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Two-fluid model for a fluid with tetrahedral-octupolar order
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We investigate the macroscopic dynamics of a two-fluid system with tetrahedral order. As all normal-fluid
two-fluid systems one has—compared to a simple fluid—the velocity difference between the two subsystems and
the concentration of one component as additional macroscopic variables. Depending on the type of system, the
concentration can either be a conserved quantity or relax on a long, but finite timescale. Due to the existence of
the tetrahedral order such a system breaks parity symmetry. Here we discuss physical systems without preferred
direction in real space, meaning that our description applies to optically isotropic materials. We find a number
of reversible as well as dissipative dynamic cross-coupling terms due to the additional octupolar order, when
compared to a fluid mixture. As the most interesting cross-coupling term from an experimental point of view,
we identify a dissipative cross-coupling between the relative velocity and the usual velocity gradients. Applying
a shear flow in a plane, this dissipative cross-coupling leads to a velocity difference perpendicular to the shear
plane. As a result one can obtain a spatially homogeneous oscillation of the relative velocity. In addition, this
induced relative velocity can couple as a function of time and space to the concentration, which gives rise to an
overdamped propagating soundlike mode, where the overdamping arises from the fact that velocity difference is
a macroscopic variable and not strictly conserved. We also show that electric field gradients are connected with
an analogous reversible cross-coupling and can lead in a planar shear geometry to an overdamped propagating
mode as well.
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I. INTRODUCTION

The hydrodynamics of condensed systems has a long
history for the description of macroscopic and mesoscopic
phenomena at sufficiently long wavelengths and low frequen-
cies (compare, for example, Refs. [1–3]). It has been applied
to many systems including crystals [2], simple fluids and mis-
cible fluid mixtures [1], superfluids [4–6], and liquid crystals
[7–9]. To derive hydrodynamics linear irreversible thermody-
namics and conservation laws as well as spontaneously broken
continuous symmetries are key ingredients [2–7,9].

It became also clear that there is a large class of complex
liquids and soft matter materials composed of immiscible sub-
systems for which also a macroscopic description is desirable.
This class includes fluid emulsions [10], colloidal suspensions
[11], and polymer solutions and mixtures [12]. A description
of such systems that allows for a different dynamics of the
subsystems, generally is called a two-fluid description. A
systematic derivation of a macroscopic two-fluid description
involving mixtures of a simple fluid with nematic liquid crys-
tals and an elastic medium has been presented in Refs. [13,14].
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As additional macroscopic variables the velocity difference of
the two subsystems is taken into account and, in addition, a
concentration variable related to one of the two subsystems.
The term macroscopic variables is used here to denote vari-
ables that relax on a sufficiently long, but finite timescale. This
concept has been introduced by Khalatnikov [4] for the re-
laxation of the order parameter modulus near the λ-transition
in superfluid 4He and has since been applied to many
systems [9].

In this manuscript we only consider the case that the
relative velocity is a macroscopic variable in this spirit and
relaxes always on a finite timescale. In particular, we do not
consider superfluid systems, where, in addition to the normal
velocity, also the superfluid velocity is a true hydrodynamic
variable due to the spontaneously broken gauge symmetry.
The hydrodynamic consequences of this fact have been ana-
lyzed for superfluid 4He [4,5] as well as for superfluid 3He [6,
15–19] and most recently for the superfluid phases of 3He in
a strongly anisotropic aerogel [20].

The concentration can be either a conserved hydrodynamic
variable as for colloidal particles in a colloidal suspension or
a relaxing macroscopic one, in the case when particles from
one subsystem can be converted into another. The latter is
the case, for example, for the cluster formation above the
nematic-smectic A transition in liquid crystals studied recently
in a two-fluid picture [21]. In this manuscript we will consider
both cases.

Recently, macroscopic two-fluid descriptions have been
given for magneto-rheological fluids (simple liquid carrier
fluid and field-responsive magnetic particles) [22], for the
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breakdown of flow alignment in nematic liquid crystals with
smectic clusters [21], for elastic composite materials made of
two solid compounds [23], as well as for the formation of
viscoelastic clusters above the glass transition [24].

In the present paper we present a study of the macro-
scopic behavior of a two-fluid system in which one of the
two fluids is a truly isotropic liquid, while the other one
is a tetrahedral system with Td symmetry, a subgroup of
the cubic symmetry group [25], that has been introduced to
the field of liquid crystals by Fel [26]. In the following years
the theoretical investigations involving tetrahedral order fo-
cused on phase transitions [26–28] and on many aspects of
single-fluid macroscopic dynamics [26,29–32].

Tetrahedral order is described by a rank-3, fully symmetric
tensor Ti jk that can be represented by the four equivalent
position vectors, nα

i , α = 1, 2, 3, 4, of the edges of a regular
tetrahedron, Ti jk = ∑4

α=1 nα
i nα

j nα
k . It does not contain polar

order (due to Tikk ≡ 0) nor any type of conventional nematic
quadrupolar order described by Qi j . Indeed, since Ti jk is re-
lated to the third order (octupolar) mass moment distribution
the names tetrahedral and octupolar order are both used.

Since the position vectors are real (polar) vectors, Ti jk

changes sign under spatial inversion and, thus breaks parity
symmetry. Indeed the inverted structure −Ti jk differs from
the original one by a π/2 rotation about one of the fourfold
symmetry axis of the tertahedron. Obviously, this kind of par-
ity breaking is quite different from that in polar systems (due
to a polar vector) or in chiral systems (due to a pseudoscalar
quantity).

The tetrahedral order breaks spatial inversion symmetry,
spontaneously. That means, the orientation of Ti jk is arbitrary
and rigid rotations of Ti jk do not cost energy and are therefore
slow symmetry variables that have to be included in the list of
hydrodynamic variables. This is similar to the director in ne-
matic liquid crystal. However, not all changes of Ti jk describe
pure rotations—only those that are perpendicular to the orig-
inal state. They are described by δ�i ≡ (1/4β )εipqTpklδTqkl

with a suitable normalization β. The similarity to nematics
is obvious, where not all changes of the director are hydrody-
namic variables, but only the perpendicular ones, εi jkniδn j .
The connection is even closer to biaxial, orthorhombic ne-
matics [9]—the latter however do not break parity. It should
be noted that the three δ�i, representing the three Euler an-
gles, do not form a vector, since, e.g., δ1δ2�i �= δ2δ1�i. This
causes some additional nonlinear contributions, for details
cf. Ref. [32].

A material that only shows tetrahedral order is optically
isotropic, since Ti jk cannot couple to the dielectric (rank-2)
tensor. This makes the direct detection of Td materials rather
difficult. However, there are some indications of the presence
of a tetrahedral phase in certain bent-core systems in the
vicinity of the nematic phase transition [33,34]. In Ref. [33]
it was shown that in high magnetic fields a strongly first
order—of a magnitude not found for rodlike molecules—
phase transition to the nematic phase could be induced and
it was suggested that this could be due to tetrahedral order. In
Ref. [34] two peaks in the isotropic phase above the nematic
phase were found in heat capacity measurements indicating
the presence of two distinct optically isotropic phases. Also
the magnetic field induced birefringence showed significant

qualitative changes compared to rodlike molecules [35], but
could be accounted for by a model involving quadrupolar
(Qi j) as well as octupolar (Ti jk) order [34]. There are ad-
ditional indications for tetrahedral phases involving smectic
phases, which are discussed in the review [32].

For various aspects of molecular and microscopic model-
ing in liquid crystals involving tetrahedral order we refer to
Refs. [36–39]. More recently there has also been growing
interest in various mathematical aspects of octupolar order
in two and three spatial dimensions, in particular by Virga’s
group [40–42]. We also emphasize that the interest in tetra-
hedral order goes beyond liquid crystals (and their optically
isotropic phases), namely, in the direction of other soft matter
systems. As an example we mention applications of octupolar
order in the field of movable and deformable active particles
in two dimensions by Ohta’s group [43–45], which have been
designed to model self-propelled micro-organisms.

Here we present a macroscopic two-fluid description of a
combined system consisting of a tetrahedral phase (or tetrahe-
dral clusters) embedded in a simple isotropic liquid. It should
be noted that our description is based on macroscopic symme-
tries and does not refer to any specific microscopic model or
specific molecules. The total system breaks parity symmetry
due the properties of the tetrahedral phase discussed above.
It is optically isotropic and therefore difficult to detect. It is
the main purpose of this manuscript to analyze, how such a
two-fluid system could be identified experimentally due to
the presence of the relative velocity (between the two sub-
systems) as a macroscopic variable.

As we will show a planar shear flow can trigger a relative
velocity in the direction perpendicular to the shear plane. This
effect will in turn generate further spatiotemporal dynamic
effects including an overdamped propagating mode due to
the coupling to the concentration variable of one subsystem.
We will also briefly outline that similar physically observable
effects can arise when planar electric field gradients are ap-
plied to an ordered sample of such a two-fluid system. None
of the effects predicted in this paper can arise for an opti-
cally isotropic one-component system, which is either truly
isotropic or purely tetrahedral.

In Sec. II we present the details of the macroscopic dynam-
ics for a two-fluid model with tetrahedral order. In Sec. III
we investigate the coupling between relative velocities and
velocity gradients for a shear-flow set-up. In Sec. IV we
summarize the results and give a perspective. In Appendix
A we study the effect of an external extensional flow, in
Appendix B we discuss selected dynamic effects of electric
fields and their gradients, while in Appendix C we discuss
a reversible coupling of the velocity difference to tetrahedral
order in the chiral T phase.

II. MACROSCOPIC TWO-FLUID DYNAMICS FOR A
FLUID WITH TETRAHEDRAL ORDER

A. Variables

For the hydrodynamics of any system one has to take into
account as variables all locally conserved quantities, e.g., the
momentum density gi, the mass density ρ, and the total energy
density ε. For a simple isotropic fluid this is all one needs.
On the macroscopic level we describe the present system as
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a homogeneous mixture of a simple fluid with density ρs

and of a fluid with tetrahedral order and density ρh, adding
up to the total density ρ = ρh + ρs. In addition, we allow
the two species to move with two distinct velocities, vs

i and
vh

i , respectively. They are related to the appropriate single
momentum densities gs

i = ρsv
s
i and gh

i = ρhv
h
i that add up to

the total momentum density gi = ρvi, thereby defining the
mean velocity vi. For more details of these two-fluid aspects
cf. Ref. [13,14].

Compared to a simple fluid we take into account as addi-
tional variables the concentration φ = ρh/ρ and the relative
velocity wi = vh

i − vs
i . In the limit of a single fluid there is

wi → 0 and φ → 0. The relative velocity is a slowly relax-
ing quantity. In this paper we deal with both possibilities
for the dynamics of the concentration variable φ, either dif-
fusive or relaxing. The first case applies to situations, like
in a binary colloidal mixture, where the constituents of the
two fluids are conserved individually requiring material trans-
port for diffusion. A relaxational behavior is possible, when
the constituents of the isotropic and the tetrahedral fluid are
molecularly the same—just either ordered or not. In the fol-
lowing we discuss the dynamics first for the (more general)
relaxational case and discuss the restrictions that apply in the
conserved case.

The present composite fluid has in addition tetrahedral
order that spontaneously breaks rotational symmetry. This is
manifest by the existence of a symmetric rank-3 tensor Ti jk

that is built by the four position vectors of the corners of a
tetrahedron [26]. The orientation of this tetrahedron in space is
arbitrary and not energetically fixed, except by external fields
or boundaries. Of the ten independent elements of Ti jk only
three are related to pure, rigid rotations

δ�i ≡ (1/4β )εipqTpklδTqkl (1)

and act therefore as additional hydrodynamic variables. The
other elements are related to internal deformations of the
tetrahedron and are therefore microscopic nonhydrodynamic
variables, e.g., always relax to their equilibrium values on
macroscopic timescales. The same also applies to the nor-
malization β, which is taken as constant. The broken parity
symmetry does not give rise to a hydrodynamic variable, since
parity changes are not continuous.

The first law of thermodynamics relates changes of all
macroscopic variables to changes of the energy density ε by
the Gibbs relation [2,9,46]

dε = T dσ + μ dρ + 
 dφ + v · dg + m · dw + h�
i d�i.

(2)

The last term h�
i d�i is a short-hand notation for h̃�

i d�i +
��

i jd∇ j�i with the effective conjugate tetrahedral field

h�
i = h̃�

i − ∇ j�
�
i j − 2εikl�k j∇ j�l , (3)

where the last contribution is due to the relation [30,32]
(δ1δ2 − δ2δ1)�i = 2εipq(δ1�p)(δ2�q). This relation indicates
that �i does not behave like an ordinary vector in a nonlinear
description. The field h̃�

i is nonzero only in the presence of
external orienting forces.

The Gibbs relation contains the entropy density σ ,
representing the thermal degree of freedom, with its thermo-

dynamic conjugate, the temperature T . Other conjugates are
the chemical potential μ, the osmotic pressure 
, the mean
velocity vi = gi/ρ, and mi, the conjugate field to wi.

From the requirement that the energy of the system is a
first order Eulerian form of all extensive variables, one gets
for the pressure p ≡ −(∂/∂V )

∫
ε dV = −(∂/∂V )E = −ε +

T σ + ρμ + vigi the Gibbs-Duhem relation

d p = σ dT + ρ dμ − 
 dφ + g · dv − m · dw

−h̃�
i d�i − ��

i jd∇ j�i. (4)

B. Statics

Hydrodynamics allows us to describe the statics and the
dynamics of a system in two separate steps. The statics is
given by the relation between the conjugate fields and the
variables, and the dynamics relates the time derivatives of the
variables to the phenomenological currents, which themselves
are expressed by the conjugates or their gradients.

The static behavior of our macroscopic system is conve-
niently described by the (total) energy density (including the
kinetic part)

2ε = T

CV
(δσ )2 + 1

κφ

(δφ)2 + 1

ρ2κμ

(δρ)2

+ 2

αφ

(δφ)(δσ ) + 2

ραρ

(δρ)(δσ ) + 2

ρκπ

(δρ)(δφ)

+ K�
i jkl (∇ j�i )(∇l�k ) + 1

2ρ
g2 + ρφ(1 − φ)w2, (5)

with

K�
i jkl = K�

1 (δikδ jl + δilδ jk ) + K�
2 δikδ jl + K�

3 Tjl pTikp (6)

describing the (orientational-)elastic energy due to distortions
of the tetrahedral orientation [30,32].

From Eq. (5) the relations between variables and conjugate
quantities are found by partial derivation and read

δT = T

CV
δσ + 1

αφ

δφ + 1

ραρ

δρ, (7)


 = 1

κφ

δφ + 1

ρκπ

δρ + 1

αφ

δσ + w · g

+ρw2(1 − 2φ), (8)

μ = 1

ρ2κμ

δρ + 1

ρκπ

δφ + 1

ραρ

δσ + w2φ(1 − φ), (9)

��
i j = K�

i jkl∇l�k, (10)

vi = 1

ρ
gi, (11)

mi = φ(1 − φ)ρ wi ≡ α wi. (12)

The wi-dependence of the chemical potential and the osmotic
pressure are due to the ρ- and φ-dependence of α.
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C. Dynamic equations

The full dynamical equations for the tetrahedral rotations
�i, the concentration φ, the relative velocity, wi, and the fluid
degrees of freedom are [13,14,32]

ε̇ + ∇i(ε + p)vi + ∇i
(

j (ε)R
i + j (ε)D

i

) = 0, (13)

σ̇ + ∇i
(
σvi + j (σ )R

i + j (σ )D
i

) = 2R

T
, (14)

ρ̇ + ∇i(ρvi ) = 0, (15)

ġi + ∇ j (giv j ) + ∇i p + ∇ j
(
σ nl

i j + σ R
i j + σ D

i j

) = 0, (16)

φ̇ + v j∇ jφ + 1

ρ
∇imi + IR

φ + ID
φ = 0, (17)

ẇi + v j∇ jwi + ∇i(ρ
−1
) + X R

i + X D
i = 0, (18)

�̇i + v j∇ j�i − 1

2
εi jk∇ jvk + Y R

i + Y D
i = 0, (19)

with [13,14]

φ̇ + v j∇ jφ + 1

ρ
∇imi + 1

ρ
∇i

(
j (h)R
i + j (h)D

i

) = 0 (20)

replacing Eq. (17) in the case of a conserved density ρh with
ρ̇h + ∇i(ρhv

h
i + j (h)

i ) = 0. Note that in Eq. (19) the vorticity
term is a linearized version of a more complicated expression
[30]. The energy conservation law, Eq. (13), is not indepen-
dent and therefore redundant due to the Gibbs relation, Eq. (2).

The energy dissipation function R restricts the reversible
(superscript R) and irreversible, dissipative (superscript D)
phenomenological currents. The second law of thermodynam-
ics requires

2R = − j (σ )∗
i ∇iT + I∗

φ 
 − σ ∗
i j ∇ jvi + X ∗

i mi + Y ∗
i h�

i

� 0, (21)

with the equal sign (> sign) for ∗ = R (∗ = D). In case
of conserved densities, I∗

φ 
 is replaced by − j (h)∗
i ∇i(
/ρ).

From Eq. (21) it follows that the entropy production must be
positive for dissipative contributions and zero for reversible
contributions. As a result, the diagonal dissipative parameters
are positive and for the nondiagonal ones there exist upper
bounds, while for reversible parameters either sign is pos-
sible and no bounds can be given in general. The explicit
conditions for dissipative parameters are given after Eq. (36)
while for the reversible coefficients in Eqs. (23)–(28) no such
conditions exist.

Equations (13)–(19) contain, apart from the phenomeno-
logical currents, also transport and convection whenever
appropriate. Those effects are reversible and, indeed, all trans-
port contributions (including the isotropic pressure p and the
nonlinear stress σ nl

i j ) add up to zero entropy production. In
particular, R = 0 requires [32]

2σ nl
i j = ��

k j∇i�k + ��
ki∇ j�k − 3

2
εi jk∇l�

�
kl . (22)

This form of σ nl
i j guarantees local angular momentum conser-

vation [2,9].
In the whole set of dynamic equations the mean velocity

vi has been chosen as transport and convective velocity for all

variables. This allows us to ensure zero entropy production.
Due to various material dependent contributions in the re-
versible currents (see below), the actual convective velocities
can be different from vi and can be specific for the different
variables.

D. Reversible currents

For the reversible parts of the currents in Eqs. (14)–(19) we
find, requiring R = 0 in Eq. (21), the following contributions
allowed by spatial and time reversal symmetry:

j (σ )R
i = β1 mi + �2Ti jk∇ jvk + �4Ti jk∇ jmk, (23)

σ R
i j = 2β2 mi w j + β7δi j
 − �2Ti jk∇kT

−�3Ti jk∇k (
/ρ), (24)

X R
i = β1∇iT + γ∇i
 + β2 w j (∇iv j + ∇ jvi )

+β3w j (∇ jmi − ∇im j ) + β4w j (∇ jvi − ∇iv j )

−β5h�
j ∇i� j + β6εi jk∇ jh

�
k

+�4Tk ji∇ j∇kT + �5Ti jk∇ j∇k (
/ρ), (25)

Y R
i = β5mj∇ j�i + β6εi jk∇ jmk, (26)

IR
φ = γ∇imi + β7Akk + (�3/ρ) Ti jk∇k∇ jvi

+ (�5/ρ) Ti jk∇k∇ jmi, (27)

and

j (h)R
i = γ ρ mi + �3Ti jk∇ jvk + �5Ti jk∇ jmk, (28)

where we have kept nonlinear contributions when they con-
tribute to the transport and convection of variables.

For the reversible coefficients in Eqs. (23)–(28) either sign
is possible and no bounds can be given in general from the
thermodynamic requirements associated with the second law
of thermodynamics.

These reversible currents can be used to tune the transport
and convective velocities of the different variables, cf. Sec. 6
of Ref. [13]. In particular, the β1 term adds to the transport
of the entropy density, Eq. (14). Since we assume that the
mean velocity, vi, is the appropriate transport velocity, we put
β1 = 0. In our model the transport velocity of ρ̇h and ġh

i is
vh

i , while for ρ̇s and ġs
i it is vs

i . To achieve this we have to
take γ = 0 = β7, and β2 = β4 = 1/2 and β3 = 1/ρh − 1/ρs,
cf. Ref. [13]. Similarly, we assume that transport and convec-
tion of �̇, Eq. (19), is done by the velocity vh

i , which requires
β5 = 2β6 = (ρφ)−1.

Implementing these considerations Eqs. (23)–(28) simplify
considerably to read

j (σ )R
i = �2Ti jk∇ jvk + �4Ti jk∇ jmk, (29)

σ R
i j = mi w j − �2Ti jk∇kT

−�3Ti jk∇k (
/ρ), (30)
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X R
i = w j∇ jvi + (

1

ρh
− 1

ρs
)w j (∇ jmi − ∇im j )

− 1

ρφ
h�

j ∇i� j + 1

2ρφ
εi jk∇ jh

�
k

+�4Tk ji∇ j∇kT + �5Ti jk∇ j∇k (
/ρ), (31)

Y R
i = 1

ρφ
mj∇ j�i + 1

2ρφ
εi jk∇ jmk, (32)

IR
φ = (�3/ρ) Ti jk∇k∇ jvi

+ (�5/ρ) Ti jk∇k∇ jmi, (33)

and

j (h)R
i = �3Ti jk∇ jvk + �5Ti jk∇ jmk, (34)

These equations will be also used in Sec. III and in
Appendix A to discuss consequences of a novel dissipative
cross-coupling as well as in Appendix B, where the effect of
electric field gradients is elucidated.

The contributions ∼�2...5 are due to the existence of
tetrahedral order and describe [29] how planar extensional
flow (of the mean as well as of the relative velocity) give rise
to reversible concentration and heat currents perpendicular to
the plane. Vice versa, temperature and concentration gradients
trigger shear stresses in the plane normal to the gradients,
while suitable second order gradients lead to a temporal
change of the relative velocity in the direction perpendicular
to the gradients. We note that the latter contributions clearly
represent a higher-order effect.

E. Dissipative currents

The dissipative parts of the currents introduced above can
be deduced from a potential, the dissipation function R, that
reads in bilinear approximation

2R = ζ
 
2 + ξmimi + κ (∇iT )(∇iT ) + 1

γ �
h�

i h�
i

+D(∇i
)(∇i
) + 2D(T )(∇iT )(∇i
)

+νi jkl (∇ jvi )(∇lvk ) + ν
(w)
i jkl (∇ jmi )(∇lmk )

+2ν
(c)
i jkl (∇ jvi )(∇lmk ) + 2 � Ti jk mi(∇ jvk ), (35)

where the rank-4 viscositylike tensors have the same form as
Ki jkl in Eq. (6) containing three independent coefficients—
one more than in the isotropic case [32,47]; explicitly,

νi jkl = νlδi jδkl + νtr

2

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
+ νT Tjl pTikp.

(36)

The requirement of positivity of the entropy produc-
tion associated with the second law of thermodynam-
ics leads to a number of positivity requirements and
bounds for the dissipative coefficients entering Eq. (35).
All the diagonal coefficients must be positive leading to
ζ
, ξ, 1

γ � , κ, D, νl , νtr, νT , ν
(w)
l , ν

(w)
tr , and ν

(w)
T all being pos-

itive. In addition, all cross-coupling terms associated with the
nondiagonal coefficients are bounded from above by prod-
ucts of diagonal coefficients to guarantee positivity of the

entropy production leading to the inequalities (D(T ) )2 < κD,
(ν (c)

l )2 < νlν
(w)
l , (ν (c)

tr )2 < νtrν
(w)
tr , (ν (c)

T )2 < νT ν
(w)
T , and last,

but not least �2 < ξνT . The influence of the cross-coupling
coefficient � will be elucidated in detail in the next section.

The last term of Eq. (35), ∼�, is specific for a two-fluid
description of a fluid with isotropic and tetrahedral compo-
nents. We note that it is of the same structure as the reversible
coupling terms discussed in Ref. [29] between the density
of linear momentum on one hand and temperature gradients,
concentration gradients and electric fields on the other. The
key difference is the different behavior of the relative velocity
under time reversal.

As a consequence of this coupling, dissipative stresses are
created in the plane perpendicular to a homogeneous relative
velocity and, versa versa, an elongational flow can lead to a
finite relative velocity in the stationary case. Further implica-
tions of this cross-coupling are discussed in Sec. III in detail.

From Eq. (35) the following dissipative currents are
obtained,

j (σ )D
i = −(∂R)/(∂∇iT )

= −κ∇iT − ρ φ(1 − φ)d (T )∇i
, (37)

σ D
i j = −(∂R)/(∂∇ jvi )

= −νi jkl ∇lvk − ν
(c)

i jkl ∇lmk − � Ti jkmk, (38)

X D
i = (δR)/(δmi )

= ξ mi + � Ti jk (∇ jvk )

−∇ j
(
ν

(w)
i jkl ∇lmk + ν

(c)
kli j ∇lvk

)
, (39)

ID
φ = (δR)/(δ
)

= ζ

 − ρ d ∇2
i 
 − ρ φ(1 − φ)d (T )∇2

i T, (40)

Y D
i = (∂R)/

(
∂h�

i

)
= 1

γ �
h�

i . (41)

The relative velocity, wi, always relaxes, since it is not
related to any spontaneously broken continuous symmetry,
nor to a conservation law. The tetrahedral orientation is dif-
fusive, since h�

i ∼ ∇ j∇k�k according to Eq. (5). Only in the
case of an external orienting field, h�

i is homogeneous and
�i relaxes (toward a preferred field direction). Diffusion and
thermodiffusion is written in the usual way with D = ρ d
and D(T ) = α d (T ). For a conserved density, ρh, the relaxation
coefficient ζ
 is zero (meaning the relaxation time goes to
infinity), and the linearized concentration current has the stan-
dard form of a binary mixture:

j (φ)D
i = −ρD∇i(
/ρ) − ρD(T )∇iT . (42)

III. CONSEQUENCES OF THE DISSIPATIVE
CROSS-COUPLING �

In this section we analyze in some detail the consequences
of the dissipative cross-coupling term, �, between velocity
gradients and the relative velocity, wi, introduced in Eq. (35).
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To be specific we consider a sample under the influence of
a planar shear flow,

S = ∇xvy. (43)

The tetrahedral Td phase is characterized by the existence
of the octupolar order parameter T ≡ Ti jk = �4

α=1nα
i nα

j nα
k ex-

pressed by the four unit vectors, nα , with α = 1, 2, 3 and
4 defining a tetrahedron [26,32]. T is fully symmetric in
all three indices and odd under parity, since the nα’s are
vectors, or, in physical terms, are polar. The orientation of
the tetrahedron in laboratory space is arbitrary, but the matrix
representation [26]

Ti jk = T0√
3

⎛
⎝ 1 1 −1 −1

1 −1 1 −1
−1 1 1 −1

⎞
⎠ (44)

is very convenient for the following investigation. The spa-
tially inverted system, where all signs in Eq. (44) are reversed,
describes an orientation that is different from the original one,
but energetically equivalent.

In lowest order the linearized macroscopic equations for
the concentration φ and the velocity difference wi take the
form making use of Eq. (44)

φ̇ + α

ρ
(∇xwx + ∇ywy + ∇zwz ) + ζ


κφ

δφ = 0, (45)

ẇx + 1

κφρ
∇xφ + αξwx = 0, (46)

ẇy + 1

κφρ
∇yφ + αξwy + wxS = 0, (47)

ẇz + 1

κφρ
∇zφ + αξwz + 4

3
√

3
T0� S = 0. (48)

In a next step we look for an exact homogeneous solution
of Eqs. (45)–(48) and obtain

δφ0 = w(0)
x = w(0)

y = 0, (49)

while

ẇz + αξwz + 4

3
√

3
T0� S = 0, (50)

leading, for a time-periodic shear rate S = S0 cos(�t ), to

wosc
z (t ) = − 4

3
√

3
T0� S0

cos(�t + χ )√
�2 + ξ 2α2

+ w0
z exp(−αξ t ),

(51)

where w0
z is a constant determined by an initial condition. In

the long-time limit t 	 1/αξ , an oscillation with a phase-shift
χ = arctan(�/αξ ) is obtained.

In the limit � → 0 a stationary solution is found,

wstat
z (t → ∞) = − 4

3
√

3
T0�S0

1

ξα
. (52)

This result has a simple interpretation: If one applies a
shear in the x-y plane, an oscillation of the relative velocity in
the z direction, perpendicular to the shear plane results. Thus,
the presence of the tetrahedral or octupolar order parameter
immediately renders the flow three-dimensional.

To investigate which spatial excitations might exist as a
function of the z direction, we look for excitations wz(ω, z)
and φ(ω, z) with excitation frequency ω and fixed wave
vector kz.

With the ansatz

(φ,wz ) = (�,Wz ) exp(iωt + ikzz), (53)

and with wx = wy = 0, Eqs. (45)–(48) give rise to the disper-
sion relation

ω2 − iω

(
ζπ

κφ

+ αξ

)
− k2

z

α

κφρ2
− ζπαξ

κφ

= 0, (54)

with the solution

2ω = i

(
ζπ

κφ

+ αξ

)
±

√
4k2

z

α

κφρ2
−

(
ζπ

κφ

− αξ

)2

. (55)

Equation (55) contains a number of interesting special
cases. First of all we notice that in the limit ζπ → 0 and
ξ → 0 (meaning that φ and wi both do not relax) one obtains
a propagating mode coupling concentration φ and relative
velocity wz in the direction perpendicular to the shear plane

ω = ±kz

√
α

κφρ2
, (56)

with velocity c2 = α/(κφρ2). This would correspond to a
sound like mode coupling concentrations and wz. It would be a
situation reminiscent to second sound in a superfluid coupling
the superfluid velocity, vs to entropy density, σ . However, as
discussed in Sec. II, the velocity difference is not conserved,
but is a macroscopic variable, which relaxes on sufficiently
long, but finite time. Thus even for a concentration variable
that is conserved, an overdamped mode in z direction results,
which reads in leading order in kz,

2ω = iαξ ±
√

4k2
z

α

κφρ2
− (αξ )2. (57)

If ξ is sufficiently small, then we expect that an experiment
will show a finite regime in kz, for which this mode propa-
gates.

In case also the concentration φ relaxes, the dispersion
relation is given by Eq. (55) reflecting the presence of both
relaxation channels in the long wavelength limit.

IV. CONCLUSIONS

In this paper we have studied the changes of the macro-
scopic behavior in two-fluid systems, when one of the two
fluids is of tetrahedral-octupolar nature leading to broken
parity symmetry. For simplicity we have focused on optically
isotropic systems. The existence of tetrahedral order has been
shown to lead to a number of reversible and irreversible cross-
coupling terms to the relative velocity, which do not exist
without octupolar order. Indeed, it turns out that tetrahedral
order has a profound influence on the dynamics of two-fluid
systems. In particular it emerges that a dissipative cross-
coupling between velocity gradients and the relative velocity
can lead to a relative velocity in the direction perpendicular
to an applied planar shear flow. In this geometry one can
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then excite an overdamped propagating mode in this direc-
tion formed by the concentration variations and the relative
velocity. In Appendix A we have shown that there is, in addi-
tion, a reversible cross-coupling between the relative velocity
and electric gradient fields. The structure of this reversible
cross-coupling is isomorphic to the dissipative cross-coupling
of wi to velocity gradients. Thus one can use two simple
external forces, namely, a planar shear flow and a planar
electric gradient field, to study experimentally the physical
consequences of two cross-coupling terms characteristic for
the two-fluid behavior in a system with octupolar-tetrahedral
order, one dissipative and one reversible. In Appendix B we
have presented a reversible coupling of the relative velocity to
rotations of the tetrahedral orientation in a chiral phase.

APPENDIX A: CONSEQUENCES OF THE DISSIPATIVE
CROSS-COUPLING � IN THE PRESENCE OF AN

EXTENSIONAL FLOW

In this Appendix we study the influence of the dissipative
cross-coupling term, �, between velocity gradients and the
relative velocity, wi, introduced in Eq. (35), in the presence of
an extensional flow.

To be specific we consider a sample under the influence
of two types of extensional flow, namely, parallel and per-
pendicular to a preferred direction, which we take to be the
ẑ direction,

E (1) = ∇zvz, (A1)

E (2) = ∇xvx. (A2)

We take the orientation of the tetrahedral order to be parallel
to one of the tetrahedral directions, which can be achieved by
an external electric field. In this case we have for the matrix
representation of Ti jk [30,32]

Ti jk = T0

3

⎛
⎝0 −√

2 −√
2 2

√
2

0 −√
6

√
6 0

3 −1 −1 −1

⎞
⎠, (A3)

which is appropriate for the following investigation.
The spatially inverted system, where all signs in Eq. (A3)

are reversed, describes an orientation that is different from the
original one, but energetically equivalent.

In lowest order the linearized macroscopic equations for
the concentration φ and the velocity difference wi take the
form making use of Eq. (A3)

φ̇ + α

ρ
(∇xwx + ∇ywy + ∇zwz ) + ζ


κφ

δφ = 0, (A4)

ẇi + 1

κφρ
∇iφ + αξwi + w j∇ jvi + � Ti jk∇ jvk = 0. (A5)

Now we are prepared to discuss the two cases of Eqs. (A1)
and (A2) separately. For the case of an extensional flow in ẑ
direction we have

φ̇ + α

ρ
(∇xwx + ∇ywy + ∇zwz ) + ζ


κφ

δφ = 0, (A6)

ẇx + 1

κφρ
∇xφ + αξwx = 0, (A7)

ẇy + 1

κφρ
∇yφ + αξwy = 0, (A8)

ẇz + 1

κφρ
∇zφ + αξwz + 8

9
T0�E (1) + wzE

(1) = 0. (A9)

Comparing Eqs. (A6)–(A9) with the case of an external
shear flow Eqs. (45)–(48), we read off immediately, that only
the equation for wz, Eq. (A9), differs from the case of shear
flow: instead of 4

3
√

3
T0�S we have now 8

9 T0�E (1) + wzE (1).
Thus, the driving force for elongations parallel to the preferred
ẑ direction not only enters as an inhomogeneity, but also
via wzE (1).

To examine similarities and differences to the case of an
applied shear flow, we proceed as follows. We first look for an
exact homogeneous solution of Eqs. (A6)–(A9) and use

δφ0 = w(0)
x = w(0)

y = 0, (A10)

while

ẇz + αξwz + E (1)wz + 8

9
T0� E (1) = 0. (A11)

As for an applied shear flow, we can look again at a time-
dependent forcing ∼E (1) = E (1)

0 cos(�t ) leading, in the limit
of vanishing frequency �, to a stationary solution

wstat
z (t → ∞) = −8

9
�T0E (1)

0

1

ξα + E (1)
0

. (A12)

This result has a straightforward interpretation: applying
an extensional flow parallel to the preferred ẑ direction, a
spatially homogeneous oscillation of the relative velocity in
the ẑ-direction results. We note that—in contrast to the case
of an external shear flow, Eq. (52)—the amplitude of wz is not
linear in the driving force and saturates to a finite value for
strong driving E (1)

0 → ∞.
However, it is well known that parametric driving, like

the term E (1)wz, can lead to an instability of the stationary
solution giving rise to subharmonic temporal modes. A de-
tailed study of such instabilities is beyond the scope of this
manuscript. The effect is specific for extensional flow and
does not arise for shear flow.

To investigate spatial excitations as a function of the z di-
rection, we proceed in parallel to the analysis given in Sec. III:
We look for excitations wz(ω, z) and φ(ω, z) with excitation
frequency ω and fixed wave vector kz. With the ansatz

(φ,wz ) = (�,Wz ) exp(iωt + ikzz), (A13)

and with wx = wy = 0, Eqs. (A6)–(A13) give rise to the mod-
ified dispersion relation

ω2 − iω

(
ζπ

κφ

+ αξ + E (1)
0

)
− k2

z

α

κφρ2
− ζπ

κφ

(
αξ + E (1)

0

) = 0,

(A14)

signalling the fact that now the excitation frequency of the
dispersion relation depends on the amplitude of the driving
field, E (1)

0 .
Comparing the present dispersion relation with the case of

an applied shear flow, Eq. (54), we see that most of the discus-
sion of Sec. III can be carried over to the present case of an

044705-7



HELMUT R. BRAND AND HARALD PLEINER PHYSICAL REVIEW E 104, 044705 (2021)

extensional flow parallel to the preferred direction, provided
αξ is replaced by αξ + E (1)

0 , and some care is taken regarding
the sign under the square root in the dispersion relation.

For the second case of a extensional flow in the x direction,
perpendicular to the preferred ẑ direction, we find

φ̇ + α

ρ
(∇xwx + ∇ywy + ∇zwz ) + ζ


κφ

δφ = 0, (A15)

ẇx + 1

κφρ
∇xφ + αξwx

+4
√

2

9
T0�E (2) + wxE (2) = 0, (A16)

ẇy + 1

κφρ
∇yφ + αξwy = 0, (A17)

ẇz + 1

κφρ
∇zφ + αξwz − 4

9
T0�E (2) = 0. (A18)

This case is similar to the previous case, Eqs. (A6)–(A9),
regarding the parametric driving, ∼E (2)wx, that occurs along
the external flow, but is different with respect to the inhomoge-
neous driving, ∼�E (2), that takes place in both, the external
flow direction and the preferred direction (z). Proceeding as
before we find a stationary solution for wx and wz of the
following form:

wstat
x (t → ∞) = −4

√
2

9
�T0E (2)

0

1

ξα + E (2)
0

, (A19)

wstat
z (t → ∞) = 4

9
�T0E (2)

0

1

ξα
. (A20)

Analyzing spatial excitations in both, the external flow and
the preferred direction, described by finite kx and kz simul-
taneously, one obtains three coupled equations for the three
variables wx, wz, and φ along with a cubic dispersion relation.
In this case only wy is decoupled.

APPENDIX B: DYNAMIC EFFECTS RELATED TO
ELECTRIC FIELDS AND THEIR GRADIENTS

For the dissipative effects of electric fields we have in the
dissipation function the contributions

2R(e) = σ (e)EiEi + 2D(eφ)(∇i
)Ei + 2D(eT )(∇iT )Ei.

(B1)

This is the standard form for an isotropic system of a miscible
mixture with the electric conductivity, σ (e), the thermoelec-
tric effect, D(eT ), and the cross-coupling between electric
fields and the thermodynamic conjugate of the concentration,
D(eφ). Positivity of the entropy production requires σ (e) > 0,
(D(eφ) )2 < σ (e)D, and (D(eT ) )2 < σ (e)κ . There is no dissipa-
tive cross-coupling between electric fields on the one hand,
and gradients of the barycentric velocity field, Ai j , and the
velocity difference, wi, on the other, because of time reversal
symmetry:

j (e)R
i = β

(e)
1 mi + �1Ti jk∇ jvk + �6Ti jk∇ jmk, (B2)

σ
(e),R
i j = −�1Ti jkEk, (B3)

X (e),R
i = β

(e)
1 Ei + �6Tk ji∇ jEk . (B4)

Since we assume that the mean velocity, vi, is the appro-
priate transport velocity, we put β

(e)
1 = 0. The terms ∼�1

have been given in Ref. [29] including a discussion of their
physical implications. The cross-coupling ∼�6 represents a
new reversible coupling between the electric currents and
gradients of the relative velocity field on one hand and be-
tween the reversible current associated with relative velocities
and gradients of an electric field. It can only exist because
of the presence of octupolar order and is unknown from the
other two-fluid systems studied so far. Inspecting its structure
in detail it emerges that it is isomorphic to the dissipative
coupling between the relative velocity, wi, and symmetric
velocity gradients, Ai j . The key difference, reversible versus
dissipative, can be traced back to the different behavior under
time reversal for the electric field versus the field of barycen-
tric velocity. Since the contributions given in Eqs. (B2)–(B4)
are reversible in nature, the coefficients �1 and �6 can be of
either sign.

This also indicates a possibility to perform controlled
experiments on this cross-coupling term ∼�6. Instead of ap-
plying a shear flow as in Sec. III, one can apply a planar
gradient in the electric field. This in turn will then lead to a
temporally varying relative velocity wi. The analog of Eq. (48)
reads

ẇz + 1

κφρ
∇zφ + αξwz + 4

3
√

3
T0�6∇yEx = 0, (B5)

where we have taken the same coordinate system as in Sec. III.

APPENDIX C: REVERSIBLE COUPLING OF THE
RELATIVE VELOCITY TO TETRAHEDRAL ORDER IN

THE CHIRAL T PHASE

In the bulk of this manuscript we have given a two-fluid
macroscopic dynamic description for a two-fluid system for
which one component shows tetrahedral order of Td sym-
metry, which is nonchiral. In this short Appendix we briefly
discuss how the relative velocity, wi, can couple to the other
macroscopic variables in the T phase, which is chiral and
of lower symmetry than the Td phase. The chirality can be
characterized by a pseudoscalar q0 in the same spirit as in
a cholesteric phase [8,35]. The chiral T phase and some of
its physical properties have been studied by Fel [26] and
the macroscopic dynamics of the T phase has been given in
Refs. [31,32]. There it has been shown that there is a reversible
coupling between the macroscopic variables associated with
tetrahedral order, δ�i, and the rate of strain tensor, Ai j , via the
equation [31,32]

Y R
i = · · · + q0λTi jkA jk . (C1)

Together with rotational flow this coupling leads to flow align-
ment for a stationary situation in an optically isotropic system
(compare Refs. [31,32] for a detailed discussion).

Here we point out that in the chiral T phase as part of a
two-fluid system there is an analogous reversible coupling be-
tween the relative velocity, wi, and the dynamics of rotations
given by

�̇i + Yi = 0. (C2)
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As a result we obtain

X R
i = · · · + q0λwTi jk∇ jh

�
k , (C3)

Y R
i = · · · + q0λwTi jk∇ jmk . (C4)

Equations (C3) and (C4) clearly demonstrate the close resem-
blance to the flow alignment term found for the T phase in
Refs. [31,32]. The contribution ∼λw in both equations also
shows that the dynamics of rotations is significantly influ-

enced by a coupling to gradients of the relative velocity. We
note that due to this additional coupling ∼λw the rotational
dynamics of δ�i will be more complex compared to a T
phase in a one component fluid, since both, gradients of the
velocity field and gradients of the relative velocity [via ∼β6 =
1/(2ρφ) from Eq. (26)] and ∼λw enter the picture. Both
being associated with a reversible coupling, the coefficients
λ and λw could be of either sign from the point of view of
thermodynamics. Since the structure of the coupling terms
involving λ and λw is the same, one might speculate that they
are similar in magnitude.
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