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Transition kinetics of defect patterns in confined two-dimensional smectic liquid crystals
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Topological defects in liquid crystals under confined geometries have attracted extensive research interests.
Here, we perform molecular dynamics simulations to investigate the formation and transition of defect patterns
in two-dimensional smectic Gay-Berne liquid crystals with a simple rectangular confinement boundary. Two
typical types of defect patterns, bridge and diagonal defect patterns, are observed, which can be transformable
continuously between each other over time. The transition usually starts from the line or point defect regions,
and the competition between neighboring and opposite boundary effects induces the continuous realignments of
the smectic layers to connect the neighboring or opposite walls. The relative stability of these two defect patterns
can be controlled by changing the confinement conditions. These results deepen our understanding of transition
kinetics of defect patterns in confined liquid crystals.
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I. INTRODUCTION

Liquid crystals are a fascinating category of soft mat-
ter systems, which combine the fluidity of liquids and the
long-range orientational order feature of crystalline solids
[1]. The orientational order and mobility of liquid crystal
molecules provide the possibility of realizing novel liquid
crystal materials with unique properties [2–8]. In fact, con-
fined liquid crystals are commonly encountered in scientific
research and practical applications [9–27]. Due to the subtle
balance between bulk elasticity and boundary anchoring, the
confinement will disrupt the uniform orientational patterns
and impose complex frustration on liquid crystal order, and
then lead to a rich variety of topological defects [11,22–
24,28–31]. These topological defects have a significant influ-
ence on the macroscopic properties of liquid crystal materials
[28–33]. Furthermore, defects in liquid crystals can be used as
a very valuable model system to study the topological defects
in diverse disciplines, including condensed matter physics
[34], biology [35], and cosmology [36].

Driven by the use of nematics in display technologies,
the confinement of the nematic phase has been a subject of
much interest in recent years [11,13,19,37–41]. How defect
patterns in nematic phase can be influenced by various factors,
including liquid crystal molecules [37–40], sizes and geome-
tries of confinement boundary [10,11,22,41], and anchoring
conditions [13,19,23,39], have been extensively investigated.
Nevertheless, it is worth mentioning that the smectic phase
with multistable electro-optic effect [42–44] could also be
applied to flexible displays [45] and memory devices [46].
Furthermore, the smectic phase exists in many biological sys-
tems, such as viruses [47], vesicles [48], and gapped DNA
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duplexes [49]. In square-confined smectics, bridge defect pat-
terns have been found by density-functional theory [9] and
Monte Carlo simulation [50]. Diagonal defect patterns have
also been observed in experiment [24]. However, most of
these works have mainly focused on the static properties of
defect patterns; very little work has focused on the dynamical
properties of defect patterns and their transition kinetics [51].

In this work, we will focus on understanding and
controlling the transition kinetics of defect patterns in two-
dimensional (2D) smectic liquid crystals confined in a simple
rectangular boundary, which can capture the essential features
of more complicated liquid-crystal confinement problems
[11,52,53]. Based on the Gay-Berne (GB) potential model,
2D liquid crystals composed of elliptical particles are system-
atically studied by means of molecular dynamics simulations
both in the bulk state and under confinement. In agreement
with the experiment [24], two typical types of defect patterns,
bridge and diagonal defect patterns, are observed. Our simu-
lation results further reveal that these two defect patterns can
be transformable continuously between each other over time.
The transition usually starts from the line or point defect re-
gions, and the competition between neighboring and opposite
boundary effects induces the continuous realignments of the
smectic layers to connect the neighboring or opposite walls.
To address how to control the relative stability of these two
defect states, we also explore the impacts of the box-ellipse
size ratio, the aspect ratio of the confinement rectangle, and
the strength of parallel surface anchoring interaction on the
probabilities for appearance of these defect patterns.

II. MODEL AND SIMULATION DETAILS

In this work, the coarse-grained liquid crystal molecules
are confined in a two-dimensional rectangle, whose boundary
is composed of Lennard-Jones (LJ) particles. A schematic
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FIG. 1. (a) Graphical representations of the GB-type elliptical
particle and LJ-type wall particle. (b) Schematic depiction of the
simulation system. The particles are colored according to the angle θ

between the major axis of elliptical particles and the Y axis. (c) The
interaction potential UGB (in units of ε0) of elliptical particles and
wall particles as a function of separation ri j (in units of σ0) for
side-by-side and end-to-end configurations when εGB-GB = 1.0ε0 and
εGB-LJ = 5.0ε0.

representation of the system is given in Fig. 1. Our systems
consist of 119 to 1606 liquid crystal molecules, which are
described as elliptical particles via the GB potential model
[54], depending on the size and the aspect ratio of confine-
ment rectangles. Each elliptical particle is characterized by its
semiaxis lengths ai, bi and well depths εia, εib for side-by-side
and end-to-end interactions. All the simulation parameters
are described in dimensionless units in terms of the char-
acteristic mass m0, length σ0, energy ε0, and the time unit
τ = σ0(m0/ε0)1/2. Ellipse-ellipse interactions are given by

UGB(Ai, A j, ri j ) = Ur (Ai, A j, ri j )η(Ai, A j )χ (Ai, A j, ri j ),

(1)

where ri j is the interparticle vector between particles i and j,
and Ur (Ai, A j, ri j ) controls the shifted distance dependence
of the interaction:

Ur (Ai, A j, ri j ) = 4ε

[(
σ

hi j + γ σ

)12

−
(

σ

hi j + γ σ

)6]
.

(2)
Here, hi j (Ai, A j, ri j ) = ri j − σi j (Ai, A j, ri j ) is the distance
of closest approach between two elliptical particles, γ is the
shift parameter, σi j (Ai, A j, ri j ) = [ 1

2 r̂T
i jG

−1
i j (Ai, A j ) r̂i j]−1/2,

ri j = |ri j | is the center-to-center distance between particles
i and j, r̂i j = ri j/ri j is a unit vector, and Ai is the ro-
tation matrix from the space frame to the body frame,
which is generated by the normalized quaternion qi =
(qi,0, qi,1, qi,2, qi,3). According to the diagonal shape matrices

Si = diag(ai, bi ) and S j = diag(a j, b j ), the symmetric over-
lap matrix Gi j (Ai, A j ) can be defined as Gi j (Ai, A j ) =
AT

i S2
i Ai + AT

j S2
jA j .

In Eq. (1), η(Ai, A j ) and χ (Ai, A j, ri j ) control the
anisotropic interaction strength based on the relative orienta-
tion and position of the elliptical particles:

η(Ai, A j ) =
[

2sis j

det [Gi j (Ai, A j )]

]ν/2

, (3)

where

si = (aibi )
3/2; (4)

and

χ (Ai, A j, ri j ) = [
2 r̂T

i jB
−1
i j (Ai, A j ) r̂i j

]μ
, (5)

where Bi j (Ai, A j ) = AT
i EiAi + AT

j E jA j is defined in terms
of the diagonal interaction matrices Ei = diag((ε0/εia)1/μ,

(ε0/εib)1/μ) and E j = diag((ε0/ε ja)1/μ, (ε0/ε jb)1/μ). The pa-
rameters μ and ν are empirical exponents that can be used to
tune the potential.

The elliptical particles used in this work have an aspect
ratio of 4.4 [55], which exhibit isotropic, nematic, smectic
and crystalline phases in the bulk. This model is often used
to describe p-terphenyl in experiments [18,56,57]. The GB
parameters in Eqs. (1)–(5) are set as ε = ε0, σ = σ0, ai = σ0,
bi = 4.4σ0, εia = ε0, εib = 0.05ε0, γ = 1, μ = 1, ν = 1, and
the GB interactions are truncated at the cutoff radius rcut =
5.4σ0. The wall particles are realized by simply setting the
GB parameters as ε = ε0, σ = σ0, ai = bi = σ0. Moreover,
the interactions between wall particles are neglected and the
interactions between wall particles and elliptical particles are
given as Eq. (1).

We perform molecular dynamics simulations in the NV T
ensemble by using the Nosé-Hoover thermostat. The ellipti-
cal particles are initially placed randomly in the confinement
rectangle, and the number density of elliptical particles is ρ =
0.19, which corresponds to the packing fraction φ ≈ 0.66.
As shown in Fig. S1 of the Supplemental Material [58], at
ρ = 0.19, the bulk systems can well exhibit isotropic, ne-
matic, and smectic phases in the simulated temperature range,
and show higher orientational ordering. The temperature is set
as T ∗ = kBT/ε0 = 16, which is above the isotropic-nematic
phase transition temperature in the bulk. After equilibrat-
ing for 1.0 × 106 time steps, the system is cooled down to
T ∗ = 0.3 immediately and then kept for 1.0 × 107 time steps,
at which the smectic-like structures with certain defect pat-
terns are formed. To investigate the transformation between
different defect patterns, we track the whole trajectory of
every particle in the simulations [59]. The translational and
rotational equations of elliptical particles are integrated using
a Velocity-Verlet-like algorithm [54] with a time step δt =
0.001τ .

III. RESULTS AND DISCUSSION

A. Phase behavior of elliptical particles in the bulk

We first begin our study with unconfined bulk systems
under periodic boundary conditions. To quantitatively iden-
tify different liquid crystal phases, the orientational order
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parameter S2, the radial distribution function g(r), the radial
distribution function parallel to the director g‖(r‖), and
the mean square displacement (MSD) are calculated. The
orientational order parameter S2 is defined as the largest eigen-
value of the order tensor Qαβ [16]:

Qαβ = 1

N

〈
N∑

i=1

[2uα (i) · uβ (i) − δαβ]

〉
, (6)

where uα (i) is the αth Cartesian coordinate of the unit vec-
tor specifying the orientation of molecule i and δαβ is the
Kronecker symbol. The increase of S2 often suggests the
emergence of orientational ordering, and S2 = 1 corresponds
to the perfectly orientational ordered structure. The radial
distribution function is given by

g(r) = 1

lxlyNρ

〈
N∑
i

N∑
j �=i

δ(r − ri j )

〉
, (7)

where lx and ly are the box length along X and Y axes,
respectively, and ρ is the number density of elliptical particles.
The radial distribution function parallel to the director g‖(r‖),
which is sensitive to the arrangement of the elliptical particles
within the layers, is described as [60]

g‖(r‖) = 1

lxlyNρ

〈
N∑
i

N∑
j �=i

δ(r‖ − n · ri j )

〉
, (8)

where r‖ is the projection of the interparticle vector ri j be-
tween elliptical particles i and j along the orientation vector
n. The mean square displacement (MSD) is evaluated by

g1(t ) = 1

N

〈
N∑

i=1

[ri(t ) − ri(0)]2

〉
, (9)

where ri(t ) is the position of the ith elliptical particle at time
t . Figure 2 shows the typical snapshots of isotropic (I) phase
[Fig. 2(a)], nematic (N) phase [Fig. 2(b)], smectic (Sm) phase
[Fig. 2(c)], and solid (S) phase [Fig. 2(d)], together with the
corresponding calculated S2, g(r), g‖(r‖), and MSD. Each
system is set to target temperature independently. As shown
in Fig. 2, with decreasing temperature, the order parameter S2

increases in four distinct regions. The isotropic-nematic tran-
sition is detected at T ∗ ≈ 13.0 where the slope of S2 changes
[61]. The average heat capacity per particle CV /N is also
calculated by CV = 〈δU 2〉

kBT 2 + 3
2 NkB [62] and CV = (∂E/∂T )V

[63–65]. As shown in Fig. S2 [58], the values of CV /N are
all around CV /N ≈ 1.8, and there is no sharp change. So
this isotropic-nematic transition should be continuous. With
further decreasing temperature to T ∗ ≈ 0.7, the slope of S2

increases greatly and the smectic phase is identified by the
long-ranged peaks of g‖(r‖) with a period of approximately
particle length (b = 4.4). At T ∗ ≈ 0.08, the peaks of g(r) and
g‖(r‖) start to become sharp and narrow. We identify this as
solid phase and expect that relatively perfect crystal phase will
appear at higher number densities. It is clearly seen that the
smectic phase shows better orientational ordering [Fig. 2(e)]
than the nematic and isotropic phases, and its fluidity is much
better than the solid phase [Fig. 2(h)]. Moreover, as shown
in Fig. 2(c), no obvious defects could be seen in the smectic

FIG. 2. (a) Isotropic (I) phase at T ∗ = 16, (b) nematic (N) phase
at T ∗ = 1.0, (c) smectic (Sm) phase at T ∗ = 0.3, (d) solid (S) phase
at T ∗ = 0.05, (e) orientational order parameter S2 as a function of
temperature T ∗, and the inset in (e) is a plot enlarging the region
near the smectic-solid transition, (f) radial distribution function g(r)
of different phases, and curves are shifted vertically for better vi-
sualization, (g) radial distribution function parallel to the director
g‖(r‖) of different phases, (h) the mean square displacement (MSD)
of different phases. The simulations are performed in 2D unconfined
bulk system with the box length Wx = 80σ0.

phase at T ∗ = 0.3 for the bulk system, and so we choose
T ∗ = 0.3 as the state point in the following study to under-
stand the formation of defect patterns in 2D smectic phase
under confinement.

B. Defect patterns in confined smectic liquid crystals

Figure 3 shows typical defect patterns in 2D smectic phase
under square confinements with the side lengths Wx = 50σ0 at
T ∗ = 0.3. For comparison, the smectic phase obtained in the
bulk system is also given in Fig. 3(a). Due to the parallel sur-
face anchoring interaction, elliptical particles near the walls
tend to align parallel to the walls, and other elliptical particles
form smectic layers connecting neighboring or opposite walls.
In agreement with the experiment [24], two typical types of
defect patterns, bridge and diagonal patterns, are observed.
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FIG. 3. Typical defect patterns observed at Wx = 50σ0 and T ∗ =
0.3: (a) smectic phase in the bulk, (b) bridge defect pattern, and
(c) diagonal defect pattern. (d) Radial distribution function g(r) of
these structures; curves are shifted vertically for better visualization.
(e) Radial distribution function parallel to the director g‖(r‖) of these
structures.

These two defect patterns under square confinements with
different side lengths Wx are also given in Fig. S3 [58]. As
shown in Fig. 3(b) and Fig. S3 [58], the bridge defect is
characterized by three smectic domains. Two small green
domains are anchored parallel to two opposite sides, and a
large purple domain connects the other two sides. To meet
parallel surface anchoring conditions at neighboring walls,
the smectic layers can also bend to form the diagonal defect
pattern (Fig. 3(c) and Fig. S3 [58]), which consists of two
sectors connected by the diagonal of the square boundary.
For a quantitative comparison with the bulk system, the radial
distribution function g(r) and the radial distribution function
parallel to the director g‖(r‖) are also calculated for these
bridge and diagonal patterns. As can be seen in Fig. 3(e), the
intensity of the peaks in g‖(r‖) of these two defect patterns is
obviously weakened. Moreover, as shown in Fig. S4 [58], the
orientational order parameter S2 of these two defect patterns
is significantly reduced. This suggests that the geometrical
constraint introduced by the square confinement induces a
weaker layered and orientational order in these two defect
patterns.

C. Transition kinetics between bridge and
diagonal defect patterns

In order to quantitatively distinguish these bridge and di-
agonal defect states at different simulation times, we calculate
the parallel orientational order parameter and the diagonal

orientational order parameter, which are defined as [16]

Spd = 1

N

〈
N∑

i=1

cos(2θi )

〉
, (10)

where θi is the angle between the orientation of ith particle
and the director parallel to the boundary nparal or the director
parallel to the diagonal of the rectangle ndiag. If the parallel
orientational order parameter is larger than the diagonal ori-
entational order parameter, the defect state is recognized as
the bridge defect. Otherwise, it is recognized as the diagonal
defect.

Figures 4(a) and 4(b) (also Fig. S5 [58]) show the time
evolutions of the parallel orientational order parameter and
the diagonal orientational order parameter, which suggest that
the bridge defect state and diagonal defect state can be trans-
formable continuously between each other over time. Typical
snapshots during the transition from the bridge defect to the
diagonal defect (B–D transition) are given in Fig. 4(a1)–4(a5),
which correspond to five typical time points in the B–D tran-
sition marked by blue spheres in Fig. 4(a). Beginning with
a typical bridge defect state [Fig. 4(a1)], elliptical particles
at the line defect region can rotate to form the smectic lay-
ers connecting the neighboring walls [Fig. 4(a2)]. Then, as
shown in Fig. 4(a3), the smectic layers connecting the op-
posite walls will be distorted and form the irregular sectors
at two corners along the diagonal direction. Next, elliptical
particles around the newly formed defect region will reorga-
nize through translation and rotation to form more ordered
smectic layers connecting neighboring walls [Fig. 4(a4)]. Fi-
nally, the bending smectic layers reorient along the diagonal
direction; a typical diagonal defect is observed in Fig. 4(a5).
Conversely, the diagonal defect state could also transform into
the bridge defect state over time. Typical snapshots during the
transition from the diagonal defect to the bridge defect (D–B
transition) are given in Figs. 4(b1)–4(b5). As demonstrated in
Fig. 4(b1), the smectic layers connecting to neighboring walls
around the point defect regions could be cracked due to the
thermal fluctuation, and the elliptical particles will realign into
the bending smectic layers connecting to the opposite walls
[Fig. 4(b2)]. Then, the bending smectic layers connecting
to opposite walls become more dominant [Fig. 4(b3)] and
more flatted [Fig. 4(b4)]. Finally, the smectic layers reorient
along the parallel direction, and form the typical bridge defect
pattern [Fig. 4(b5)].

D. Controlling the relative stability of defect patterns

To address how to control the relative stability of these two
defect patterns by changing the confinement conditions, we
systematically examine the effects of the box-ellipse size ratio
Wx/b, the aspect ratio of confinement rectangle Wy/Wx, and
the strength of parallel surface anchoring interaction εGB-LJ

on the relative probabilities for appearance of these defect
patterns. The relative probabilities for each point are calcu-
lated using five independent simulation runs with the time of
5.5 × 108 time steps.

For the square confinements, as illustrated in Fig. 5, the
bridge defect patterns are absolutely dominant when the
strength of parallel surface anchoring interaction εGB-LJ is
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FIG. 4. Transition kinetics between bridge and diagonal defect states at Wx = 50σ0 and εGB-LJ = 5.0ε0. (a) and (b) Time evolution of the
parallel orientational order parameter (green line) and the diagonal orientational order parameter (purple line). (a1)–(a5) Typical snapshots
during the transition from the bridge defect to the diagonal defect (B–D). (b1)–(b5) Typical snapshots during the transition from the diagonal
defect to the bridge defect (D–B).

small (εGB-LJ = 0.6ε0). As εGB-LJ increases, the relative prob-
abilities for appearance of diagonal defect patterns become
higher. But, when the anchoring strength εGB-LJ is larger than
5.0ε0, this tendency is no longer apparent. For large values
of εGB-LJ , the probabilities for appearance of diagonal defect
patterns also increase upon increasing the box-ellipse size
ratio Wx/b. This is because the boundary effects are more
profound in a system with small Wx/b, and can influence the
structures in the box interior, where the main domain of the

FIG. 5. The relative probabilities for appearance of diagonal de-
fect patterns Pdiagonal as a function of the box-ellipse size ratio Wx/b
at different anchoring strengths εGB-LJ in square confinements.

smectic layers aligns parallel to a boundary. For a system with
relatively large Wx/b, the defect patterns tend to keep the four-
sided symmetry of the original confinement boundaries. So, in
comparison with bridge defect patterns, the probabilities for
appearance of the diagonal defect patterns are relatively high,
and the diagonal defect patterns are more stable.

To further evaluate the relative stability of these two defect
patterns, we calculate the free energy differences between
them. The bridge defect pattern can transform into the di-

FIG. 6. The free energy differences per particle �Fp (in units of
kBT ) for diagonal defect patterns with respect to the reference bridge
defect pattern.
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FIG. 7. The relative probabilities for appearance of bridge defect
patterns Pbridge as a function of the ratio of confinement boundaries
Wy/Wx at different anchoring strengths εGB-LJ in rectangle confine-
ments while keeping Wx = 65σ0.

agonal defect pattern by increasing the strength of parallel
surface anchoring interaction εGB-LJ at Wx = 70σ0. Thus, the
free energy differences of diagonal defect pattern with re-
spect to the reference bridge defect pattern can be calculated
by thermodynamic integration [66,67]. The integrating equa-
tion can be expressed as F (εGB-LJ,diagonal ) − F (εGB-LJ, bridge) =∫ εGB-LJ,diagonal

εGB-LJ, bridge
dεGB-LJ〈 ∂U (εGB-LJ )

∂εGB-LJ
〉εGB-LJ , where 〈· · · 〉εGB-LJ denotes

an ensemble average for a system with a potential function
U (εGB-LJ ). Figure 6 shows the free energy differences per par-
ticle �Fp for diagonal defect patterns with the bridge defect
pattern as the reference measured with the increasing rate
of �εGB-LJ = 0.1 per 1.0 × 107 time steps. The calculated
results are not affected by different increasing rates of �εGB-LJ

(Fig. S6 [58]). As εGB-LJ increases, the diagonal defect pat-
terns become more stable, which is consistent with the relative
probabilities for appearance of the diagonal defect patterns in
Fig. 5. All the free energy differences per particle of these
defect patterns range from −1.66kBT to 0.00kBT , which are
low enough to allow the continuous transformation between
bridge and diagonal defect patterns over time.

As shown in Fig. 7 and Fig. S7 [58], the relative proba-
bilities for appearance of these two defect patterns are also
affected by the shape of confinement boundaries. The align-

ment of elliptical particles near the two ends of the rectangular
boundary is similar to that of the square boundary, while the
elliptical particles near the middle region align along the long
side direction. So, as the aspect ratio of confinement rectangle
Wy/Wx increases, more stable defect pattern is the bridge one,
whose symmetry is inherited from the rectangular boundary.
As for the middle region, whose width is Wy − Wx, the smectic
layers are connected to the opposite walls because the distance
from elliptical particles to the opposite walls is closer than
the one from elliptical particles to the adjacent walls. Hence,
The proportion of bridge defects increases with increasing
Wy/Wx. As demonstrated in Fig. 7, increasing the boundary
anchoring strength εGB-LJ will suppress the appearance of the
bridge defect pattern. This tendency is still kept, even when
εGB-LJ = 15.0ε0. Thus, compared to the square confinement
systems, the relative stability of defect patterns in rectangle
confinement boundaries is more sensitive to the boundary
anchoring strength.

IV. CONCLUSIONS

In summary, we perform a systematic study on the transi-
tion kinetics of defect patterns in confined two-dimensional
smectic Gay-Berne liquid crystals using molecular dynam-
ics simulations. We observe that the smectic layers tend to
form typical bridge and diagonal defect patterns to satisfy
the confinement boundary conditions. Due to the competition
between neighboring and opposite boundary effects, these two
defect patterns can be transformable continuously between
each other over time. We further show that the relative stability
of these two defect patterns can be controlled by properly tun-
ing the confinement conditions. This work provides the basis
for understanding the transition kinetics of defect patterns in
confined smectic liquid crystals, possibly expanding the de-
sign of new liquid crystal materials for various technological
applications.
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