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Capillary condensation and depinning transitions in open slits
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We study the low-temperature phase equilibria of a fluid confined in an open capillary slit formed by two
parallel walls separated by a distance L which are in contact with a reservoir of gas. The top wall of the capillary
is of finite length H while the bottom wall is considered of macroscopic extent. This system shows rich phase
equilibria arising from the competition between two different types of capillary condensation, corner filling,
and meniscus depinning transitions depending on the value of the aspect ratio a = L/H and divides into three
regimes: For long capillaries, with a < 2/π , the condensation is of type I involving menisci which are pinned
at the top edges at the ends of the capillary. For intermediate capillaries, with 2/π < a < 1, depending on
the value of the contact angle the condensation may be of type I or of type II, in which the menisci overspill
into the reservoir and there is no pinning. For short capillaries, with a > 1, condensation is always of type
II. In all regimes, capillary condensation is completely suppressed for sufficiently large contact angles which
is determined explicitly. For long and intermediate capillaries, we show that there is an additional continuous
phase transition in the condensed liquid-like phase, associated with the depinning of each meniscus as they round
the upper open edges of the slit. Meniscus depinning is third-order for complete wetting and second-order for
partial wetting. Detailed scaling theories are developed for these transitions and phase boundaries which connect
with the theories of wedge (corner) filling and wetting encompassing interfacial fluctuation effects and the direct
influence of intermolecular forces. We test several of our predictions using a fully microscopic density functional
theory which allows us to study the two types of capillary condensation and its suppression at the molecular level
for different aspect ratios and contact angles.
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I. INTRODUCTION

The statistical mechanics of inhomogeneous fluids, includ-
ing the molecular theory of the interfacial region and the
surface tension, the formalization and application of classi-
cal density functional theory (DFT), and the study of novel
surface phase transitions and critical phenomena has received
enormous interest in the last few decades [1–8]. Quite gen-
erally, fluids are inhomogeneous whenever they are subject
to an external potential, such as a phase separating gravita-
tional field, or due to the interaction with a confining solid
substrate which is often modeled conveniently as an inert
spectator phase, i.e., a wall or walls. Phenomena such as
wetting, including wetting transitions [9–12], capillary con-
densation [13–17], wedge filling [18–26], and the thermal
Casimir effect [27–33], arise directly due to this confinement
and interactions with such walls. Studies of these phenomena
are closely related to, and indeed partly grew out of, earlier
work on finite-size effects at first- and second-order phase
transitions, where for all but the imposition of periodic bound-
ary conditions, surface effects are always present [34,35]. As
well as being essential to the analysis of computer simulations
of confined fluids, and Ising-like magnets, these studies have

revealed some very intriguing and deep properties associ-
ated with universal finite-size scaling near the bulk critical
point [36,37].

There is a third and more general context, however, where
fluids must be modeled as being inhomogeneous, which is
a marriage of the above two scenarios. This occurs when
we consider the interaction of a finite-size system which is
open and in contact with a surrounding fluid reservoir. This
can be viewed as the study of edge effects since, in its sim-
plest realization, in addition to confining walls we must also
allow for edges or corners which demarcate the boundary
between the micro- or mesoscopic confined region with the
macroscopic external environment. The purpose of the present
paper is to compare two of the simplest examples of this in
which a fluid taken from a surrounding reservoir of vapor,
at temperature T and chemical potential μ (or pressure p)
can, at sufficiently low temperatures, condense between two
parallel walls separated by a distance L. In both cases the
parallel walls produce an open capillary slit in contact with
a bulk vapor. In one example, the walls are both of finite
length H and are perfectly adjacent [Fig. 1(a)]. They are
considered of macroscopic extent in all other directions. We
refer to this as the HH geometry, which has been studied
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FIG. 1. Schematic illustration of two open finite-size slits formed
by two parallel plates which are separated by a distance L and which
are in contact with reservoir of gas. In the HH geometry (a) both
walls are of the same length H so that the open ends have upper
and lower edges. For the H∞ geometry (b) the lower wall is of
infinite extent so there are just upper edges and the open ends of
the capillary meet the reservoir at two right-angle corners. The di-
mensions of both capillaries are considered macroscopic in all other
directions

recently [38,39]. In the second scenario, however, which has
not been studied previously to our best knowledge, the bottom
wall is also considered to be of infinite extent representing
perhaps a macroscopic table or work bench. We refer to this as
the H∞ geometry [Fig. 1(b)]. In both systems, at sufficiently
low temperatures, the vapor between the walls will condense
via a first-order phase transition to a liquid-like phase as the
pressure of the bulk gas is increased, happening before bulk
saturation, psat, is reached. This is the familiar phenomenon
of capillary condensation. We remark at the outset that, be-
yond macroscopic and mean-field treatments, this first-order
phase transition is rounded due to finite-size effects, although
in practice it is of negligible importance provided we are
away from the vicinity of the bulk critical temperature (see
later). We also remark that in our analysis we neglect the
role played by gravity which is justified provided the sepa-
ration L of the walls is much less than the capillary length
parameter which, for molecular fluids, is of the order of mm.
A preliminary account of some of our results has appeared
in [40].

Our focus here centers on the location of the capillary
condensation transition in these open systems and its depen-
dence on the aspect ratio a = L/H in each geometry. When
the lateral extent of the slits is macroscopic, corresponding to
H = ∞, or a = 0, the location of the capillary condensation
in both geometries is the same and is very well described by
the well-known Kelvin equation—a macroscopic prediction
which is known to remain highly accurate even for microscop-
ically narrow slits. When H is finite, however, the situation
is more involved because of menisci which appear near the
open ends which separate the condensed liquid inside from the
gas reservoir. In this case, for the HH geometry it is known
that the location of the condensation transition is described, at
least at a macroscopic level, by a generalized Kelvin equation
which is characterized by an edge contact angle θe [38,41].
This describes the geometrical shape of the menisci which are
always pinned at the corners. The H∞ geometry is, however,
subtly different and leads to much richer behavior. The reason

for this is that there are three different components to the H∞
geometry, each of which is associated with a phase transition.
The slit brings with it the possibility of capillary condensation;
the two right-angle corners formed between the vertical sides
and the (bottom) horizontal wall induce wedge filling, and
finally associated with the two upper edges, at the open ends,
is the possibility of meniscus depinning—a type of phase
transition which we describe here. Central to understanding
the phase equilibria is the way in which the menisci at each
end of the capillary connect with the bottom and top walls.
For example, it is clear they must meet the bottom (infinite)
wall at the equilibrium Young contact angle θ . The manner of
the connection with the upper wall, however, requires more
attention, since the menisci may be pinned at each upper
edge or unpinned, in which case the liquid spills out of the
capillary. In this case, the upper reaches of the menisci are in
contact with the vertical sides of the walls—a scenario which
must be present to connect with the phenomena of corner
(wedge) filling. This additional phase transition must occur
for sufficiently small contact angles, θ < π/4, as the pressure
approaches bulk saturation. There are therefore two possible
mechanisms for capillary condensation:

(1) Type I in which the liquid remains inside the slit and
the menisci are pinned at the upper edges

(2) Type II in which the liquid overspills into the reservoir
and the two menisci are unpinned.

We derive the generalized Kelvin equations for both these
scenarios and show how they depend on the aspect ratio a.
For type I condensation the generalized Kelvin equation is
determined by a value of the edge contact angle θe, distinct
from that for the HH geometry. The change from type I to
type II condensation is discussed in detail and expressed in
terms of phase diagrams. Detailed connection with the scaling
theory of continuous wedge filling transitions is made. We
also point out that for slits which exhibit type I condensa-
tion, as the pressure is increased towards bulk saturation,
the menisci eventually round the upper edges and therefore
become unpinned. We show that at a macroscopic level such
meniscus depinning is a continuous phase transition which is
third-order for complete wetting and second-order for partial
wetting. Further, we develop a scaling theory for its round-
ing at the mesoscopic level based on the theory of wetting
transitions. Some of these predictions are verified using a
microscopic DFT model which allows us to view type I and
type II condensations on the molecular level and show how
capillary condensation is suppressed for sufficiently large as-
pect ratios.

Our paper is arranged as follows. In Sec. II we begin
with some introductory remarks about the modified Kelvin
equation for the HH geometry before deriving the generalized
Kelvin equations for the H∞ system. In Sec. III we present
these macroscopic results in terms of phase diagrams and dis-
cuss the nature of meniscus depinning for complete and partial
wetting. In Sec. IV we discuss the modifications occurring
at the mesoscopic level and develop detailed finite-size and
cross-over scaling arguments which connect with the theories
of wetting and wedge filling transitions. In Sec. V we present
the results of our microscopic DFT studies and end with a
summary and discussion of future work.
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II. KELVIN EQUATIONS FOR INFINITE
AND FINITE OPEN SLITS

In a narrow slit of width L, or, e.g., cylindrical pore, the
forces of surface tension shift the phase boundary for coexis-
tence between liquid and gas away from the bulk saturation
pressure psat. The shift of the first-order phase boundary is
very well described by the Kelvin equation, which, although
of macroscopic origin, is known to be accurate even for mi-
croscopically narrow slits. This is particularly true for partial
wetting where the Kelvin equation remains quantitatively ac-
curate down to the molecular level. Let us begin by recalling
the basic derivation and interpretation of the Kelvin equation
for a fluid confined between two identical infinite planar walls.
Condensation occurs when the grand potentials � (e.g., per
unit area of one of the walls) of the gas-like and liquid-like
states are equal to each other. We assume here that the gas
condenses to liquid at a pressure pcc below that of saturation,
which will be the case if the contact angle θ is less than π/2.
For the gas-like state the volume and area contributions to the
grand potential imply that for wide slits the grand potential is
approximately given by

�g = −pL + 2γwg, (1)

where p is the pressure of a bulk reservoir of gas, assumed to
be at chemical potential μ and temperature T , and γwg is the
wall-gas surface tension of a single wall. One approximation
inherent here is that the surface tension term does not depend
on the slit width L, which is equivalent to neglecting the force
of solvation between the walls. This is valid if we are away
from the near vicinity of the capillary critical point where the
solvation force becomes long ranged. Similarly, for the liquid-
like phase the grand potential can be written approximately as

�l = −p†L + 2γwl, (2)

where p† = p − δp is the pressure of the metastable bulk
liquid and γwl is the wall-liquid surface tension. This again is
valid away from the capillary critical point and also provided
we can ignore volume exclusion effects which arise when a
high-density liquid is confined in a molecularly narrow slit.
The difference between the grand potentials, �� ≡ �g − �l ,
is equal to �� = −δpL + 2(γwg − γwl ). Setting �� = 0 de-
termines that the pressure shift at which condensation occurs
is δpcc = 2(γwg − γwl)/L, which leads to the well-known
Kelvin equation

δpcc = 2γ cos θ

L
, (3)

on using Young’s equation γwg = γwl + γ cos θ , which de-
fines the equilibrium contact angle of an infinite sessile drop.
Here γ is the liquid-gas surface tension. Hereafter we express
all our results using the convenient dimensionless reduced
pressure shift

δ p̃ ≡ L

2γ
δp, (4)

in terms of which the standard Kelvin equation simply reads

δ p̃cc = cos θ. (5)

FIG. 2. Schematic illustration of a condensed capillary-liquid
phase in the HH geometry. Two circular menisci of Laplace radius
R = γ /δp are pinned at the upper and lower edges which they meet
at an edge contact angle θe which is pressure dependent and takes the
value θ cc

e at capillary condensation. The exposed area S of gas and
length � of the menisci, needed in the determination of θ cc

e for the
generalized Kelvin equation δ p̃cc = cos θ cc

e , are shown.

Also, many of our results will be conveniently expressed in
terms of the Laplace radius

R = γ

δp
(6)

of a circular meniscus.
As mentioned above, the Kelvin equation is particularly

accurate for partial wetting. Corrections to it are present at
the mesoscopic level for complete wetting (θ = 0) where the
singular contribution to the surface tension γwg arising from
thick wetting films (or equivalently the force of solvation
between the liquid-gas interfaces and the walls) which reduce
the effective slit width. A simple generalization of the Kelvin
equation happens when the two walls are made of different
materials, with distinct contact angles θ1 and θ2, in which case
the above argument leads to a generalized Kelvin equation

δ p̃cc = cos θ1 + cos θ2

2
. (7)

This will be a useful point of comparison for the geometry
considered in the present paper even though the walls are
materially identical. We note that the Kelvin equation has a
simple geometrical interpretation since it identifies the unique
pressure at which a circular meniscus of the Laplace radius,
which meets the walls at the appropriate equilibrium con-
tact angle(s), phase separates the coexisting capillary-gas and
capillary-liquid phases.

A. Capillary condensation in the HH geometry

We have recently extended these arguments in order to
derive the generalized Kelvin equation for condensation in an
open slit of width L when the (identical) walls are each of
finite length H [38] [see Fig. 1(a) and Fig. 2]. All other di-
mensions are considered to be macroscopic and translational
invariance is assumed in the direction normal to the cross
section in Fig. 2. For the gas-like phase the contributions to
the grand potential from the pressure and surface tension are
similar to that for the infinite slit. Thus, per unit length (into
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the wall), the grand potential can be well approximated by

�g = −pLH + 2γwgH, (8)

where similar caveats about ignoring the force of solvation
due to complete wetting layers or capillary criticality apply.
There is no need to consider the contribution from the outside
(vertical) walls since these are identical for the gas and liquid-
like states. For the liquid-like phase, however, in addition to
the (metastable bulk) pressure term and wall-liquid surface
tensions, there is a new surface tension contribution from the
exposed area of two circular menisci. These must be present
in an open pore and separate the capillary liquid from the
gas reservoir. The additional free-energy cost of these menisci
increases the grand potential of the liquid-like phase implying
that for all finite H the capillary condensation must occur at
a pressure which is closer to bulk saturation compared to that
for the infinite slit. Recalling the geometrical interpretation
of the Kelvin equation, this means that the menisci cannot
form a stable configuration within the slit and therefore must
be pinned at the open ends where each meets the corner at
an edge contact angle θe, distinct from θ and which will be
pressure dependent. For the liquid-like phase we can therefore
write

�l = −p†(LH − 2S) + 2Hγwl + 2γ �, (9)

where � = (π − 2θe)R is the arc length of the menisci and S =
(π/2 − θe)R2 − sin θeRL/2 is the area between the meniscus
and the open end. Elementary geometry implies that the radius
R of each meniscus must be related to the slit width by

L

R
= 2 cos θe, (10)

which determines the value of θe for any pressure for which
the liquid-like phase exists. The difference in the grand poten-
tials of the gas- and liquid-like states is given by

�� = −δp(LH − 2S) + 2γ cos θH − 2γ �. (11)

Setting �� = 0 determines that capillary condensation in the
HH slit occurs when the pressure shift is

δ p̃cc(θ, a) = cos θ cc
e , (12)

where θ cc
e is the value of the edge contact at condensation

given by

cos θ = cos θ cc
e + a

2

[
sin θ cc

e + sec θ cc
e

(π

2
− θ cc

e

)]
, (13)

where a = L/H is the aspect ratio. Here we have emphasized
the dependence of the pressure shift on the contact angle θ and
the aspect ratio a.

For a finite length capillary, the value of the edge contact
angle is always greater than the Young contact angle θ and
approaches its value only as a → 0. In general, this limit
is approached analytically, except for complete wetting (see
below). For long capillaries the pressure shift δ p̃cc can be
written as an expansion in the aspect ratio,

δ p̃cc(θ, a) = cos θ − α1

2
a − α2

4
a2 + · · · , (14)

which highlights the corrections to the standard Kelvin equa-
tion. Here the values of the coefficients are given by

α1 =
(π

2
− θ

)
sec θ + sin θ (15)

and

α2 =
(π

2
− θ

)2
sec3 θ − tan θ sin θ. (16)

The higher-order terms in the expansion of δ p̃cc are analytic in
the aspect ratio a except for complete wetting which reflects
the nonanalytic behavior of the edge contact angle

θ cc
e ≈

√
πa

2
(17)

for long slits. In this case the first three terms in the expansion
of the pressure shift are

δ p̃cc(0, a) = 1 − π

4
a − π2

16
a2 + π

12

√
2πa5 + · · · , (18)

which we shall return to. Quite generally, as the capillary is
shortened, θ cc

e increases monotonically and reaches the value
θ cc

e = π/2, at which δ p̃cc = 0, when the aspect ratio a = a0

where

a0 = cos θ. (19)

For shorter capillaries the fluid inside the capillary and the gas
reservoir simultaneously condense to liquid at bulk saturation
psat, i.e., capillary condensation is suppressed for a > a0 since
the free-energy cost of creating the pinned menisci is too
great.

We can summarize these results in a simple phase diagram
which shows the capillary condensation phase boundary as a
function of the aspect ratio which separates the regions where
the capillary gas (CG) and the capillary liquid (CL) phases
are stable [see Fig. 3(a)]. Capillary condensation occurs only
for values of the aspect ratio up to a0 beyond which it is
suppressed. As θ is increased from zero so the line of cap-
illary condensation shrinks and vanishes at θ = π/2 when the
walls are neutral. We note that when θ > π/2 the analogous
phenomena of capillary evaporation occurs when the bulk
reservoir is liquid at pressure p � psat. Alternatively, we can
represent the capillary condensation by plotting δ p̃ vs θ for a
given value of the aspect ratio [see Fig. 3(b)]. Here condensa-
tion is suppressed for contact angles θ > θ0 where, from (19),
it follows that cos θ0 = a. For long capillaries with a ≈ 0 the
(red) line of capillary condensation is described accurately by
the expansion (14). As the value of a increases, the whole line
of capillary condensation shrinks and vanishes as the aspect
ratio is increased to unity since in this limit θ0 = 0. When the
aspect ratio is close to unity, the line of capillary condensation
is described by

δ p̃ = 1 − a − θ2

2
, (20)

which ends at θ0 ≈ √
2(1 − a).

B. Capillary condensation in the H∞ geometry

With the above results for comparison, we now turn to the
main subject of our paper, which is the nature of condensation
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(a)

(b)

FIG. 3. Macroscopic phase diagrams for the HH open capillary
slit showing the location of the capillary condensation line separating
the stable capillary-gas (CG) and capillary-liquid (CL) phases for
(a) different δ p̃ and aspect ratios (for fixed contact angle θ ) and
(b) different δ p̃ and contact angle (for fixed aspect ratio). Capillary
condensation is suppressed for sufficiently short capillaries with as-
pect ratios a > a0 = cos θ or, equivalently, for θ > θ0 where θ0 =
cos−1 a in which case the fluid inside the capillary and surrounding
reservoir both condense to liquid at psat . Capillary condensation is
therefore suppressed in short capillaries when the aspect ratio a > 1.

in an open slit in which one of the walls (e.g., the bottom) is
infinite while the other (e.g., the top) remains finite of length
H [see Fig. 1(b)]. Again, we suppose that the system is in
contact with a bulk reservoir of gas at pressure p (equivalently
chemical potential μ) at a temperature T far below the bulk
critical point. We refer to this as the H∞ geometry and will
compare and contrast this to the HH system described above.
It is natural to suppose once again that as the pressure is
increased the fluid inside the capillary condenses to liquid at a
pressure which is less than psat. Similar to the HH geometry
the equilibrium liquid-like phase is characterized by two cir-
cular menisci which separate the capillary liquid from the bulk
gas. For the same reasons as discussed earlier, at condensation
itself (and indeed all higher pressures) these menisci cannot
exist within the slit and must be located near the open ends.
The situation is, however, subtly different in several aspects
which leads to richer phase behavior involving other interfa-
cial phenomena. Since the bottom wall is infinite the menisci
must meet it at Young’s equilibrium contact angle θ . There
are in principle, however, two possibilities for the upper part
of each menisci. For sufficiently long slits the upper part of the
menisci connects with, and is pinned at, the edge, making an
angle θe with the horizontal (upper) wall [see Fig. 4(a)]. This
edge contact angle is pressure dependent for any CL phase

FIG. 4. Schematic illustration of two possible condensed capil-
lary liquid phases in the H∞ geometry. In the top panel (a) the two
circular menisci are pinned at the upper edges which they meet at
an edge contact angle θe, which is pressure dependent and takes the
value θ cc

e at type I capillary condensation. The bottom of the menisci
meets the horizontal, lower wall at the equilibrium contact angle
θ . In the lower panel (b), indicative of type II condensation, the
two circular menisci are unpinned, spilling out into the right-angle
corners and meet the vertical and lower walls at the contact angle θ .
In the lower panel we illustrate the meniscus length, �, overspill area,
S, and lateral extent along the bottom wall, X , and above the corner.
Similar considerations apply when the meniscus is pinned.

but takes a specific value θ cc
e at capillary condensation (which

we stress is different to that defined for the HH geometry).
We refer to this as type I capillary condensation. For shorter
capillaries, however, and for sufficiently small contact angles
θ we shall show that the circular menisci are no longer pinned
at the upper edges but rather sit entirely outside the open ends
and touch the bottom and vertical walls with the equilibrium
contact angle θ [see Fig. 4(b)]. We refer to this as type II
capillary condensation.

1. Type I capillary condensation

The location of type I capillary condensation may be de-
termined, as for the HH geometry, by comparing the grand
potentials for the CG and CL phases. We note that the edge
contact angle of any CL phase is pressure dependent and is
determined geometrically by

L

R
= cos θ + cos θe, (21)

in contrast to the geometrical condition Eq. (10) for the HH
geometry. The maximum value of the edge contact angle is

θmax
e = θ + π/2, (22)
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which is when the upper part of the menisci meet the vertical
walls at Young’s contact angle and are therefore unpinned. As
for the HH geometry, the grand potential of the CL phase con-
tains contributions arising from the volume of the metastable
bulk liquid, the area of contact between the CL and wall
and finally the arc length of the menisci. These are readily
calculated, and are slightly modified compared to the HH
geometry because the menisci meet the corners and bottom
walls at different angles and overspill out of the capillary.
The difference in the grand potentials of the gas-like and
liquid-like phases is given by

�� = −δp(LH + 2S) + 2γ cos θ (H + X ) − 2γ �. (23)

Here the term LH + 2S is simply the total volume of liquid
where

S = R2

[
cos θ sin θe − sin 2θ

4
+ sin 2θe

4
+ 1

2
(θ + θe − π )

]

(24)

is the contribution from the overspill outside of each capillary
end. Similarly, 2H + 2X is the total area (per unit length) of
contact between the liquid and the walls where

X = R(sin θe − sin θ ) (25)

is the distance to which each meniscus extends along the
bottom wall on both sides. Finally,

� = R(π − θ − θe) (26)

is the arc length of each meniscus involving both Young’s
contact angle and the edge contact angle (see Fig. 4). Setting
�� = 0 determines that type I capillary condensation occurs
when

δ p̃I
cc(θ, a) = cos θ + cos θ cc

e

2
, (27)

where the value of the edge contact angle satisfies

cos2 θ = cos2 θ cc
e + a

π − θ − θ cc
e + sin

(
θ + θ cc

e

)
1 + a tan

( θ cc
e −θ

2

) . (28)

Thus, the generalized Kelvin equation for type I condensation
has a similar form to that for an infinite capillary with walls
made of different materials—recall Eq. (7). Simple inspection
of (13) and (28) shows that, for a given aspect ratio a, there
is no simple relation between the values of the edge contact
angles for the HH and H∞ geometries. Given this, it is all
the more surprising that when written as an expansion in the
aspect ratio, the first two corrections to the standard Kelvin
equation for type I condensation in the H∞ geometry are
identical to that for the HH geometry; that is,

δ p̃I
cc(θ, a) = cos θ − β1

2
a − β2

4
a2 + · · · , (29)

where

β1 = α1 β2 = α2. (30)

Differences in the values of δ p̃cc for condensation in the HH
and H∞ geometries appear only at the next order in a and
are therefore near negligible for long capillaries. These are,

again, nonanalytic for complete wetting (θ = 0) where the
upper edge contact angle behaves as

θ cc
e ≈ √

πa, (31)

as a → 0, similar to Eq. (17) for the HH geometry. Thus, for
example, the expansion for the pressure shift for walls which
are completely wet is

δ p̃I
cc(0, a) = 1 − π

4
a − π2

16
a2 +

√
π3a5

6
+ · · · , (32)

which differs from Eq. (18) only in the coefficient of the a5/2

term.
As the aspect ratio is increased, the loci of type I capillary

condensation ends in one of two different ways depending
on whether the contact angle is greater or less than π/4
corresponding to the filling phase boundary for a right-angle
corner [18]. For θ < π/4 type I condensation ends when

ap = cos(2θ )
π
2 − 2θ

, (33)

which is the value of the aspect ratio at which the edge contact
angle θ cc

e = θmax
e . At this point the menisci are no longer

pinned since they may be viewed as meeting the vertical walls
at the equilibrium contact angle θ . The corresponding value
of the pressure shift at this point is δ p̃I

cc = (cos θ − sin θ )/2.
For large values of the aspect ratio the capillary condensation
is of type II, which does not involve any menisci pinning. For
θ > π/4 on the other hand the locus of type I condensation
ends when

a0 = cot θ, (34)

which is the value of the aspect ratio for which θ cc
e = π − θ ,

so that δpI
cc = 0. We find it remarkable that the capillary

condensation at this terminus of type I condensation mimics
the phase separation in an infinite slit where the walls are
materially different with opposing wetting properties, i.e.,
θ2 = π − θ1 [42]. For larger values of a capillary condensa-
tion is suppressed and the vapor within the walls and in the
outside reservoir both condense to liquid at the same bulk
phase boundary. This differs from the value of a0 defined for
the HH geometry.

We note that for fixed a we can also define θp from
solution of

a = cos(2θp)
π
2 − 2θp

, (35)

as the value of the contact angle at which type I condensation
becomes type II. The value of θp is defined only for aspect ra-
tios in the range 2/π < a < 1 where the limiting values of the
aspect ratios correspond to θp = 0 and θp = π/4, respectively.
Similarly, for aspect ratios a < 1 we can define a contact angle
θ0 from

θ0 = cot−1 a, (36)

as the value of the contact angle at which type I condensation
is suppressed. This will become clearer when we discuss the
macroscopic phase diagrams.
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2. Type II capillary condensation

When θ < π/4 and the aspect ratio is bigger than ap the
capillary condensation takes on a different character. In this
case the menisci are no longer pinned at the corners and
are each arcs of circles which meet the bottom and vertical
walls at the equilibrium Young contact angle θ . The difference
between the grand potentials of the gas-like and liquid-like
states is given by

�� = −δp(LH + 2S) + 2γ cos θ (H + 2X − L) − 2γ �.

(37)
Here, as before, the term LH + 2S is the total volume of liquid
which contains a contribution

S = R2

[
cos2 θ − sin 2θ

2
+ θ − π

4

]
(38)

from the overspill at each end. Similarly, the term 2(H +
2X − L) is the total contact area of the liquid with the wall,
where

X = R(cos θ − sin θ ) (39)

is the distance of the overspill along the bottom wall at each
end. Note that the menisci also reach a distance X − L above
each corner which contributes to the area of contact. Finally,

� = R
(π

2
− 2θ

)
(40)

is the arc length of each meniscus (see Fig. 4). None of these
expressions involve an edge contact angle since there is no
pinning. Setting �� = 0 determines that type II capillary
condensation occurs at the pressure shift

δ p̃II
cc(θ, a) = aA

a − 1 +
√

1 + a2 − 2a
(

π
4 sec2 θ − tan θ

) ,

(41)
where the amplitude appearing in the numerator is

A = cos θ − sin θ +
(
θ − π

4

)
sec θ, (42)

which is simply cos θS/R2. When the aspect ratio a = ap this
simplifies to δ p̃II

cc = (cos θ − sin θ )/2 and therefore provides
continuity with the generalized equation (27) describing type
I condensation for long capillaries. However, in general, the
expression (41) does not have the form of a generalized Kelvin
equation involving an effective contact angle that has an ob-
vious geometrical interpretation. We note that the amplitude
A is positive only for θ < π/4, which means that type II
condensation can never occur in the partial filling regime
θ > π/4.

The smallest value of the aspect ratio for which type II con-
densation occurs over the whole range of the contact angles
(until it is suppressed for θ > π/4) is a = 1, in which case
the expression for δ p̃II

cc simplifies to

δ p̃II
cc(θ, 1) = A√

2
(
1 − π

4 + tan θ − π
4 tan2 θ

) . (43)

Some simplification also occurs when we suppose the wall
is infinitesimally thin corresponding to the limit H → 0 or

equivalently a → ∞. In this case the location of type II capil-
lary condensation has the limit

δ p̃II
cc(θ,∞) = A

2
. (44)

Once again, this gives only a meaningful, positive, pressure
shift for θ < π/4 corresponding to the regime in which a
right-angle corner is completely filled at bulk saturation.

III. MACROSCOPIC PHASE DIAGRAMS

A convenient way of summarizing the above macroscopic
results is using the δ p̃–a and δ p̃–θ phase diagrams, as dis-
cussed earlier for the HH geometry. These are now much
richer reflecting the existence of different types of phase
transitions and their phase boundaries. We start by first con-
sidering the δ p̃–a phase diagram for fixed contact angle θ .

A. δp̃–a phase diagrams

We must consider two distinct ranges of the contact angle,
θ < π/4 and θ > π/4 together with the marginal case θ =
π/4, which corresponds to the corner filling phase boundary.
We begin, however, with a discussion of the phase diagram for
complete wetting, θ = 0, since this is of particular physical
importance and some of the expressions simplify.

1. Complete wetting (θ = 0) [Fig. 5(a)]

There are two types of capillary condensation transition
which occur for a < ap and a > ap, respectively, where ap

takes its minimal value ap = 2/π . Again, these lines of cap-
illary condensation (CC) separate the regions where CG and
CL are the stable phases. For type I condensation the menisci
are pinned at the top corners with an edge contact angle
θ cc

e < π/2. The loci of type I condensation is described by
the generalized Kelvin equation

δ p̃I
cc(0, a) = 1 + cos θ cc

e

2
, (45)

where the value of the edge contact angle is found from
solution of

sin2 θ cc
e = a

(
π − θ cc

e + sin θ cc
e

1 + a tan θ cc
e
2

)
. (46)

At a = ap = 2/π , the edge contact angle reaches its maxi-
mum value θ cc

e = θmax
e = π/2 and the menisci depin from the

upper edges. For a > 2/π , type II condensation occurs and
the menisci, at the transition, sit outside the capillary meeting
the horizontal and vertical walls tangentially in accordance
with expectations of equilibrium complete wetting. The loci
of type II condensation is described by

δ p̃II
cc(0, a) = a

(
1 − π

4

)
a − 1 +

√
1 + a2 − π

2 a
. (47)

We note that these take the particular values δ p̃II
cc = 1/2 at

a = 2/π and decreases monotonically to δ p̃II
cc = (1 − π/4)/2

as a → ∞.
We now return to the regime a < ap and consider the

adsorption isotherm as the pressure is increased towards sat-
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FIG. 5. Macroscopic phase diagrams showing the locations of type I and type II capillary condensation (CC) and the meniscus depinning
transition (dashed line) for the H∞ geometry. Regions of stable capillary gas (CG), capillary-liquid (CL), as well as pinned and unpinned states
are shown. The four different phase diagrams represent a) θ = 0 complete wetting and complete corner filling. Here ap = 2/π denotes where
the condensation changes character, (b) 0 < θ < π/4 corresponding to partial wetting but complete corner filling for which 2/π < ap < 1,
(c) the corner filling phase boundary θ = π/4 at which the lines of meniscus depinning and type II condensation disappear by merging into
the saturation line p = psat , and (d) the partial corner filling regime, θ > π/4, where only type I condensation occurs up to a maximum value
of the aspect ratio a0 = cot θ .

uration. For δp > δpI
cc the CG state is stable, while for δp <

δpI
cc the CL state is stable. On increasing the pressure from

the value at δpI
cc the edge contact angle θe increases from θ cc

e
according to the geometrical condition (21) until it reaches its
maximum allowed value θe = θmax

e = π/2, when the pressure
shift takes the value

δ p̃md = 1
2 , (48)

at which point the meniscus depins (md). This is shown as
the dashed line in Fig. 5(a) and separates the regimes where
the upper parts of the meniscus are pinned (at the corners)
or unpinned, in which case the menisci meet the vertical
walls at some point above the corners. The pressure shift (48)
is equivalent to the condition R = L, i.e., at the depinning
transition the menisci each take the shape of a quarter circle
which just fit inside in the open ends of the capillary. The line
of meniscus depinning meets the line of type I condensation
at a = ap. Crossing the line of capillary condensation (be it
type I or type II) corresponds to a first-order phase transi-
tion at which the adsorption jumps from to a low to high

value. Meniscus depinning on the other hand corresponds to
a continuous phase transition where a higher derivative of the
adsorption is discontinuous. Let us consider this in detail. The
adsorption (per unit length of the capillary) in the CL phase
is simply the area of liquid multiplied by �ρ, the difference
in the bulk liquid and gas densities. The adsorption of any
CL phase always contains a trivial background contribution
�ρHL, arising from the area within the capillary, which we
shall ignore, and an excess term arising from the two menisci
near the open ends. For the pinned CL phase, corresponding
to δp > δpmd or equivalently R < L, the excess adsorption is

� = 2�ρR2

[
sin θe + sin 2θe

4
+ 1

2
(θe − π )

]
, (49)

where the edge contact angle θe, for the present case of com-
plete wetting, is given by

θe = cos−1
(L − R

R

)
. (50)

For the unpinned CL phase, corresponding to δp < δpmd or
equivalently R > L, on the other hand the excess adsorption is
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given simply by

� = 2�ρ
(

1 − π

4

)
R2. (51)

Varying the pressure is equivalent to changing the radius of
curvature R, and it is straightforward to check that the adsorp-
tion and its first derivative, ∂�/∂R are continuous. However,
the second derivative is discontinuous at δ p̃md with

∂2�

∂R2
=

{
�ρ(4 − π ) , δ p̃ = δ p̃−

md,

�ρ(2 − π ) , δ p̃ = δ p̃+
md.

(52)

Since the adsorption is proportional to the derivative of the
grand potential � w.r.t. δ p̃ we can anticipate that this corre-
sponds to a discontinuity in the third derivative of �. This is
indeed the case, and a straightforward calculation determines
that

∂3�

∂R3
=

{
0 , δ p̃ = δ p̃−

md,
γ

L2 , δ p̃ = δ p̃+
md.

(53)

Thus, for complete wetting, θ = 0, meniscus depinning is a
third-order phase transition.

Finally, as the pressure approaches psat, the adsorption
diverges due to the growth of two menisci each of which is a
quarter circle of radius R. The horizontal blue line at p = psat

shown in Fig. 5(a) is therefore the line of complete corner
filling. On approaching this line the total adsorption diverges
according to Eq. (51), which is the universal, geometry-
determined, singularity for complete filling at a right-angle
corner [19,43].

2. Complete filling (0 < θ < π/4) [Fig. 5(b)]

The phase diagram has the same qualitative structure for
π/4 > θ > 0 as for complete wetting showing the two types
of capillary condensation, the meniscus depinning, and the
complete filling transition at saturation. The loci of type I con-
densation is described by the generalized Kelvin equation (27)
with θ cc

e given by (28) while type II is described by (41). These
meet at ap given by (33) which is now larger than 2/π which,
recall, is the value of the aspect ratio where θ cc

e = θ + π/2.
Both lines of condensation lie closer to saturation than they do
for complete wetting as does the line of meniscus depinning
which occurs when

δ p̃md = cos θ − sin θ

2
, (54)

which again corresponds to a line of continuous phase tran-
sitions where θe = θmax

e . The location of this line does not
depend on the aspect ratio. Only in the region bounded by the
loci of type I capillary condensation and the dashed meniscus
depinning line are the menisci of the CL phase pinned at
the top corners. It is intriguing to note, however, that for
complete corner filling but partial wetting, the character of
the meniscus depinning transition is now different to that for
complete wetting. For the pinned CL phase, corresponding to
δp > δpmd, the adsorption is given by

� = 2�ρR2

[
cos θ sin θe − sin 2θ

4
+ sin 2θe

4

+ 1

2
(θ + θe − π )

]
, (55)

where θe is determined from (20). For the unpinned CL phase,
on the other hand, for which δp < δpmd, the adsorption is
given by

� = 2�ρR2

[
cos2 θ − sin 2θ

2
+ θ − π

4

]
. (56)

It is straightforward to show that at the meniscus depinning
transition (θe = θ + π

2 ) the adsorption is continuous. How-
ever, in contrast to the earlier case of complete wetting, the
first derivatives of the adsorption take different values at the
phase boundary on the pinned and unpinned sides. The differ-
ence between these is given by

�
∂�

∂R
= 2�ρL sin θ (tan θ − 1). (57)

This means that for partial wetting the meniscus depinning
transition is still continuous but of second-order. Note that
when we set θ = 0, we reproduce the result for complete
wetting where the first derivative of � is continuous.

Again, as p → psat, the circular menisci that sit outside
the capillary grow in size and the total adsorption diverges
according to Eq. (56). This shows the same universal, geom-
etry determined critical power law � ∝ δp−2 as for complete
wetting but with a smaller amplitude A.

3. Filling phase boundary (θ = π/4) [Fig. 5(c)]

As the contact angle is increased towards the filling phase
boundary θ = π

4 for a right-angle corner, the lines of meniscus
depinning and of type II capillary condensation collapse into
the saturation curve p = psat and the phase diagram takes a
different qualitative form. Only type I capillary condensation,
involving pinned menisci, are possible and occur for aspect
ratios up to a maximum value a0 = ap = 1. Capillary conden-
sation is suppressed for all larger values of a. What happens
on approaching psat, shown as the purple line, depends on
the order of the filling transition and is not determined by
the present macroscopic considerations. To understand this we
must turn to the theory of wedge filling and take into account
the details of the intermolecular forces. The simplest scenario
is when the filling transition is first-order in which case at
p = p−

sat the menisci remained pinned. These are now flat and
simply connect the corners to the horizontal wall which they
meet at angle θ = π

4 .
The most subtle case to consider is if the corner filling

transition is second-order, which we leave to the next section
when we discuss mesoscopic effects for all the phase transi-
tions described here.

4. Partial filling (θ > π/4) [Fig. 5(d)]

When the contact angle θ > π/4 the phase diagram is sim-
plest and is qualitatively the same as that for the HH geometry
[see Fig. 3(a)]. Only type I condensation exists and occurs up
to a maximum value of the aspect ratio a0 = cot θ (which as
noted earlier is different to that defined for the HH geometry).
Capillary condensation is suppressed for larger values of a.
For a < a0 the menisci of the capillary liquid phase flatten as p
is increased to psat. They remain pinned at the top edges, with
an edge contact angle θe = π − θ , and meet the horizontal
wall at the Young contact angle θ .
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FIG. 6. Alternative illustration of the H∞ macroscopic phase diagram (δ p̃, θ ) for the three relevant ranges of the aspect ratio: (a) long
capillaries, with a < 2

π
, the regime a < 2/π for which only type I condensation occurs up to a maximum value of the contact angle θ0 =

cot−1 a > π/4, beyond which capillary condensation is suppressed, (b) intermediate capillaries, corresponding to the regime 2/π < a <

1 showing a change from type I to type II condensation at contact angle θp < π/4 [determined from the solution of Eq. (35)] and with
condensation similarly suppressed for θ > θ0 with θ0 > π/4, and (c) the short capillary regime a > 1 for which only type II condensation
occurs, which terminates at θ0 = π/4.

B. δp̃–θ phase diagrams

We may also represent the macroscopic predictions for the
locations of type I and II capillary condensation using δ p̃ vs
θ projection of the phase diagram for different values of the
aspect ratio a as shown in Fig. 6. The phase diagram is differ-
ent depending on whether the capillary is long, intermediate
length, or short. These are discussed separately:

1. Long capillaries [Fig. 6(a)]

If the aspect ratio a < 2/π then only type I condensation,
involving pinned menisci, occur up to a maximum value of
the contact angle θ0 = cot−1 a which lies in the range π/4 <

θ0 < π/2. In addition, there is a line of continuous meniscus
depinning transitions, described by Eq. (54), which ends at the
corner filling phase boundary θ = π/4. The saturation curve
p = psat itself breaks into complete corner filling (θ < π/4),
and partial corner filling (θ > π/4) regions, for which the
adsorption diverges or remains finite, respectively.

2. Intermediate capillaries [Fig. 6(b)]

If the aspect ratio lies in the range 2/π < a < 1 the line
of capillary condensation is of type II for θ < θp < π/4,
described analytically by Eq. (41), and type I for θp < θ < θ0

with θ0 > π/4. The line of meniscus depinning now exists
only in the range θp < θ < π/4 since for smaller contact
angles it occurs in a pressure regime for which the CL phase
is metastable. As the aspect ratio is increased to unity both θp

and θ0 approach π/4 (from different sides) and the lines of
type I condensation and meniscus depinning vanish.

3. Short capillaries [Fig. 6(c)]

If the aspect ratio a > 1 only type II capillary condensa-
tion, involving unpinned menisci, occurs up to a maximum
value θ0 = π/4 beyond which capillary condensation is sup-
pressed. We note that the short capillary regime begins when
a = 1 in which case the line of type II condensation is de-
scribed analytically by Eq. (43).

IV. MESOSCOPIC CONSIDERATIONS, ROUNDING
AND SCALING THEORY

The above, purely macroscopic, considerations are due
for some criticism. In particular, the capillary condensation,
meniscus depinning transition and type I/II crossover are
rounded at the mesoscopic and molecular scale by thermal
fluctuations and/or the direct influence of intermolecular
forces. The associated finite-size scaling of these transitions
and phase boundaries is discussed in detail below.

A. Rounding of the capillary condensation transitions

Since the HH and H∞ geometries are pseudo one-
dimensional then, strictly speaking, both type I and type II
capillary condensation transitions are rounded, due to ther-
mal fluctuations, in accord with the well-developed theory
of finite-size effects at first-order phase transitions [44]. The
transition from CG to CL is smooth, centered on δpcc and
rounded over a pressure range �pcc ∝ exp(−βγ LH ) where
the factor γ LH appearing in exponential is the approximate
free-energy cost of phase separating the CG and CL along
the capillary (normal to the cross sections shown in Figs. 2
and 4). Such exponentially small rounding also applies to the
location of a0 where capillary condensation is suppressed. At
the pressure of condensation, the fluid breaks up into domains
of CG and CL of lengths of the order exp(βγ LH ) along
the capillary. Since the reduced surface tension is of order
βγ ∼ 1/ξ 2

b where ξb is the bulk (liquid or gas) correlation
length, away from the bulk critical temperature the rounding
of the capillary condensation transitions and location of a0 in
either the HH or H∞ geometries is negligible unless either
dimension L or H is molecularly small. Such rounding is of
significance only in the near vicinity of the capillary (pseudo)
critical temperature Tc(L, H ) which marks the end of the
pseudo phase coexistence. This capillary critical point itself
will occur approximately when the smallest of the dimensions
L or H is of order ξb. We note that the rounding of the con-
densation transition and rounding of a0 where condensation is
suppressed are entirely absent in mean-field DFT treatments
of the phase equilibria where the phase transitions remain
sharp.
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FIG. 7. Length scales relevant for the finite-size scaling for the
vanishing of type II condensation. Schematic illustration of the mi-
croscopic adsorption of liquid at a right-angle corner, in the absence
of the slit opening. At a continuous wedge or corner filling transition
the thickness �eq of liquid diverges continuously �eq ∝ (θ − π/4)−

1
2

as the contact angle decreases to the filling phase boundary at p =
p−

sat . When the vertical extent
√

2�eq of the adsorbed layer is larger
than the slit width L, shown as dashed lines, the macroscopic phase
diagrams are modified, such that meniscus depinning and type II con-
densation persist into the partial filling regime until θ − π/4 ∝ 1/L2.

B. Vanishing of type II condensation near the corner
filling phase boundary

The macroscopic δ p̃–a phase diagrams for the H∞ geom-
etry change qualitatively precisely at the corner filling phase
boundary θ = π/4. As discussed earlier, starting from the
case of complete wetting, the lines of meniscus depinning
and type II condensation both merge into the saturation curve
psat as the contact angle increases towards θ = π/4. This
macroscopic prediction remains valid provided the smallest
mesoscopic length associated with the corner filling transi-
tion is much smaller than the slit width L. Thus, for walls
that exhibit first-order corner filling transitions this predic-
tion remains accurate down to the molecular scale since the
adsorption of liquid at the right-angle corners, subtended
between the (upper) vertical sides and (bottom) horizontal
wall, remains microscopically small at p = psat and θ = π/4.
However, for walls that show continuous, second-order, cor-
ner filling transitions the crossover from the θ < π/4 phase
diagram to the θ > π/4 phase diagram requires more care-
ful consideration since even for contact angles close to but
greater than π/4 the microscopic adsorption of liquid at the
right-angle corners will be significant. The crossover from
the θ < π/4 phase diagram to the θ > π/4 phase diagrams
may be understood by appealing to the microscopic theory of
corner filling transitions which we discuss here specifically for
the case of systems with dispersion forces. At a single right-
angle corner (see Fig. 7), the microscopic thickness �eq of the
adsorbed layer of liquid may be found from minimizing the
appropriate corner contribution to the excess free energy [19]

Fcorner = δp�2 + t� + A

�
, (58)

where all unimportant constants and proportionality factors
have been ignored and t = θ − π/4 is the temperature-like

scaling variable for the filling transition. The first term
in this expression is the volume contribution arising from
the metastability of the liquid when p > psat, the second
term arises from all the surface tension contributions and
changes sign at the thermodynamically determined filling
phase boundary, while the last term is the direct influence
of the dispersion forces with A the Hamaker constant which
is positive for continuous wedge filling. Minimizing (58)
therefore determines the equilibrium value of the microscopic
thickness of the adsorption of liquid at the right-angle corner:

2δp�eq +
(
θ − π

4

)
= A

�2
eq

. (59)

Provided this is smaller than L then the macroscopic predic-
tion for the phase diagram in the partial filling regime θ >

π/4 remain accurate. However, the loci of both the menis-
cus depinning and type II condensation must follow from
the finite-size scaling condition that

√
2�eq ≈ L since both

transitions must still be present when there is overspilling into
the gas reservoir. It therefore follows that for walls that show
continuous corner filling the crossover from the complete to
partial filling regimes is as follows:

(1) Exactly at the corner filling phase boundary θ = π/4,
similar to Fig. 5(b), there is still a remnant of the meniscus
depinning and type II condensation which both lie along the
lines δpmd ∼ δpcc ∝ A/L3. On approaching the purple line the
corner menisci grow continuously, and the adsorption diverges
as � ∝ δp−2/3 in accord with the predictions for the criti-
cal isotherm for continuous corner filling. We can place this
simple finite-size scaling argument in a more general setting
using the scaling theory of continuous wedge filling transi-
tions [45]. In the vicinity of a wedge filling phase boundary,
the thickness of the adsorbed layer of liquid shows scaling
behavior �eq ≈ t−βw�w(δpt−�w ) where βw and �w are the
film thickness and gap exponent, respectively, and �w(x) is a
scaling function. Along the filling critical isotherm, equivalent
to setting θ = π/4 for a right-angle corner, the film thickness
therefore must diverge as �eq ≈ δp−βw/�w on approaching the
pressure of bulk saturation. Thus, we anticipate that in the
H∞ geometry the mesoscopic remnant of the type II capillary
condensation and meniscus depinning transitions occur when

δpmd ∼ δpcc ∝ L− �w
βw , (60)

which recovers the above results for dispersion forces on
using the appropriate critical exponents βw = 1

2 and �w = 3
2 .

For systems with short-ranged forces this scaling argument
predicts δpmd ∼ δpcc ∝ L−5 on substituting for the universal,
fluctuation-dominated, values of the critical exponents βw =
1
4 and � = 5

4 .
(2) In the small temperature window 0 < t < A/L2 in the

partial corner filling regime the lines of meniscus depinning
type II condensation lie along δpmd ∼ δpcc ∝ A/L3 − t/L.
The adsorption of liquid at the corners remains microscopic
as bulk saturation is approached. As the contact angle is
increased the lines of meniscus depinning and type II conden-
sation eventually merge with the saturation curve recovering
the macroscopic phase diagram [Fig. 5(c)] when t ∼ A/L2.

Using the same scaling argument described above we an-
ticipate that, more generally, the meniscus depinning and type
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FIG. 8. Schematic illustration of the length scales determining
the mesoscopic rounding of the continuous meniscus depinning tran-
sition, due to wetting layers adsorbed along the bottom and side
walls. For example, for complete wetting, at a purely macroscopic
level the meniscus rounds the upper corner exactly when its radius
R = L. The effective slit width, however, is altered by the wetting
layer thickness and parallel correlation length along the bottom and
top walls, respectively. For systems with dispersion forces the menis-
cus depinning is rounded over a region �pmd ∝ L− 4

3 . The rounding
of the transition is sharper for partial wetting for which �pmd ∝ L−2.

II capillary condensation disappear by merging into the satu-
ration curve p = psat, when the temperature is slightly below
the critical filling transition corresponding to a value of the
contact angle

θ − π

4
∝ L− 1

βw , (61)

which quantifies the mesoscopic correction to the macro-
scopic phase diagram. For systems with dispersion or
short-ranged intermolecular forces this predicts θ − π

4 ∝ L−2

or θ − π
4 ∝ L−4, respectively. The finite-size scaling predic-

tion (61) is reminiscent of the well-known scaling result for
the shift of the interface localization-delocalization transition,
below the wetting temperature, in capillaries made from walls
with competing wetting and drying properties [42].

C. Rounding of the meniscus depinning transitions

At a macroscopic level, meniscus depinning is a continuous
phase transition, which is of third-order phase for complete
wetting and second-order for partial wetting. This, however, is
rounded when we include mesoscopic length scales associated
with wetting layers or if the edges of the capillary are no
longer geometrically sharp. We consider rounding effects in
turn beginning with case of complete wetting.

1. Complete wetting

At a macroscopic level, it is clear that the location of
meniscus depinning occurs when R = L, i.e., when we can
just fit a meniscus with a quarter circular shape into the ends
of the capillary. However, this geometrical condition ignores
the presence of the complete wetting layers along the bottom
and vertical walls; cf. Fig. 8. These are characterized by a
thickness �π ≈ δp−βco

s and also an parallel correlation length
ξ‖ ≈ δp−νco

‖ arising from thermal interfacial fluctuations [3].

Here βco
s and νco

‖ are the critical exponents defined for the
complete wetting transition and take the values βco

s = 1/3
and νco

‖ = 2/3 for systems with dispersion forces. The length
scales �π and ξ‖ add uncertainty to the effective slit thickness
arising from the wetting layers along the bottom and verti-
cal walls, respectively, with the contribution from the latter
being dominant. Thus, we can expect that meniscus depinning
occurs when R ≈ L ± ξ‖ or

γ

δp
≈ L

(
1 ± ξ‖

L

)
. (62)

It follows that the transition still occurs at δpmd = γ /L (equiv-
alent to δ p̃md = 1/2) but is rounded over a scale �pmd ≈
ξ‖/L2. Allowing for the divergence of ξ‖ at complete wetting
this gives for the rounding of the meniscus depinning when
θ = 0,

�pmd ∝ Lνco
‖ −2. (63)

This rounding of the meniscus depinning transition then de-
termines that the change from type I to type II condensation is
also not sharp but occurs at ap = 2/π rounded over a region

�ap ∝ Lνco
‖ −1. (64)

The additional factor of L here arises because the δ p̃–a phase
diagram is scale-free. For systems with dispersion forces this
leads to the predictions �pmd ∝ L− 4

3 and �ap ∝ L− 1
3 while

for systems with strictly short-ranged forces the rounding of
the meniscus depinning is sharper and occurs over the ranges
�pmd ∝ L− 3

2 and �ap ∝ L− 1
2 .

We can now use the above finite-size scaling considerations
to develop a crossover scaling theory for meniscus depinning
transition for the case of complete wetting. The purely macro-
scopic result (44) implies that, when we ignore the rounding
due to complete wetting layers, the grand potential contains
a singular contribution �sing = γ (R − L)3/6L2. To allow for
the rounding due to complete wetting layers, we anticipate
that this singular contribution is modified by a multiplicative
scaling function W (x). The argument of the scaling function
x must be dimensionless and it is natural to identify this as
x = (δp − δpmd)/�pmd which is simply the relevant scaling
field divided by the predicted rounding. Noting that δp = γ /R
and δpmd = γ /L it follows that the appropriate scaling ansatz
for the crossover and rounding of the meniscus depinning
transition is

�sing = (R − L)3

L2
W

(R − L

Lνco
‖

)
, (65)

where we have ignored all constants and metric factors high-
lighting only the dependence on the slit width. We require
that W (x) → 0 as x → ∞ and W (x) → 1 as x → −∞, which
represent the macroscopic unpinned and pinned states, re-
spectively. The form of W (x) describes the smooth crossover
between these two states when the mesoscopic wetting length
scale ξ‖ is allowed for. In particular, in order that �sing is
nonzero at the macroscopic meniscus depinning transition,
R = L, we require that W (x) ∝ 1/x3, which leads to a singular
or mesoscopic contribution. Exactly at the predicted location
of the macroscopic meniscus depinning transition, R = L,
this crossover scaling ansatz implies that the grand potential
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contains a singular contribution

�sing ∝ L3νco
‖ −2, R = L. (66)

This may be regarded as a fluctuation-induced, Casimir-
like, contribution to the free energy and predicts that �sing ∝
L−1/2 for systems with short-ranged forces. Intriguingly, for
dispersion forces, for which νco

‖ = 2/3, the exponent vanishes
which probably corresponds to a marginal, logarithmic, con-
tribution �sing ∝ ln L. Indeed, this would be consistent with
the known logarithmic contribution to the finite-size excess
free energy of complete wetting drops in the presence of
dispersion interactions [46]. The derivative of �sing w.r.t. δp
determines the singular contribution to the adsorption, over
and above the macroscopic contribution. Since ∂�/∂δp ∝
R2∂�/∂R it follows that we can expect that the adsorption
contains a singular contribution

�sing = (R − L)2�
(R − L

Lνco
‖

)
, (67)

where �(x) is a suitable scaling function trivially related
to W (x). Again we require that �(x) → 0 as x → ∞ and
�(x) → 1 as x → −∞ and �(x) ∝ 1/x2 as x → 0. It follows
that exactly at the (macroscopic) depinning phase boundary,
R = L, the excess adsorption contains a fluctuation-induced
contribution

�sing ∝ L2νco
‖ , R = L, (68)

in addition to the leading-order macroscopic term � =
2�ρ(1 − π

4 )L2 determined earlier. Next, we recall the ex-
act exponent relation for complete wetting, 2νco

‖ = 1 + βco
s

(see Ref. [4]) so that we can also identify this mesoscopic
contribution as �sing ∝ L1+βco

s . The physical meaning of this
contribution is now apparent since the factor Lβco

s is simply the
thickness of the complete wetting layer �π ∝ δp−βco

s evaluated
at the pressure of the meniscus depinning transition δpmd =
γ /L. Thus, the mesoscopic term can be written

�sing ∝ �πL, R = L, (69)

which, of course, is simply the additional contribution to the
adsorption from the meniscus when we shift its position by the
thickness of a wetting layer coating the side walls. Explicitly,
for systems with dispersion forces this yields �sing ∝ L4/3.

2. Critical wetting

There is a very simple extension of this crossover scaling
theory to the case of critical wetting when we suppose that the
meniscus depinning occurs exactly at the temperature Tw of a
continuous wetting transition. This also corresponds to a case
where θ = 0 and that the parallel correlation length ξ‖ would
diverge as δp tends to zero. The only difference with the anal-
ysis of complete wetting is that in place of the expression ξ‖ ≈
δp−νco

‖ we must use ξ‖ ≈ δp−ν‖/�s as is appropriate for the
divergence of the parallel correlation length along the critical
isotherm of the continuous (critical) wetting transition. Here
ν‖ and �s are the correlation length and gap exponents for the
critical wetting transition. For meniscus depinning occurring
exactly at critical wetting the adsorption therefore contains a
mesoscopic contribution �sing ∝ L2ν‖/�s . Again, this can be
interpreted as simply �sing ∝ �πL where �π ∝ δp−βs/�s

md is the

thickness of the wetting layer. More explicitly, for systems
with dispersion forces this yields �sing ∝ L5/4 in contrast to
the L4/3 power law for complete wetting. We make these
remarks, not because this scenario is likely to be observed, but
because it will consistently tie in with the crossover scaling
theory for the case of partial wetting which we develop next.

3. Partial wetting

The same considerations apply to the rounding of the
meniscus depinning and type I/II crossover in the partial
wetting but complete filling regime 0 < θ < π/4. However,
there is a difference in the quantitative nature of the rounding
because the parallel correlation length ξ‖ remains finite as
saturation is approached. Nevertheless, this is still the relevant
microscopic length scale determining the rounding of the tran-
sitions leading to the universal finite-size scaling predictions

�pmd ∝ L−2 , (0 < θ < π/4) (70)

and

�ap ∝ L−1 , (0 < θ < π/4), (71)

for the meniscus depinning of the type I to the type II
crossover, respectively. Therefore both the meniscus depin-
ning and type I to type II crossover is significantly sharper
for partial wetting due to the absence of the complete wetting
layers.

Following a similar line of argument to our discussion
of complete (and critical) wetting we can now develop a
crossover scaling theory for the rounding of the meniscus
depinning for the case of partial wetting where, at a macro-
scopic level, the transition is second-order. We do this directly
for the singular contribution to the adsorption and also for
small contact angles which will allow us to connect with
the limit of complete wetting. From Eq. (48) it follows that
at a macroscopic level the second-order meniscus depinning
transition is associated with a singular contribution �sing ∝
θL(R − cL) where c = 1/(1 − θ ) follows from (45) and char-
acterizes the shift in the location of the transition when the
contact angle is finite. To allow for the rounding of the phase
transition due to the partial wetting layers, we multiple this by
a suitable scaling function �̃(x) where again we may identify
the dimensionless scaling variable x = (δp − δpmd)/�pmd

with �pmd ∝ ξ‖/L2. This immediately determines that the
crossover from a pinned to unpinned configuration is asso-
ciated with a mesoscopic contribution

�sing = θL(R − cL)�̃

(
R − cL

ξ‖

)
. (72)

For partial wetting, we require that the scaling function has
the (macroscopic) limits �̃(x) → 0 as x → ∞ and �̃(x) → 1
as x → −∞ together with the (continuity) condition �̃(x) ∝
1/x as x → 0. For completion we note that the corresponding
scaling ansatz for the grand potential is

�sing = θ

L
(R − cL)2W̃

(
R − cL

ξ‖

)
, (73)

where W̃ (x) is a suitable scaling function with similar macro-
scopic and continuity properties. As we shall see, this can be
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interpreted as a contribution arising from the line tension. Ex-
actly at the pressure of the macroscopic meniscus depinning
transition (δp = δpmd, equivalent to R = cL), this determines
that there is a mesoscopic contribution to the adsorption

�sing ∝ θξ‖L, R = cL, (74)

in addition to the macroscopic term � = 2�ρL2(1 − π
4 )/

(1 − θ )2, which follows directly from (47) when θ is small.
This mesoscopic contribution is analytic in L, as may be
anticipated, since there are no diverging mesoscopic length
scales. Nevertheless, this simple result consistently explains
how a nontrivial power-law dependence on L emerges when
we consider the limit θ → 0 corresponding to the approach
to a critical wetting transition. To see this, we recall that the
critical wetting exponent relation 2 − αs = 2ν‖ − 2βs (involv-
ing the standard critical exponents for the surface specific
heat, adsorption, and parallel correlation length; see Ref. [4]
for details) is equivalent to identifying the contact angle θ ∝
�π/ξ‖. In other words, as with the result (60) for complete
wetting, we can interpret this mesoscopic contribution to the
adsorption at meniscus depinning, as

�sing ∝ �πL, R = cL, (75)

arising directly from the shifted position of the menisci due
to the wetting layer. This contribution is analytic for partial
wetting since �π remains microscopic. However, on approach
a critical wetting transition we must insert �π ∝ Lβs/�s which
recovers consistently the result �sing ∝ L2ν‖/�s derived earlier
for the case θ = 0.

A similar physical interpretation applies to the mesoscopic
contribution to the grand potential for partial wetting. Exactly
at the macroscopic meniscus depinning phase boundary, R =
cL, the scaling ansatz implies that �sing ∝ θξ 2

‖ /L and hence
�sing ∝ �πξ‖/L We now allow for the critical singularities of
the wetting film thickness, �π ∝ t̃−βs A(δpt̃−�s ), and parallel
correlation length, ξ‖ ∝ t̃−ν‖B(δpt̃−�s ), in the vicinity of a
critical wetting transition with t̃ = (Tw − T )/T . Note that this
necessarily includes the behavior of these lengthscales off
bulk coexistence which are described by scaling functions
A(·) and B(·) with δp evaluated at the location of the meniscus
depinning transition, δpmd ∝ 1/L. Substituting for �π and ξ‖,
and then simply multiplying numerator and denominator by
t̃�s , we observe that the singular contribution to the grand
potential reduces to �sing ∝ t̃−βs−ν‖+�sC(Lt̃�s ) with C(y) a
suitable function of the scaling variable y = Lt̃�s . Finally, we
use the standard critical exponent relation 2 − αs − �s = −βs

(again, see Ref. [4]), to get our desired result

�sing ∝ t̃2−αlC(Lt̃�s ). (76)

Here αl = αs + ν‖ is nothing other than the critical exponent
characterizing the singularity in the line tension, τl ∝ t̃2−αl , on
approaching the wetting temperature Tw [47]. In other words,
the present crossover scaling theory for the rounding of the
macroscopic meniscus depinning transition is equivalent to
allowing for the line tension associated with the contact of the
meniscus with the corner and walls. We note that the scaling
function C(y) must satisfy C(∞) = 1 and C(y) ∝ y(αl −2)/�s

as y → 0, to ensure that this mesoscopic contribution to the
grand potential exists away from and at the critical wetting

transition itself. Together with the direct, physically intuitive,
interpretation of the mesoscopic contribution to the adsorp-
tion, we regard this as convincing support for the crossover
scaling theory for the rounding of the depinning transition.

4. Wall structure and roughness

The meniscus depinning transition and type I/II crossover
will also be rounded if the edge of the capillary is no longer
geometrically sharp—for example, if the upper corners of the
slit are not modeled as perfect right angles but instead, e.g., as
quarter circles of radius re. This will always be the case at a
microscopic level and presumably, for real solids, the smallest
value of re corresponds to a few molecular diameters σ . The
length scale re also serves to round the meniscus depinning
transition, replacing ξ‖ in the argument given above, giving
rise to similar predictions (70) and (71), but now induced by
an underlying geometrical roughness. Thus, we anticipate that
the meniscus depinning transition is always rounded, either by
the thermal fluctuations of wetting layers or wall roughness or
molecular structure. For complete wetting, when L is large,
the rounding is dominated by the effects arising from interfa-
cial wandering, characterized by ξ‖, while for partial wetting,
the effects of wetting layers and wall molecular structure are
comparable. We anticipate that the minimum value of the
uncertainty in the location of the type I to the type II crossover
is �ap ≈ σ/L, which will be significant for nanoscopic slits.

V. DENSITY FUNCTIONAL THEORY

In this section we compare our predictions with a micro-
scopic DFT model [48], which will allow us to study these
phenomena at the molecular scale. We concentrate on two
aspects: first, that for complete wetting, the capillary conden-
sation occurs over the whole range of accessible aspect ratios
and is of type I for small a and type II for large a. Second,
in the partial filling regime, θ > π/4 condensation is only
of type I and is suppressed for sufficiently large aspect ratios
a > a0, which we determine and compare with the theoretical
prediction a0 = cot θ .

To this end, we employ the same DFT model that we have
used recently for the HH geometry, which combines Rosen-
feld’s fundamental measure theory [49] describing accurately
any packing effects, with a mean-field treatment of the attrac-
tive part of the interatomic interaction modeled by a truncated
Lennard-Jones potential; see, e.g., [50,51] for explicit details.
The mean-field DFT model misses some fluctuation effects
associated with interfacial wandering and the rounding of the
capillary condensation transition; however, these play no role
in determining the location of the type I and type II capillary
condensation and meniscus depinning transitions which are of
our central concern here.

Within classical DFT, the equilibrium one-particle density
ρ(r) of an inhomogeneous fluid is determined by minimiza-
tion of the grand potential functional

�[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ]. (77)

Here F[ρ] is the intrinsic free-energy functional which con-
tains all the information about the model fluid, V (r) is the
external potential which, in our case, represents the effect of
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the confining walls and μ is the chemical potential. The intrin-
sic free-energy functional can be separated into an ideal-gas
term, Fid, and an excess part, Fex, arising from the fluid-fluid
interaction:

F[ρ] = Fid[ρ] + Fex[ρ]. (78)

The ideal-gas term due to purely entropic effects is known
exactly:

βFid[ρ] =
∫

drρ(r)[ln(ρ(r)�3) − 1], (79)

where � is the thermal de Broglie wavelength and β = 1/kBT
is the inverse temperature.

The fluid is modeled using a truncated (and nonshifted)
Lennard-Jones potential, in which case the excess contribution
can be treated in a perturbative manner and is further split
into a contribution Fhs due to short-range repulsive forces
approximated by a hard-sphere potential, and a contribution
Fatt arising from the attractive interactions:

Fex[ρ] = Fhs[ρ] + Fatt[ρ]. (80)

The repulsion part of the free energy is described using Rosen-
feld’s fundamental measure theory [49]

Fhs[ρ] = kBT
∫

dr �({nα}), (81)

where the free-energy density � depends on the set of
weighted densities {nα}. Within the original Rosenfeld ap-
proach these consist of four scalar and two vector functions,
which are given by convolutions of the density profile and the
corresponding weight function:

nα (r) =
∫

dr′ρ(r′)wα (r − r′) α = {0, 1, 2, 3, v1, v2},
(82)

where w3(r) = �(R − |r|), w2(r) = δ(R − |r|), w1(r) =
w2(r)/4πR, w0(r) = w2(r)/4πR2, wv2(r) = rδ(R − |r|)/R,
and wv1(r) = wv2(r)/4πR. Here � is the Heaviside function
and the hard-sphere radius is set to R = σ/2 where σ is the
fluid potential parameter defined below.

The attractive free-energy contribution is treated at a mean-
field level:

Fatt[ρ] = 1

2

∫
dr1ρ(r1)

∫
dr2ρ(r2)uatt (|r1 − r2|), (83)

where uatt (r) is the attractive part of the Lennard-Jones-like
potential

ua(r) =
⎧⎨
⎩

0 , r < σ,

−4ε
(

σ
r

)6
, σ < r < rc,

0 , r > rc,

(84)

which is truncated at rc = 2.5 σ . For this model, the critical
temperature corresponds to kBTc = 1.414 ε.

We begin by considering the phase diagram for the case of
complete wetting. Actually, we flip the scenario and consider
walls which have a purely long-ranged repulsive component
which ensures that the horizontal and vertical surfaces are all
completely dry with contact angle θ = π . The phase diagram
shown in Fig. 5(a) remains unchanged except that now we
consider the reservoir to be a dense liquid and that the fluid
in the slit undergoes capillary evaporation as the pressure
is reduced to psat [that is, the roles played by the CG and
CL phases are simply reversed in Fig. 5(a)]. By focusing on
drying we also avoid the aforementioned issues related to
molecular layering and volume exclusion. Finally, we add that
we use a long-ranged repulsion instead of a pure hard wall to
better model and numerically handle the corner edges of the
H∞ geometry.

The repulsive walls are assumed to be formed of atoms
distributed uniformly with a number density ρw which interact
with the fluid atoms via the repulsive part of the Lennard-
Jones potential, φr (r) = 4εw( σw

r )12. The net potential induced
by the walls can be split into a term V r

bottom due to the bottom
(planar) wall and the contribution V r

top of the top wall of width
H . Both are determined by integrating φr (r) over the whole
domains of the respective walls:

V r (L, H ; x, z) = V r
bottom(z) + V r

top(H ; L − x, z), (85)

where V r
bottom(z) = 4

45πεwρwσ 3(σ/z)9 and

V r
top(H ; x, z) = πεwσ 12ρw[ψ12(x,∞) − ψ12(x, z)

−ψ12(x − H,∞) + ψ12(x − H, z)] (86)

with

ψ12(x, z) = − 1

2880

128 x16 + 448 x14z2 + 560 x12z4 + 280 x10z6 + 35 x8z8 + 280 x6z10 + 560 x4z12 + 448 z14x2 + 128 z16

z9x9(x2 + z2)7/2 .

(87)

In Fig. 9 we show the phase diagram obtained from
the DFT at T = 0.92 Tc, where Tc is the bulk critical
temperature of the model fluid, and ρwεw = 0.8 εσ−3. We
use the fluid-fluid Lennard-Jones potential parameters σ and
ε as the appropriate units for length and energy, respectively.
Here the vertical axis is expressed in terms of the chemical po-
tential difference from its value at saturation δμ = μ − μsat,
which we recall is related to the pressure difference approxi-

mately as δp ≈ δμ�ρ. We have obtained the phase diagram
showing the line of capillary condensation over a wide range
of the aspect ratio for a microscopic slit separation L = 10 σ ,
by computing the loci where the CG and CL phases have
the same numerically determined equilibrium grand poten-
tial. Our results are consistent with the predicted shape of
the macroscopic phase diagram and also demonstrate clearly
that the condensation involve pinned and unpinned menisci
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FIG. 9. Microscopic DFT results for the phase diagram in an
H∞ open slit with purely repulsive walls, corresponding to com-
plete drying θ = π , showing the locus of capillary evaporation as a
function of increasing aspect ratio. Here the chemical potential shift
from saturation is measured in units of the strength of the fluid-fluid
potential. Capillary evaporation occurs for all values of the aspect
ratio.

for small and large aspect ratios, respectively. Figures 10(a)
and 10(b) show the coexisting CL and CG phases for aspect
ratio a = 1/2 in which the pinning of the menisci at the ends
is clearly visible. On further reducing the chemical potential
towards saturation these menisci depin and round the corners
as shown in Fig. 10(c). However, when we reduce the value
of H , the character of the capillary condensation changes.
This is illustrated in Fig. 11, which shows the coexisting CL
and CG phases for an aspect ratio a = 2 where the menisci
at capillary evaporation lie outside the capillary slit. The two
values of a chosen here lie either side of the predicted value
ap = 2/π . However, the microscopic size of this capillary
means that the crossover from type I to type II condensation is
smooth.

For the second part of our DFT study we test the predicted
form of the phase diagram [Fig. 5(d)] in the partial filling
regime. To this end we must add an attractive part to the
substrate-fluid potential in order to decrease the contact angle.
We also return to the original scenario where the reservoir is
a bulk gas and consider the capillary condensation that occurs
when the chemical potential is increased towards saturation.
We assume the walls are made of atoms interacting with the
fluid via the Lennard-Jones 12-6 potential, in which case the
potential of the bottom wall becomes the familiar Lennard-
Jones 9-3 potential:

Vbottom(z) = 4πεwρwσ 3

[
1

45

(σ

z

)9
− 1

6

(σ

z

)3
]
. (88)

The potential of the top wall will now be of the form

Vtop(H ; x, z) = V r
top(H ; x, z) + V a

top(H ; x, z), (89)

FIG. 10. Numerically determined DFT results for the density
profiles for an H∞ slit with repulsive walls corresponding to θ = π

for a long slit with aspect ratio a = 1/2. (a), (b) The coexisting CL
and CG phases, respectively, where the menisci for the latter evap-
orated phase are clearly pinned and located within the slit. (c) The
density profile closer to saturation where it is clear that the menisci
are unpinned and are located outside the slit.

where the attractive portion of the potential is

V a
top(H ; x, z) = αw

[
1

(H − x)3
+ ψ6(x − H, z)

− 1

x3
− ψ6(x, z)

]
, (90)

with

αw = − 1
3πεwσ 6ρw (91)

and

ψ6(x, z) = −2 x4 + x2z2 + 2 z4

2z3x3
√

x2 + z2
. (92)

The wetting temperature of a planar wall corresponding
to this full Lennard-Jones potential is known to be Tw ≈
0.91 Tc [52]. We set the temperature T = 0.85 Tc, for which
the Young contact angle is θ ≈ 53◦ which therefore lies in
the partial filling regime. The numerically determined phase
diagram showing the line of capillary condensation which
terminates at bulk coexistence at a specific value of a0 is
displayed in Fig. 12. We observed only type I capillary con-
densation involving pinned menisci over the whole range of
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FIG. 11. Numerically determined DFT results for the density
profiles for an H∞ slit with repulsive walls corresponding to θ = π

for a short slit with aspect ratio a = 1. the plots show the coexisting
CL (a) and CG (b) phases where the menisci for the latter evaporated
phase are unpinned and located outside the slit.

aspect ratios up to the maximal value a0 ≈ 0.78 at which the
condensation occurs at bulk coexistence. Representative den-
sity profiles of the coexisting states (for H = 15 σ ) for which
a = 2/3 are shown in Fig. 13. Our numerically determined
value for a0 is extremely close to the macroscopic theoretical
prediction a0 ≈ 0.75 given in Eq. (34).

VI. SUMMARY

In this paper we have considered the phase equilibria of
a fluid in an open slit formed when a wall of finite length
H is brought near a substrate of infinite extent. In the first
part of our paper we focused on understanding the basic
macroscopic aspects of the possible phase behavior which
is now much richer than that for the related HH geome-
try in which both walls are the same length. This richness
emerges because each aspect of the H∞ geometry brings with
it the possibility of a phase transition. Thus, the proximity
of the two parallel walls may induce capillary condensation
and the openness of the slit ends means that the condensed
phase must involve menisci. The presence of edges mean that
the upper parts of the menisci may be pinned at these upper
corners while the macroscopic extent of the lower wall mean
that the menisci may overspill into the right-angle corners
and be unpinned. The fact the resulting phase diagram shows
two types of capillary condensation, involving either pinned
(type I) or unpinned (type II) menisci, arises directly from the
resulting marriage with the meniscus depinning and corner
filling transitions. Finally, condensation can always be sup-
pressed by reducing the length of the slit when the free-energy
cost of creating menisci becomes too great. At the point
where the type I condensation is suppressed the menisci are
flat and the edge contact angle θ cc

e = π − θ . Therefore, at this
point, the capillary condensation mimics the phase separation

FIG. 12. Numerically determined DFT results for the phase dia-
gram for an H∞ slit for walls with a full Lennard-Jones potential,
which would give rise to partial corner filling with contact angle
θ ≈ 53◦. Capillary condensation is only of type I and ends, at bulk
saturation, when the aspect ratio a0 ≈ 0.78, which is very to the
theoretical prediction a0 ≈ 0.75 given by Eq. (34).

occurring in infinite slit with materially different walls with
opposing wetting properties.

Our macroscopic results are summarized in the phase di-
agrams shown in Fig. 5, which shows the (δ p̃-a) section for
different θ and Fig. 6 which shows the (δ p̃-θ ) section for
different aspect ratio. The portrayal of the possible phase
equilibria in terms of (δ p̃-θ ) is perhaps most physically rel-
evant as, in practice, it is easier to continuously vary the
contact angle rather than the aspect ratio. The macroscopic
phase diagram falls into three possible regimes delineated by

FIG. 13. Numerically determined DFT results for the coexisting
density profiles for type I capillary condensation in a short slit with
aspect ratio a = 2/3 for walls with partial wetting θ = 53◦. The
menisci at capillary evaporation, which separate the capillary liquid
from the outside gas reservoir, are pinned, and lie within the slit.
These menisci are near planar since the capillary condensation occurs
close to bulk saturation.
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universal values of the aspect ratio. Long capillaries, with
a < 2/π , for which the condensation is always of type I and
there is a separate third-order continuous meniscus depinning
transition. Intermediate capillaries, with 2/π < a < 1, where
the condensation is either of type I (for θ > θp) or type II
(for θ < θp) where the separatrix between these two regimes
intersects the line of the meniscus depinning transition. And
finally, short capillaries, with a > 1, for which only type II
condensation exists and there is no meniscus depinning. In
each of these three regimes condensation is suppressed for
sufficiently large values of the contact angle θ > θ0, the value
of which depends on a.

We have shown that, at macroscopic level, meniscus depin-
ning is a continuous phase transition which is third-order for
complete wetting and second-order for partial wetting; to the
best of our knowledge this is a new example of an interfacial
phase transition, in which the first or second derivative of the
adsorption is discontinuous. Meniscus depinning does not in-
volve the divergence of the adsorption itself as in wetting and
wedge-filling transitions, nor does it involve the coexistence
of different phases as in first-order wetting and prewetting;
at the meniscus depinning transition the pinned and depinned
states are identical. We have discussed the rounding of menis-
cus depinning transitions which occur on mesoscopic level
due to the presence of wetting layers using the crossover
scaling theory which allows for the direct influence of inter-
molecular forces and thermal interfacial fluctuations. Similar
rounding will occur if the edge of the capillary slit is not
geometrically sharp which of course will always be the case
on the molecular level. However, even allowing for these,
there is essentially no rounding of the suppression of capillary
condensation as the aspect ratio is increased (for a given
value of θ ). Indeed, in mean-field studies this suppression of
capillary condensation remains a sharp effect. This we have
illustrated using a microscopic DFT model which shows that

the macroscopic prediction for the value of a0 is extraordinar-
ily accurate down to the molecular scale.

We can extend the present study in several ways by, for
example, supposing that the bottom wall is of finite length,
but still longer than the top wall. Depending on the extension
of the bottom wall, the meniscus may also be either pinned or
unpinned at this lower corner, similar but not quite identical to
the pinning discussed here for the top corner. It would be inter-
esting to study the transition between these regimes, its impact
on capillary condensation and also understand its mesoscopic
rounding when thermal fluctuations are included. Indeed, it
is natural to think that this is related to the commonly ob-
served phenomena of contact angle hysteresis. The distinction
between type I and type II condensation involving pinned
and unpinned menisci is also pertinent to other geometries,
e.g., if we bring a vertical cylinder towards a macroscopic
surface. The rounding of the meniscus transition considered
here arises due to the thermal fluctuations of the adsorbed wet-
ting layers and occurs for even perfectly sharp geometries. It
would also be interesting to understand how surface roughness
affects the edge contact angle and the meniscus depinning
transition, which may well connect with the phenomena of
contact angle hysteresis. Including gravity may also introduce
interesting new effects associated with capillary emptying
transitions [53,54]. Finally, the equilibrium phase transitions
considered here are also a prerequisite for understanding the
dynamics of meniscus depinning which may be studied, for
example, using dynamical DFT or simulation methods similar
to those described in [55].

ACKNOWLEDGMENT

This work was financially supported by the Czech Science
Foundation, Project No. GA 20-14547S.

[1] J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity
(Oxford University Press, Oxford, 1982).

[2] D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial
Phenomena, edited by C. A. Croxton (Wiley, New York, 1985),
pp. 45–134.

[3] S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press, New
York, 1988), Vol. 12, pp. 1–218.

[4] M. Schick, in Liquids and Interfaces, edited by J. Chorvolin,
J. F. Joanny, and J. Zinn-Justin (Elsevier, New York, 1990), pp.
415–497.

[5] G. Forgacs, R. Lipowsky, and T. M. Nieuwenhuizen, in Phase
Transitions and Critical Phenomena, edited by C. Domb and J.
L. Lebowitz (Academic Press, London, 1991), Vol. 14.

[6] D. Henderson, Fundamentals of Inhomoheneous Fluids (Marcel
Dekker, New York, 1992).

[7] L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M.
Sliwinska- Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

[8] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev.
Mod. Phys. 81, 739 (2009).

[9] J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).
[10] C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).

[11] R. Lipowsky and D. M. Kroll, and R. K. P. Zia, Phys. Rev. B
27, 4499 (1983).

[12] R. Lipowsky and M. E. Fisher, Phys. Rev. B 36, 2126
(1987).

[13] M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75, 5857 (1981).
[14] H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78, 3279 (1983).
[15] R. Evans and P. Tarazona, Phys. Rev. Lett. 52, 557 (1984).
[16] R. Evans and U. Marini Bettolo Marconni, Chem. Phys. Lett.

115, 415 (1985).
[17] R. Evans, P. Tarazona, and U. Marini Bettolo Marconni,

J. Chem. Phys. 84, 2376 (1986).
[18] E. H. Hauge, Phys. Rev. A 46, 4994 (1992).
[19] K. Rejmer, S. Dietrich, and M. Napiórkowski, Phys. Rev. E 60,

4027 (1999).
[20] A. O. Parry, C. Rascón, and A. J. Wood, Phys. Rev. Lett. 83,

5535 (1999).
[21] D. B. Abraham and A. Maciołek, Phys. Rev. Lett. 89, 286101

(2002).
[22] G. Delfino and A. Squarcini, Phys. Rev. Lett. 113, 066101

(2014).
[23] A. Milchev, M. Müller, K. Binder, and D. P. Landau, Phys. Rev.

Lett. 90, 136101 (2003); Phys. Rev. E 68, 031601 (2003).

044801-18

https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1063/1.434402
https://doi.org/10.1103/PhysRevLett.38.1486
https://doi.org/10.1103/PhysRevB.27.4499
https://doi.org/10.1103/PhysRevB.36.2126
https://doi.org/10.1063/1.442035
https://doi.org/10.1063/1.445087
https://doi.org/10.1103/PhysRevLett.52.557
https://doi.org/10.1016/0009-2614(85)85111-3
https://doi.org/10.1063/1.450352
https://doi.org/10.1103/PhysRevA.46.4994
https://doi.org/10.1103/PhysRevE.60.4027
https://doi.org/10.1103/PhysRevLett.83.5535
https://doi.org/10.1103/PhysRevLett.89.286101
https://doi.org/10.1103/PhysRevLett.113.066101
https://doi.org/10.1103/PhysRevLett.90.136101
https://doi.org/10.1103/PhysRevE.68.031601


CAPILLARY CONDENSATION AND DEPINNING … PHYSICAL REVIEW E 104, 044801 (2021)

[24] N. R. Bernardino, A. O. Parry, and J. M. Romero-Enrique,
J. Phys.: Condens. Matter 24, 182202 (2011).

[25] A. Malijevský and A. O. Parry, Phys. Rev. Lett. 110, 166101
(2013).

[26] A. Malijevský and A. O. Parry, J. Phys.: Condens. Matter 25,
305005 (2013).

[27] M. E. Fisher and P.-G. de Gennes, C. R. Seances Acad. Sci.,
Ser. B 287, 207 (1978).

[28] M. P. Nightingale and J. O. Indekeu, Phys. Rev. Lett. 54, 1824
(1985).

[29] H. Li and M. Kardar, Phys. Rev. Lett. 67, 3275 (1991).
[30] C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C.

Bechinger, Nature (London) 451, 172 (2008).
[31] A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K.

Lamoreaux, Nat. Phys. 7, 230 (2011).
[32] D. B. Abraham and A. Maciołek, Europhys. Lett. 101, 20006

(2013).
[33] S. Paladugu, A. Callegari, Y. Tuna, L. Barth, S. Dietrich, A.

Gambassi, and G. Volpe, Nat. Commun. 7, 11403 (2016).
[34] M. N. Barber, in Phase Transitions and Critical Phenom-

ena, edited by C. Domb and J. L. Lebowitz (Academic Press,
London, 1983), Vol. 8.

[35] K. Binder, in Phase Transitions and Critical Phenomena, edited
by C. Domb and J. L. Lebowitz (Academic Press, London,
1983), Vol. 8.

[36] J. L. Cardy, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press,
London, 1987), Vol. 11.

[37] V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Tran-
sitions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic Press, London, 1991), Vol. 14.

[38] A. Malijevský, A. O. Parry, and M. Pospíšil, Phys. Rev. E 96,
020801(R) (2017).

[39] Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh,
Z. W. Zhou, I. V. Grigorieva, F. C. Wang, and A. K. Geim,
Nature (London) 585, 250 (2020).

[40] A. Malijevský and A. O. Parry, Phys. Rev. Lett. 127, 115703
(2021).

[41] A. Malijevský and A. O. Parry, Phys. Rev. Lett. 120, 135701
(2018).

[42] A. O. Parry and R. Evans, Phys. Rev. Lett. 64, 439 (1990).
[43] C. Rascón and A. O. Parry, Nature (London) 407, 986

(2000).
[44] V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).
[45] A. O. Parry, C. Rascón, and A. J. Wood, Phys. Rev. Lett. 85,

345 (2000).
[46] A. Malijevský, A. O. Parry, and M. Pospíšil, Phys. Rev. E 96,

032801 (2017).
[47] A. Robledo and J. O. Indekeu, Europhys. Lett. 25, 17 (1994).
[48] R. Evans, Adv. Phys. 28, 143 (1979).
[49] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[50] A. Malijevský, J. Phys.: Condens. Matter 25, 445006 (2013).
[51] M. Láska, A. O. Parry, and A. Malijevský, Phys. Rev. Lett. 126,

125701 (2021).
[52] A. Malijevský and A. O. Parry, Phys. Rev. E 91, 052401

(2015).
[53] A. O. Parry, C. Rascon, E. A. G. Jamie, D. G. A. L. Aarts, Phys.

Rev. Lett. 108, 246101 (2012).
[54] C. Rascón, A. O. Parry, and D. G. A. L. Aarts, Proc. Natl. Acad.

Sci. USA 113, 12633 (2016).
[55] M. L. Trobo, E. V. Albano, and K. Binder, J. Chem. Phys. 148,

114701 (2018).

044801-19

https://doi.org/10.1088/0953-8984/24/18/182202
https://doi.org/10.1103/PhysRevLett.110.166101
https://doi.org/10.1088/0953-8984/25/30/305005
https://doi.org/10.1103/PhysRevLett.54.1824
https://doi.org/10.1103/PhysRevLett.67.3275
https://doi.org/10.1038/nature06443
https://doi.org/10.1038/nphys1909
https://doi.org/10.1209/0295-5075/101/20006
https://doi.org/10.1038/ncomms11403
https://doi.org/10.1103/PhysRevE.96.020801
https://doi.org/10.1038/s41586-020-2978-1
https://doi.org/10.1103/PhysRevLett.127.115703
https://doi.org/10.1103/PhysRevLett.120.135701
https://doi.org/10.1103/PhysRevLett.64.439
https://doi.org/10.1038/35039590
https://doi.org/10.1103/PhysRevB.30.322
https://doi.org/10.1103/PhysRevLett.85.345
https://doi.org/10.1103/PhysRevE.96.032801
https://doi.org/10.1209/0295-5075/25/1/004
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1103/PhysRevLett.63.980
https://doi.org/10.1088/0953-8984/25/44/445006
https://doi.org/10.1103/PhysRevLett.126.125701
https://doi.org/10.1103/PhysRevE.91.052401
https://doi.org/10.1103/PhysRevLett.108.246101
https://doi.org/10.1073/pnas.1606217113
https://doi.org/10.1063/1.5016612

