be-
tween different ions or molecules [13,15,39–41]. Instead of
grafting charged chemical moieties at the pores, one can
also modulate surface charge by connecting an electrode to
a conductive or semiconductive membrane, and control the
charge by changing the applied voltage [42]. However, with
IC, even without direct electrode connection to the membrane,
a potential gradient and surface charge can be induced across
the membrane via an external electric field, as in many of the
experimental setups studying I-V relationships. The ability
to modulate charges without the need for direct electrode
conduction or creating charged functional groups at the pores
would enable more functionalities and flexibility in device
design. Furthermore, it might allow for biomimetic voltage-
dependent ion conductance and selectivity reminiscent of
selective biological ion channels [43].

Here we construct a continuum model to describe the in-
duced charge effect in ultrathin nanoporous membranes. We
also offer a simple scaling model for quick predictions. We
compare the model predictions to previously published exper-
imental results, and discuss extensions of the model.

II. METHODS

To investigate the induced charge phenomenon, we
consider a steady current through a nanopore in a thin film
(membrane) driven by a voltage difference. Standard PNP
equations were used in the electrolyte solution domains. We
also consider the Poisson equation within the membrane itself,
which is often neglected in PNP simulations that only set a
fixed surface charge boundary condition. Here we neglect
fixed surface charge to focus exclusively on the induced
charge effect. Table I summarizes the key simulation parame-
ters implemented for a 1:1 electrolyte solution. This validation
data set allows for characterization of the induced charge
effect as a function of ionic concentration, pore radius, mem-
brane thickness, membrane permittivity, and applied voltage.
Additional parameters are also tested in direct comparison to
experimental results depending on the identity of the elec-
trolyte ionic solution, the membrane, and the pore domain.

TABLE I. Simulation validation set parameters. Bolded values
are used as the “base case” for Fig. 2.

Type Symbol Value(s) Units Description

Ion c0 1, 10, 100a mM Bulk concentration
D 2×10−9 m2 s−1 Diffusivity
z ±1 Valence

Membrane R 0.2, 0.5, 1 nm Pore radius
L 0.5, 0.65, 1 nm Thickness
εm/ε0 3, 6, 20 Permittivity

Simulation V 0.01 −1 V Applied voltage
εw/ε0 80 Solution permittivity
T 298 K Temperature
W 240 nm Reservoir width (radius)
H 240 nm Reservoir height

aThe Debye lengths corresponding to c0 = 1, 10, 100 mM for z = 1
are λD = 9.7, 3, 0.97 nm, respectively.

The simulations are composed of an electrolyte domain �w

and a membrane domain �m, as shown in Fig. 1. A cylindrical
pore of radius R connects the two electrolyte reservoirs of
equal ionic concentration through a membrane of thickness L.
In the electrolyte domain, the steady state ion concentration
profiles are solved assuming Nernst-Planck fluxes, ji,

∇ · ji = 0, ji = −Di∇ci − DiziFci

RgT
∇φ. (1)

Here, ci is the concentration, zi is the valency, and Di is the
diffusivity of species i. φ is the electrostatic potential, F is
Faraday’s constant, Rg is the ideal gas constant, and T is
the temperature. In the electrolyte domain, the electrostatic
potential satisfies Poisson’s equation with charge density ρe:

−εw∇2φ = ρe (2)

assuming a constant bulk permittivity of water εw = 80ε0. In
the membrane domain, we assume that the ion concentration
is zero and that the membrane acts as an ideal dielectric,
in which Laplace’s equation is satisfied for the electrostatic
potential:

∇2φ = 0. (3)

FIG. 1. Simulation setup for the nanopore system using an ax-
isymmetric geometry.
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At the membrane boundaries, in the absence of fixed surface
charges, the electric field satisfies

n · εw∇φ|w = n · εm∇φ|m. (4)

where εm is the membrane permittivity. This boundary
condition allows the normal electric field to enter the mem-
brane domain. Many models neglect the electric field in the
membrane domain, but we show that, for sufficiently thin
membranes, the normal electric field induces charge at the
membrane interfaces even at moderate applied voltages. The
action of the applied voltage on the diffuse double layers
screening the induced membrane charge leads to nonlinear
current-voltage characteristics.

We implement the system of equations in the finite-element
solver COMSOL MULTIPHYSICS using the General Form PDE
interface. The cylindrical pore is centered about r = 0 in
the axisymmetric simulation domain, and the pore openings
corresponding to the membrane thickness are set at z = 0 and
z = L. On either side of the membrane, there are reservoirs of
height H , and the simulation domain is enclosed by a cylin-
drical boundary. At r = W , the reservoir radius, a zero flux
boundary condition is imposed for ionic concentrations and
normal electric field. At the top and bottom of the electrolyte
domain, at z = L + H and z = −H , Dirichlet boundary con-
ditions are imposed specifying the ionic concentration and
potential at the boundary. The values of W and H were chosen
to be sufficiently large so as to not affect the ionic concen-
tration and potential profiles near the pore, even at low ionic
concentrations. We restrict our analysis to the case where the
two sides of the membrane are held at the same concentration,
as commonly applied in experimental measurements.

While the continuum approach proposed here may have
significant errors at the molecular scale, such models are
routinely applied to describe ionic conduction and selectivity
in the nanoscale regime. Certainly, additional contributions to
the ionic chemical potential from ionic finite size, specific
ionic chemical character, and electrostatic correlations may
impact the microscopic physics of induced charge formation
at the pore entrance [44]. Ionic paring and ionic reactions
could also affect the ionic profiles and transport character-
istics. The image charge effects of ions near the membrane
interfaces, dielectric saturation of solvent molecules, and
dielectric decrement in response to ionic concentration vari-
ations are not included in the model. Furthermore, we neglect
the coupled Stefan-Maxwell diffusion of ions and the coupling
between ion transport and fluid flow, since we are principally
concerned with ionic conduction. Even so, the continuum
approach allows us to define a baseline prediction that can
be compared to experimental results to quantify the extent of
induced charge on the conductance of pores in atomically thin
membranes.

III. RESULTS AND DISCUSSION

Our results of the simulation are presented as follows. First,
we discuss the general characteristics of the simulation results
including the I-V curves predicted by the model, as well as
the ionic concentration and potential distributions in the pres-
ence of induced membrane charge. Next, we apply the model

to understand the expected extent of induced charge effects
in experimental observations of activated nonlinear currents
through atomically thin membranes. Finally, we derive ap-
proximate formulas that can capture the trends in the induced
charge effect as a function of the simulation parameters from
(1) simple scaling arguments and (2) a more detailed analyti-
cal transport model.

A. Simulation features

The simulation reproduced the nonlinear, activated I-V
characteristics observed in many experimental studies at
higher voltages, a subset of which is shown in Fig. 2. All of
them deviate from the typical linear current-voltage behavior:
I = GV with constant G = G0, suggesting the presence of
additional voltage effects which could be explained by the IC
phenomenon on the membrane. Larger pores lead to higher
currents by decreasing both access resistance (i.e., that faced
by the ions as they converge from bulk into the nanopore
restriction) and channel resistance (i.e., across the pore itself)
[45], whereas thinner membrane and higher membrane per-
mittivity are associated with higher membrane capacitance
that leads to higher induced charge effects and thus larger
currents. The IC effect is stronger at lower concentrations
(larger Debye lengths), as indicated by the higher relative
current scaled by the bulk ion concentration. The induced
charge has a more drastic effect on the local ionic conductivity
relative to the bulk conductivity at lower concentrations.

The cross sections of the pore in Fig. 3 illustrate the ele-
vated ionic density at the membrane interfaces and in the pore
domain as a function of applied voltage for a set of sample
parameters. At low applied voltage, the ionic concentrations
are more or less constant. However, at high applied voltages,
the ions accumulate more intensely due to the IC effect,
with positive (negative) ions concentrated on the top (bottom)
side of the membrane where the relative potential is greater
(lower) to screen the induced surface charge on the membrane,
leading to higher solution conductivity around the pore. The
concentration profile of each ion is perturbed drastically by
the presence of the pore, where the screening charges on each
interface are swept through the pore and enriched at the pore
exit on the opposite side of the membrane. As the double layer
thickness is comparable to the pore size for the parameters
tested, the ionic enrichment within the pore spans the pore
diameter for thin membranes with small pores.

Figure 4 displays how the potential decays for low and
high applied voltages. Normalized to the applied voltage, the
potential decays more slowly for the pore with more induced
charge at higher applied voltage. In both systems, the potential
decays as 1/r far from the pore, as plotted in Fig. 4(c). Evi-
dently, the pore with induced charge exhibits a larger effective
electrical pore size, as signaled by the expanded contours in
the electrostatic potential far from the pore. At high applied
voltage, the double layers on each interface provide a low
resistance pathway to deliver additional current to the pore
mouth, and higher ionic concentration within the pore itself
translates to lower resistance within the pore. These effects
combined create a voltage-dependent conductance through
the pore domain, and thus nonlinear current-voltage relation-
ships.
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FIG. 2. Current-voltage (I-V ) curves for a subset of simulations for various pore radii (left), membrane thicknesses (center), and membrane
permittivities (right), holding other values at their base case (Table I). The simulation data points were connected with straight lines to guide
the eye. The top and bottom rows correspond to a bulk salt concentration of 1 and 100 mM, respectively.

B. Comparison with experimental observations

We also demonstrate that the induced charge phenomenon
could be used to explain the nonlinear I-V curve behaviors ob-
served in experiments. Figures 5 and 6 compare the simulation
results to experimental electrical measurements in nanopores
in the chemical vapor deposition graphene of Jain et al. with
inherent defects and the focused (gallium) ion beam irradiated
MoS2 of Thiruraman et al. [13,14]. In order to make the
comparison, the radius of the pore, R, is fitted to reproduce the
conductance at low voltages near zero applied voltage (where
induced charge is not present). Then, all parameters are kept
constant as the voltage is varied. The diffusivities of each ion
everywhere in the electrolyte domain is assumed to be equal to
the diffusivity in the bulk [13]. For lower salt concentrations
(≈100 mM), a graphene permittivity of 7, which is on the
order of literature reported value, is able to reproduce the non-
linear observations that yield close predictions of the current
for monovalent (LiCl and KCl) and divalent salts (MgCl2,
CaCl2, and BaCl2), as shown in Fig. 5.

However, at higher concentrations (≈1 M), the induced
charge effect cannot account for the full extent of nonlinearity
in the I-V relationships using the same fixed values of the
membrane permittivity for graphene and MoS2, as shown in
Fig. 6. It is possible that the electronic properties of the mem-
brane, especially in the presence of large ionic concentrations
near the pore, might lead to an effective membrane permit-
tivity or capacitance that is higher than the expected value.

For the nonlinearity at high ionic concentration to be entirely
attributable to the IC effect, the effective permittivity of the
membrane would need to be higher than the fixed parameters
we have chosen. To quantify the required permittivity, we also
varied the membrane permittivity to qualitatively match the
shape of the nonlinearities for the conductance measured at
high concentration. For the graphene pore, a relative permit-
tivity of ∼40 is needed, while for MoS2, a relative permittivity
of ∼20 is needed. These curves are included in Fig. 6 to indi-
cate the extent of rectification for larger effective membrane
permittivities. The effective permittivity values may inflate
the membrane capacitance unrealistically, since they are much
larger than the literature values for graphene and MoS2. Evi-
dently, even the large value of permittivity of graphene cannot
capture the full rectification at negative voltages observed for
the experimental sample. In such situations, it is evident that
other mechanisms such as ionic dehydration may play a role
alongside the induced charge effect.

Another note must be made that the induced charge effect
as presented in our model can only capture the “activated”
curves, where the conductance magnitude only increases with
increasing applied voltage magnitude. More complex nonlin-
earities like rectification and deactivation either require some
(i) breaking of symmetry in the membrane domain or (ii) high
voltage inhibitive effect like the crowding of ions [44]. We
restrict our analysis and comparisons only to the activation of
the ionic currents at high voltage due to the known limitations
of our model.
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FIG. 3. Total ion density around the pore at (a) low (�V = 0.01 V) and (b) high (�V = 0.5 V) applied voltage for c0 = 100 mM, R = 1.0
nm, L = 0.5 nm, εm = 6ε0. (c) Cation and (d) anion concentration profiles corresponding to (b) at �V = 0.5 V. The ionic densities are
normalized by the bulk salt concentration in the reservoir.

FIG. 4. Electrostatic potential around the pore at (a) low (�V = 0.01 V) and (b) high (�V = 0.5 V) applied voltage for c0 = 100 mM,
R = 1 nm, L = 0.5 nm, εm = 6ε0. Equally spaced contours of the potential are shown in white. The outer contours corresponding to 80% of
the �V are labeled as ±0.004 V and ±0.2 V . (c) The potential from the center of the pore entrance along the negative z axis of the simulation
domain for both low and high applied voltages, where z0 = 0 is the opening of the pore mouth. The potential is rescaled such that its value is
zero at z → −∞, and then the value of the potential is rescaled by its value at the pore entrance at r = 0 and z = 0. The potential decay is
plotted on a log-log scale (main) and linear-linear scale (inset).
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FIG. 5. Comparison of experimental (blue) and simulated (red) I-V data for nanoporous graphene for 100 mM LiCl, 100 mM KCl, 50 mM
MgCl2, 50 mM CaCl2, and 50 mM BaCl2 taking graphene’s εm = 7; with pore radii and membrane thickness in the range of 0.25–1 nm as
reported by the authors.

C. Approximations

A critical output of our study is to propose simplified
formulas that characterize the induced charge phenomenon
based on the membrane, pore, and electrolyte parameters.
Mathematically, generating simple formulas is not a straight-

FIG. 6. Comparison of experimental (blue) and simulated
(red/green) I-V data at high concentration (1000 mM KCl) for
graphene [13] and MoS2 [14]. We vary the value of εm in each system
to show how larger values of the effective membrane permittiivty can
qualitatively describe the nonlinear profile.

forward task, since the induced charge profiles are impacted
by nonequilibrium transport effects near the pore. The concen-
tration profiles themselves have a complicated effect on not
only the access resistance to the pore from the bulk solution,
but also the resistance within the pore. We first present a
simple scaling formula that captures the main trends, then
we present a more detailed transport model that analytically
captures the induced charge effect but involves the solution of
implicit mathematical formulas.

1. Scaling estimates

A simple scaling model can be used to obtain an initial
estimate of the magnitude of the induced charge effect. The
scaling model first estimates the charge density due to IC
at the membrane surface assuming quasiequilibrium double
layers, and subsequently use the heightened ion concentration
to modify the solution conductivity.

The standard formulation for conductance across a pore
considers both the entrance (access) effect and conduction
within the pore. For a pore where its length is on the order
of or smaller than its radius, the access resistance to the pore
becomes significant. A resistance-in-series model can be used
to describe the overall conductance of the pore, G, where the
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electrical resistance is split into the access resistances on both
sides of the pore and a channel resistance [14,45,46]. This
approximation is widely employed in the literature and has
adequately captured nanopore transport at low voltages:

GA = 4κAR, (5)

GP = κPπR2

L
, (6)

G = (
2G−1

A + G−1
P

)−1 = κA
2R

1 + 2L
πR

κA
κP

, (7)

where κ is the electrical conductivity of the solution, with
subscripts A and P referring to the access and channel, respec-
tively. Equation (7) suggests that conductance and thus current
should increase with larger pores and thinner membranes. For
electrolytes,the local electrical conductivity depends on the
local ion concentration and is given by

κ (ci ) = F 2

RgT

∑
i

z2
i Dici, (8)

where F is Faraday’s constant, Rg is the ideal gas constant, T
is the temperature, and zi, Di, and ci are the valence, diffusiv-
ity, and concentration of ion i, respectively.

The conductance without IC effect, i.e., the bulk con-
ductance G0, can then be estimated using Eqs. (7) and (8)
assuming κA = κP = κ (ci0) = κB, where ci0 is the bulk con-
centration of each ion i:

G0 = κB
2R

1 + 2L
πR

. (9)

G0 is independent of V , leading to a linear I-V relationship
I = G0V .

For higher applied voltages across a polarizable membrane
or even a weakly polarizable membrane, the magnitude of
the excess charge induced in the solution adjacent to the
membrane becomes more significant. A first approximation
of this induced excess charge per unit area, σapprox, can be
obtained using a standard capacitor-in-series (parallel plate)
model that assumes low voltage drops in the Debye layer,
where the overall capacitance per unit area is approximated
by Ctot = (2C−1

w + C−1
m )−1:

σapprox = CtotV ≈ εm

L
(1 + 2α)−1V, (10)

where α is a ratio of the membrane capacitance to the Debye
capacitance:

α = λD

L

εm

εw

. (11)

As such, α importantly describes the effective polarizability
of the membrane and the relative voltage drop across the
membrane and the electrolyte domains. Here, λD is the Debye
length:

λD =
√

εwRgT

2c0F 2
, (12)

given for a 1:1 salt solution. The induced excess charge per
unit area is then divided by a length scale �layer over which

the excess ions reside and Faraday’s constant to yield a per
volume excess ion density expression:

cIC,approx = σapprox

F�layer
. (13)

Putting the expressions together, we have the adjusted con-
ductivity (assuming 1:1 salt with equal diffusivity D) due to
induced charge as

κIC,approx ≈ 2F 2

RgT
D(c0 + cIC,approx) (14)

which would affect both the access and pore conductance. For
high V , we expect cIC,approx � c0, such that

I ∼ GICV ∼ σapprox

�layer
V ∼ V 2

�layer
(15)

yielding a parabolic I ∼ V 2 relationship if �layer is indepen-
dent of V .

For the thin and small pore channel in the system, �layer

would likely be a function of the pore geometry and the
thickness of the diffuse layer from a charged surface, i.e., the
Gouy-Chapman length:

�GC = 2εwRgT

Fσapprox
. (16)

�GC is defined as the distance where the interaction between an
ion and the membrane surface charge σ becomes on the order
of the thermal energy. Note that this approximation is valid
only for low salt concentrations or highly charged surfaces
[47].

If we approximate �layer ≈ �GC, we have I ∼ V 3. In this
limit, the excess concentration due to induced charge can be
approximated as

cIC,approx

c0
∼ α2

(1 + 2α)2

V 2

Vth
2 , (17)

where Vth = RgT/F = 0.026 V is the thermal voltage. Note
that this scaling model, though capturing the induced charge
effect, is just a crude approximation without details of the con-
centration and potential profiles that depend on the problem
geometry and the exact interactions between the ions and the
pore in the presence of the electric field.

Figure 7(a) plots the full set of simulated currents (as
specified in Table I) divided by G0 against voltage. At low
applied voltage (<0.05 V), the simulated results fall on the
1:1 line, where the linear Ohm’s law holds. However, as the
applied voltage becomes greater than the thermal voltage,
Vth, the I-V curve deviates from linearity and the induced
charge effect becomes stronger. This is because the ion density
becomes significantly higher near the membrane in order to
neutralize the induced charge on the membrane (Fig. 3). The
governing parameter α, which is the membrane to Debye
capacitance ratio, is the dominant factor that determines the
strength of the IC effect, with higher α corresponding to
higher predicted conductance. Thus, Fig. 7(a) suggests that
the induced charge phenomenon over a thin, polarizable mem-
brane can be roughly split into four regimes (Fig. 8), governed
by two parameters, V/Vth and α, which themselves impact the
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FIG. 7. (a) Simulated current scaled by bulk conductance
[Eq. (9)] at various applied voltages, colored by the ratio of mem-
brane to Debye capacitance, α. The bottom dotted line represents
x : y = 1 : 1 where the linear I-V relationship using the bulk con-
ductance holds, I/G0 = V , i.e., no IC effect. The top dotted line
has a slope of 2 and is used to guide the eye. Note that the thermal
voltage is 0.026 V at 298 K. (b) Predicted current from scaling model
scaled by bulk conductance, taking �layer = �GC. (c) Ratio between
simulated and predicted currents in logarithmic scale.

induced excess conductivity relative to the bulk conductivity.
Figure 7(b) plots the predictions by the scaling model and (c)
the deviations between simulation and scaling in logarithmic
scale, with an approximation for the distance to which ions
responding to the induced charge extend out as �layer = �GC.
The scaling model captures the IC behavior with a relatively
similar spread of α values within an order of magnitude, with
a bias towards overestimation. The overestimation could stem
from using the externally applied voltage V to approximate
the potential difference across the membrane that drives the
current, which would in actuality be lower and its determi-
nation would require knowledge of the potential profile. In
addition, because the scaling does not involve solving Pois-
son’s equation, it fails to capture the exponential onset of the
IC effect around Vth.

FIG. 8. Regimes for induced charge effects for thin, polarizable
membranes.

2. Reduced model

To complement the results of the simulations and the
simple scaling argument, we propose a reduced model to
analytically capture the induced charge conduction effect.
In order to retain analytical tractability, the model does not
describe the full extent of nonequilibrium ion concentration
profiles. Even so, it provides a clear guide for the trends in the
full 2D simulation data as a function of the physical properties
of the electrolyte, membrane, and pore domains. Our strategy
relies on (i) assuming quasiequilibrium double layers to derive
implicit formulas for the effective ionic concentrations at the
membrane surface and the extent of surface conduction, (ii)
using the surface conductivity to estimate an effective radius
of the pore and thus the access conductance, and (iii) assuming
overlapping double layers within the pore to estimate the
channel conductance.

In order to introduce the surface conduction via in-
duced charge into the simplified model, we will first assume
quasiequilibrium double layers at the membrane interfaces.
Such an approach effectively defines the equilibrium double
layer structure in the absence of the nanopore, and then con-
siders the nanopore as a perturbation upon the equilibrium
conformation to determine the nanopore conductance in the
presence of induced charge. While the ionic concentration
profiles in and around the pore can vary significantly from
the equilibrium conformation, we expect the model to qual-
itatively reproduce the current voltage characteristics of the
induced charge phenomenon. The analysis is restricted to
a 1:1 salt with equal ionic diffusivities D+ = D− = D. We
separate the contributions of induced charge first to the access
resistance and then to the pore resistance.

As an initial step for the induced charge effect on access
resistance, we decompose the potential into an equilibrium
part, ψ (z), one that forms the double layers at the membrane
interfaces, and a nonequilibrium part, φv (x, y, z), that drives
ionic currents.

φ(x, y, z) = ψ (z) + φv (x, y, z). (18)

The equilibrium part of the potential, ψ (z), is strictly defined
at the reservoir-facing membrane interfaces, and disturbances
by the presence of the pore are neglected. The equilibrium part
of the potential satisfies

−εw

d2ψ

dz2
= ρe, (19)

as the derivatives in φv are assumed to be much slower varying
than ψ . The accompanying boundary condition of jiz = 0 at
the membrane interface ensures that

ci = ci0 exp

(
− ziψ

Vth

)
, (20)

thus providing a Poisson-Boltzmann equation for the ionic
concentrations, with boundary condition of

εw

dψ

dz

∣∣∣∣
w

= εm
dψ

dz

∣∣∣∣
m

,

ψ (z → −∞) = −V/2, ψ (z → ∞) = V/2, (21)

where V is the voltage drop across the membrane. The
equilibrium conformation of the double layer next to a
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thin membrane as a function of voltage has been stud-
ied previously [48]. In the absence of surface charges, the
Poisson-Boltzmann equation can be integrated to relate the
potential drop across the membrane to the potential at the
membrane interfaces at z = 0 and z = L. We define the quan-
tity ψ0 as ψ0 = ψ (z = 0) + V/2 = V/2 − ψ (z = L), to give
the following formula:

α2 (V − 2ψ0)2

V 2
th

= 4 sinh2

(
ψ0

2Vth

)
, (22)

where α, again, is the ratio of the membrane capacitance to the
Debye capacitance. The above expression gives an implicit
expression for the potential at the membrane interfaces far
from the pore mouth, ψ0, relative to the reservoir potentials on
each side. It is the magnitude of ψ0 that determines the extent
of the induced charge at the membrane interfaces. We can
apply the estimate for ψ0 to describe the ionic concentrations
in and around the pore that give the higher concentration
profile there. For example, the local conductivity at the mem-
brane interfaces, κ , can be estimated by applying Eq. (20)
and assuming equal ionic diffusion coefficients to give κ =
κB(c+ + c−)/(2c0) = κB cosh(ψ0/Vth), which means that the
local conductivity increases near the membrane interfaces. In
solving the nonlinear equation (22), we choose the root where
0 � |ψ0| � |V |/2 and where ψ0 has the same sign as V . At
small applied potentials, the implicit formula can be expanded
to give

ψ0 = α

(1 + 2α)
V, (23)

consistent with the simple scaling argument in Eq. (10) for the
induced charge. We now apply the implicit formula in Eq. (22)
in the nonlinear regime to characterize transport. First, we use
ψ0 to estimate the surface conduction and effective radius to
access the pore mouth to arrive at GA. Then, we apply the
definition of ψ0 to describe the conductivity within the pore
to estimate the channel conductance, GP.

In the absence of bulk concentration gradients, the current
density reduces to

J =
∑

i

ziFJi = −κ (ci )∇φv, (24)

where the conductivity depends on the local ionic concentra-
tion, ci. Here, the ionic concentration is set by the equilibrium
component of the electrostatic potential, ψ , but the current
is driven by gradients in the nonequilibrium component, φv .
Far from the membrane, the ion concentrations equal their
bulk values, and the current density and charge conservation
become

J∞ = −κB∇φv, ∇2φv = 0, (25)

where κB is the bulk conductivity of the solution. Near the
interfaces, the local conductivity is higher owing to the accu-
mulation of ionic charges. Along the membrane surfaces, the
excess current through the double layers can be derived by
integrating over the double layer region into the bulk [49]:

Js =
∫ ∞

0
J − J∞dz = −4λDκB sinh2

(
ψ0

4Vth

)
∇sφv, (26)

where ∇s is the surface gradient. The surface current, Js, has
units of current per length, and allows us to neglect the precise
details of the electrostatic potential profile within the double
layers and to collapse all the current attributable to the double
layers to the membrane surface. In terms of the Dukhin length,
�Du = 4λD sinh2(ψ0/4Vth ), defined as the surface conductance
divided by the bulk conductance, we can rewrite the expres-
sion for the surface current as

Js = −�DuκB∇sφv. (27)

Owing to the higher conductivity in the double layers, the
surface conductance can “short circuit” a region of radius Reff

towards the pore mouth, such that the system with induced
charge acts as a pore of effective radius Reff instead of R. The
region on the membrane surface within a radius Reff can be
thought of as an expanded pore opening without the IC effect
that would have the same access conductance as the actual
pore opening in the presence of the IC effect. If the variable
φv in the circular region enclosed by the effective radius Reff

is approximately constant, then the far field profile for φv that
satisfies ∇2φv = 0 is given by

φv ≈ 2�V Reff

πr
, (28)

where �V is the potential drop between the pore mouth and
the bulk that drives ionic currents, and r is the spherical radial
coordinate centered at the pore opening [50].

The resulting access conductance is the bulk conduction
towards a pore of radius Reff , consistent with Eq. (25):

GA = 4κBReff . (29)

The approximate scale of Reff is set by the balance be-
tween the surface conductance in an annular region around
the pore and the access resistance from the bulk. The conduc-
tance through an annular region on the surface between r = R
and r = Reff is determined by solving charge conservation in
cylindrical coordinates along the surface using Eq. (27):

−κB�Du
1

r

d

dr

(
r

dφv

dr

)
= 0 (30)

with the resulting conductance of the annular region, Gannulus,
given by

Gannulus = 2π�DuκB

ln(Reff/R)
. (31)

Here, to estimate Reff , we assume the conductance to access
the pore mouth must be comparable to conductance in the an-
nular region, in order for the pore mouth (r < R) and annular
region (R < r < Reff ) to roughly have an equal value of φv .
The mathematical approximation is therefore

Gannulus ≈ GP → 2π�DuκB

ln(Reff/R)
≈ 4κBReff . (32)

The above expression allows for the approximation of Reff in
terms of the product logarithmic function, W (·):

Reff = R exp

[
W

(
π�Du

2R

)]
. (33)

The estimated value of Reff above can be considered as an
upper bound because the true induced charge near the pore
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FIG. 9. (a) Simulated current scaled by bulk conductance
[Eq. (9)]. The bottom dotted line represents x:y = 1:1 where the
linear I-V relationship using the bulk conductance holds, I/G0 = V ,
i.e., no IC effect. The top dotted line has a slope of 2 and is used
to guide the eye—the IC effect approaches near parabolic I-V rela-
tionship at high voltages. (b) Predicted current from reduced model
theory scaled by bulk conductance, derived by substituting Eqs. (29)
and (35) into Eq. (7). (c) Ratio between simulated and predicted
currents.

is less than the induced charge far from the pore owing to
deformation of the double layer structure by the ionic currents.
At low applied voltage, the effective radius relative to the
actual radius is

Reff

R
≈ 1 + π

8

(
λD

R

)
α2

(1 + 2α)2

V 2

Vth
2 , (34)

consistent with the scaling in Eq. (17), but including an ad-
ditional dependence on the ratio of the Debye length and the
pore radius.

Inside the pore, in the limit of strongly overlapping double
layers of our analysis, the concentration should be uniform.
Here, the expressions for surface conduction for nonoverlap-
ping double layers in Eqs. (26) and (27) cannot be employed.
Instead, we assume a conductivity within the pore set by the
induced surface potential on each membrane interface, κP =
κB cosh(ψ0/Vth ), by summing over all the ionic species con-
tribution to the conductivity. This assumption gives a channel
conductance of

GP = πR2κB

L
cosh

(
ψ0

Vth

)
. (35)

At low applied voltage, the conductivity within the pore scales
as

κP

κB
= 1 + α2

2(1 + 2α)2

V 2

Vth
2 , (36)

again consistent with the simple scaling argument in Eq. (17).
While large errors are expected within the pore domain, the
above expression gives an estimate for the conductance in-
crease as the screening charges are swept into the pore domain
from the membrane surfaces.

The overall conductance is again a result of the access and
pore resistances in series, plugging in Eqs. (29) and (35) into
Eq. (7). The results of these approximations are plotted in
Fig. 9. In general, the reduced model overpredicts the current

through the pore at a given voltage, similar to the simpler
scaling arguments in the previous section. The overprediction
is due to the variation of the actual surface potential or Dukhin
length near the pore mouth and complicated entrance effects.
Even so, the reduced model captures the key qualitative fea-
tures of the fully numerical simulations with much simpler
analytical formulas and more information about the pore and
membrane domains.

IV. CONCLUSION

In this paper, we have demonstrated that IC phenomena
could explain the nonlinear I-V curves observed in numerous
experiments of ion transport across subnano- and nanopores
across atomically thin membranes such as graphene and
MoS2. Approximate formulas based on simple scaling ar-
guments and an analytical transport model were developed
to predict current-voltage relationships, which qualitatively
match with numerical simulations. Based on our theoretical
analysis, the key parameters in determining the extent of IC
effects are the membrane capacitance and the ionic concen-
tration. Higher membrane capacitance (from thinner or more
polarizable membranes) translates to more induced charge at
the membrane interfaces. At lower ionic concentration, the
induced charge effect dominates over the bulk conductivity
near the pore mouth. As the applied voltage across an ul-
trathin membrane increases, more charge is induced at the
membrane interfaces leading to strong nonlinearities at high
voltage.

Future work could consider the presence of additional
effects within the continuum model, such as fixed surface
charge, reservoirs at asymmetric ionic concentrations, ion
crowding, dehydration, and asymmetric membrane structures,
at high voltage and salt concentrations. Critically, the capaci-
tance in Stern layers and saturation of ionic concentrations in
the crowded regime could influence the effective membrane
capacitance and thus the current voltage relation. More so-
phisticated molecular dynamics simulations could incorporate
the charge induced by individual ions [51,52] and the role
of dehydration and ion correlations by explicitly represent-
ing the discrete solvent molecules and ions. Furthermore, the
detailed electronic properties of the membrane could also be
important in determining the capacitance of the membrane
and thus the magnitude of induced charge. While we have
treated the membrane as an ideal dielectric, the quantum ca-
pacitance of graphene is significant [53,54]. Doping of the
membrane domain by specific molecules might change the
effective capacitance and the current-voltage characteristics
[55]. As more specific details are added to the induced charge
models, more complex current-voltage relationships might be
related to the induced charge phenomenon.
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