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Lattice Boltzmann and Jones matrix calculations for the determination
of the director field structure in self-propelling nematic droplets
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Nematic droplets immersed in aqueous surfactant solutions can show a self-propelled motion induced by a
Marangoni flow in the droplet surface. In addition to the self-propulsion, the Marangoni flow induces within the
droplet a convective flow which considerably influences the nematic director field of the droplet. We report
numerical simulations aiming at the determination of the director field in the self-propelling droplet. The
convective flow and the resulting structure of director field are described by a lattice Boltzmann model. The
reliability of the obtained structures is proved by subsequent Jones matrix calculations which enable the direct
comparison of experimental polarizing microscopy images of self-propelling droplets with calculated images
based on the simulated structures.
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I. INTRODUCTION

Artificial microswimmers based on liquid droplets self-
propelling in a second liquid have gained attention as model
systems for the study of biological microswimmers ranging
from the single swimmer level to the collective behavior [1]. A
versatile class of droplet swimmers consists of cyanobiphenyl
compounds: small rod-shaped organic molecules which are
well known as thermotropic liquid crystals. Nematic liquid
crystals are liquid phases in which the rod-shaped molecules
tend to align along a common direction, specified by a
unit vector �n named director. A standard compound is 5CB
(4-pentyl-4′-cyanobiphenyl), which is used in numerous fun-
damental and application-oriented studies because it exhibits
the nematic phase at room temperature.

Recently it was observed that cyanobiphenyl compounds
can serve, beyond their liquid crystal properties, as artificial
microswimmers: If a 5CB droplet (typical diameter 50 μm) is
placed into an aqueous solution of standard ionic surfactants
such as hexadecyltrimethylammonium bromide (CTAB) or
sodium dodecyl sulfate (SDS), a spontaneous solubilization
process, consisting of the transfer of 5CB molecules from
the parental droplet into surfactant micelles in the aqueous
environment, sets in provided the surfactant concentration is
above a certain level (several times the critical micelle con-
centration) [2]. The micellar solubilization of the droplet is
accompanied by a self-propelled motion which is induced by
a Marangoni stress caused by a self-sustained gradient in the
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surfactant coverage of the droplet surface [3]. In addition to
the self-propulsion, the Marangoni flow in the droplet surface
leads to a convective flow within the moving droplet.

The droplet swimmers described above possess several
properties which render them especially versatile model sys-
tems for biological microswimmers. For instance, they show
chemotaxis [4,5] and exhibit collective behavior by forming
floating clusters [6], and their surface flow pattern, induced by
the Marangoni stress, can be changed from a simple neutral
squirmer type (dipolar symmetry) to higher modes of, e.g.,
quadrupolar symmetry [7].

The compound 5CB is at room temperature in the ne-
matic liquid crystal state and transforms into the isotropic
liquid phase when the temperature rises above 35 ◦C. The
self-propulsion and the above described features are present
regardless of the phase of the swimming droplet, but the
presence of nematic ordering influences considerably the
swimming behavior: Whereas the motion of isotropic droplets
is characterized by ballistic on short and diffusive behavior
on long scales, nematic droplets move on helical or curling
trajectories because of an asymmetry in the nematic direc-
tor field [8]. The ballistic or diffusive behavior is recovered
when the droplet diameter decreases [9]. Also, the presence
of nematic order makes the droplet swimmers susceptible to
external magnetic fields [10], and it enables the design of
self-propelling shells [11].

The striking effects of the nematic order on the swim-
ming behavior of the self-propelling droplets or shells result
from the mutual coupling between flow and nematic order.
While their swimming behavior is qualitatively well under-
stood [8,11], a complete quantitative understanding requires
the knowledge of both the nematic director field and the flow
velocity field in the droplet. Experimentally, some information
on the structure of nematic droplets, such as the type and po-
sition of topological defects, can be obtained from polarizing
microscopy and the flow field could be accessible through PIV
(particle image velocimetry) measurements. On the theory
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side, studies of droplet swimmers are usually concerned with
isotropic droplets [12–14]. Recently, Mozorov and Michelin
[15] have presented a minimal model which addresses the
special features of nematic droplet swimmers. Here we pro-
pose an approach based on numerical simulations in order
to obtain detailed information on the structure and the flow
field in self-propelling nematic doplets: the lattice Boltzmann
(LB) method is used to compute flow and director fields and
subsequent Jones matrix calculations enable a comparison
with experimental results. In the present paper, we describe
the general approach and focus mainly on the determination
of the director field. The back coupling on the flow field and
the resulting effects on the swimming behavior are left for a
future study. The paper is organized as follows: In the next
section, we consider the simulation of the convective flow
in the droplet. In Sec. III we add the nematic order to the
droplet and study the influence of the convective flow on the
director field. Section IV describes Jones matrix calculations
which confirm the reliability of the structures obtained from
the LB simulations. The last section provides a discussion and
conclusion.

II. FLOW IN SELF-PROPELLING DROPLETS

The flow in the self-propelling droplet is induced by the
Marangoni flow in the droplet surface which is caused by
a gradient in the surfactant coverage. Assuming an axisym-
metric gradient, the simplest pattern of the surface flow is
that of a neutral squirmer. A squirmer is a model swimmer
which has been introduced to describe the motion of (nearly)
spherical biological microswimmers such as volvox algae
[16,17]. Whereas the bioswimmers move by the generation of
metachronal surface waves, model squirmers propel by a pre-
scribed surface velocity. For a neutral squirmer, the tangential
velocity vθ at position �r in the surface is given by

vθ = B1 sin θ, (1)

where θ is the polar angle between �r and the z axis (which we
take as the symmetry axis) and B1 is a constant coefficient.

As a first approach to model the velocity field inside the
droplet, we use the standard lattice Boltzmann (LB) method
for simple Newtonian fluids [18,19]. The LB method is based
on a rectangular lattice, to each lattice node a set of distri-
bution functions fi is assigned which describe the density of
fluid particles traveling with velocity �ci to a neighboring grid
node. The density ρ and velocity �v of the fluid at each node
are thus given by

ρ =
∑

i

fi, (2)

�v = 1

ρ

∑
i

fi�ci. (3)

We use the D3Q15 set, i.e., for each node in our three-
dimensional grid 14 neighboring nodes are considered, i
takes values from 0 to 14, and the velocity vectors �ci

are (0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1), (±1,±1,±1)
in units of �x/�t (lattice spacing per time step). The evo-
lution of the distribution functions is obtained via a collision

and streaming step:

fi(�r + �ci�t, t + �t ) = fi(�r, t ) + �i(�r, t ). (4)

The collision operator �i describes a relaxation towards an
equilibrium distribution f eq

i at rate τ f :

�i = −�t

τ f

(
fi − f eq

i

)
. (5)

The equilibrium distribution functions f eq
i can be obtained as

expansions in the velocity under certain constraints. It can be
shown [18,19] that

f eq
i = wiρ

[
1 + 3(�v · �ci ) + 9(�v · �ci )2

2
− 3(�v · �v)

2

]
. (6)

The weighting factors wi are 2
9 for i = 0, 1

9 for i = 1 to 6, and
1

72 for i = 7 to 14.
An explanation of the boundary conditions is in order. A

standard boundary condition in a LB simulation is the bounce
back boundary corresponding to a solid wall with no-slip
condition: a fluid particle, which meets the boundary with
velocity �ci, travels back with reversed velocity −�ci to the
grid node from which it has started. In order to enable the
particle to reach again its initial node within one time step,
the boundary has to be located exactly halfway between two
neighboring nodes, implying directly that the boundary has to
be parallel to one of the grid axes. This condition cannot be
fulfilled for a curved boundary and the implementation of an
interpolation procedure is necessary. We use the method de-
scribed by Bouzidi et al. [20] in order to establish a spherical
boundary around our sample volume.

A flow in a LB fluid can be induced in several ways, e.g.,
a body force can be introduced [21] or a velocity can be
assigned to a no-slip boundary [22]. In order to generate the
convective flow in our model droplet, we use the latter method
and assign a tangential velocity field according to Eq. (1) to
the spherical boundary of our sample volume. The resulting
flow field (Fig. 1) has the expected shape of an axisymmetric
convection ring. There are two stagnation points at the surface,
one at the leading pole (θ = π for the example shown in
Fig. 1) and the second at the opposite pole at the rear of the
self-propelling droplet.

For a neutral squirmer the internal (and external) flow field
can be described analytically: it corresponds to a liquid sphere
which moves, e.g., by sedimentation, at low Reynolds num-
bers within a surrounding liquid and has been treated decades
ago [23]. The velocity components vr and vθ of the internal
flow field are given (in the laboratory frame) as

vr = V cos θ

[
2 + 3μ

2(1 + μ)
− μ

2(1 + μ)

r2

R2

]
, (7)

vθ = −V sin θ

[
2 + 3μ

2(1 + μ)
− μ

(1 + μ)

r2

R2

]
. (8)

Here V is the velocity of the sphere, R is its radius, and μ

is the viscosity ratio between inner and outer liquid. In order
to obtain the flow field in the frame of the moving droplet, we
would have to subtract the droplet velocity vr = V cos θ , vθ =
−V sin θ . We can now make a direct comparison between the
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FIG. 1. Velocity field in a spherical sample volume resulting
from the LB simulation with a surface velocity pattern according
to Eq. (1). Blue arrows show the local flow velocity. Shown is an
example with B1 < 0, the droplet would move along the −z direction.
The black solid line indicate the locations of the data shown in Fig. 2.

results of the LB simulation and the analytical description. As
shown in Fig. 2, there is a quantitative agreement.

Squirmers can exhibit higher modes in their surface veloc-
ity patterns [17,24] which we can assign to our model droplet.
Adding the second mode to Eq. (1) results in

vθ = B1 sin θ + B2

2
sin(2θ ). (9)

The ratio of the two coefficients, B2/B1, determines whether
the squirmer shows the characterics of a “pusher” (B2/B1 < 0,
propulsion mainly from the rear) or a “puller” (B2/B1 > 0,
propulsion mainly from the front). The internal flow fields,
resulting from the LB simulation, are shown in Fig. 3 (upper
and middle panels). We can also generate asymmetric flow
fields, e.g., by assigning a dependence on the azimuthal angle
φ to the coefficient B1 in Eq. (1). A possible equation for the

FIG. 2. Velocity component vz (in units of the surface velocity
vz,R) as function of distance r (in units of droplet radius R) from the
droplet center along the black line in Fig. 1. Red dots: data from
LB simulation; blue line: analytical solution according to Eqs. (7)
and (8).

FIG. 3. Upper panel: Internal flow field of a liquid squirmer with
pusher characteristics, obtained from the LB simulation with a sur-
face velocity pattern according to Eq. (9) with B2/B1 = −3. Middle
panel: Flow field obtained for B2/B1 = +3, resulting in the flow field
of a puller. Lower panel: Flow field obtained from an asymmetric
surface velocity pattern according to Eq. (10) with c = 1/2. Shown
is the section along the plane corresponding to φ = π

2 , 3π

2 .
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surface velocity vθ,φ could be

vθ,φ = B1(1 + c sin φ) sin θ. (10)

The coefficient c determines how pronounced the asymmetry
is; an example with c = 1/2 is shown in Fig. 3 (lower panel).

The above described examples demonstrate that we can ob-
tain for our model droplet a reliable description of the internal
flow field for an arbitrary velocity pattern in the droplet sur-
face. A drawback of this approach is that the surface flow itself
is not part of the simulation but a prescribed boundary con-
dition. Thus, we cannot simulate phenomena which involve
a change of the surface flow resulting, e.g., from changes in
the surfactant concentration in the surrounding aqueous phase.
However, for the study of the internal structure of a single
self-propelling nematic droplet, our simple approach might be
useful.

III. DIRECTOR FIELD IN SELF-PROPELLING DROPLETS

A description of the nematic director field can be made in
terms of the unit vector �n and the scalar order parameter q
(q = 0: isotropic liquid, q = 1: perfect parallel orientational
order). The vector approach neglects the physical equivalence
of states with �n and −�n and has shortcomings in the de-
scription of topological defects [25]. A better description is
provided by a tensor field Q(�r). The tensor order parameter Q
is defined as [26]

Qαβ = q
(
nαnβ − 1

3δαβ

)
; (11)

its largest eigenvalue equals 2
3 q, and the corresponding eigen-

vectors are �n and −�n.
Most nematic liquid crystals show the so-called flow

aligning behavior, i.e., in a shear flow, the director aligns
approximately (the deviation is of the order of 10◦) along the
flow direction. Few compounds do not show flow aligning but
instead an unstable alignment (“tumbling”) in a shear flow
[27]. The coupling between flow and orientation works also in
the opposite direction: When the orientation of �n is changed,
e.g., by the application of an electric field in a liquid crystal
display, a flow (“backflow”) in the material is induced [28].
Also, it is known for a long time that the effective viscosity
in a shear flow depends on the orientation of �n [29]. A first
theoretical description of the mutual coupling between flow,
director field, and viscosity was proposed by Ericksen [30]
and Leslie [31,32] who used the vector description of the
director field. Theoretical models of nematic hydrodynam-
ics based on the tensor description were presented by Beris
and Edwards [33,34] and Qian and Sheng [35]. LB models
based on these theories have been developed by Care et al.
[36,37] and Denniston et al. [38,39]. Recently, a multiparticle
collision dynamics model, based on the Qian-Sheng theory,
has been presented [40]. LB models, often in conjunction
with finite difference schemes, have been applied to active ne-
matic liquid crystals [41,42], nematic microfluidics [43–45],
nematic colloids [46,47], and other liquid crystal phases like
cholesteric and blue phases [48,49]. In the following, we use
a simplified version of the LB model described by Denniston
et al. [38,39] which is based on the Beris-Edwards theory. We
first give a brief summary of the main equations of this theory.

In the Beris-Edwards framework, the evolution of the ne-
matic tensor order parameter Q in the presence of a flow �v is
given by

(∂t + �v · �∇)Q = H + S. (12)

Here H is the molecular field which drives the system towards
equilibrium and  = 2q2/γ1 where γ1 is the rotational viscos-
ity of the nematic liquid dystal [38,39]. H is obtained from the
free energy F of the system:

H = − δF

δQ
+ I

3
Tr

(
δF

δQ

)
. (13)

For the free energy F , a standard Landau–de Gennes func-
tional is used:

F =
∫ [A0

2

(
1 − γ

3

)
Tr(Q2) − A0γ

3
Tr(Q3)

+ A0γ

4
[Tr(Q2)]2 + L

2
(∇Q)2

]
dV. (14)

The first three terms describe a first-order transition, con-
trolled by the parameter γ , of a generic liquid crystal (γ > 8

3 :
nematic, γ < 8

3 : isotropic phase) and the coefficient A0 sets
the bulk energy density of the liquid crystal. The last term
gives the elastic energy where L = K/(2q2) with K being
the mean of the three Frank elastic constants (one-constant
approximation). With F defined as above, we have for the
molecular field H:

H = −A0

(
1 − γ

3

)
Q + A0γ

(
Q2 − I

3
TrQ2

)

− A0γ QTrQ2 + L∇2Q. (15)

The second term on the right-hand side of Eq. (12), S,
describes the change of Q by the flow velocity gradient tensor
Wαβ = ∂βvα . Denoting the symmetric and antisymmetric part
of W as D = (W + WT )/2 and � = (W − WT )/2, S is given
as

S = (ξD + �)(Q + I/3) + (Q + I/3)(ξD − �)

− 2ξ (Q + I/3)Tr(QW). (16)

The factor ξ depends on the shape of the nematic molecules
and determines whether the material shows tumbling or flow
aligning and, in the latter case, the equilibrium angle in a shear
flow.

For the implementation of the LB model, we follow
Refs. [38,39]. In order to describe the tensor field Q(�r), a
second set of distribution functions Gi is assigned to each grid
node:

Q =
∑

i

Gi. (17)

The evolution of the distribution functions Gi follows anal-
ogous to Eq. (4) with collision operators Ci = �t

τG
(Gi − Geq

i )
and coupling terms Mi which describe the influence of the
flow field and the molecular field on Q:

Gi(�r + �ci�t, t + �t ) = Gi(�r, t ) − Ci(�r, t ) + Mi. (18)
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According to Ref. [39], the equilibrium distribution functions
Geq

i are given as

Geq
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q
[
1 − 2(�v·�v)

3

]
for i = 0

Q
[ �v·�ci

3 + (�v·�ci )2

2 − �v·�v
12

]
for i = 1, . . . , 6

Q
[ �v·�ci

24 + (�v·�ci )2

16 − �v·�v
24

]
for i = 7, . . . , 14

, (19)

and the coupling terms Mi are

Mi =
{

(H + S)
(

1
15 + �v·�ci

3

)
for i = 0, . . . , 6

(H + S)
(

1
15 + �v·�ci

24

)
for i = 7, . . . , 14.

(20)

These expressions result from similar expansions and con-
straints as mentioned for Eq. (6), details are given in [39].

So far we have considered only how the combination of
flow field and molecular field would influence the Q(�r) field.
In order to take into account the inverse coupling, i.e., the
influence of the anisotropic viscosity and of backflow effects
on the �v(�r) field, we would have to calculate the stress tensor
of the nematic liquid and implement it into the LB model. The
calculation and implementation are described in [38,39], and
one consequence is a modification and extension of Eq. (6).
However, because of the considerably smaller computational
effort we tried as a first approach to treat the nematic liquid
crystal as a Newtonian fluid with isotropic viscosity without
any backflow effects. It is obvious that this is a strong simplifi-
cation but the results seem to indicate that the Q(�r) field in the
self-propelling droplet is surprisingly well described by this
simple approach. We come back to this point in the discussion
section.

Standard ionic surfactants possessing a hydrophilic head
and a long hydrophobic tail induce a perpendicular anchoring
of the nematic director at the liquid crystal-aqueous inter-
face [50]. As boundary condition for Q we thus implement
strong perpendicular anchoring, i.e., at all nodes located at
the boundary Q is reset after each time step to its initial
value corresponding to a director orientation perpendicular
to the boundary. The results presented in the following were
obtained for LB simulations of a spherical model droplet
(experimental diameter 50 μm), which is placed into a cubic
grid with k3 nodes (for most runs we set k = 64, in a few cases
we used k = 128). For the mapping between physical and
simulation units we use an earlier experiment [51] in which
the flow of 5CB through a microfluidic channel was studied.
More details are given in the Supplemental Material [52].

In a resting nematic droplet, the structure of the director
field is determined only by the nematic elasticity, the size of
the droplet, and the anchoring condition at the droplet surface
[54–56] resulting, for larger droplets and strong perpendicular
anchoring, in a simple radial director field with a topological
point defect of strength +1 at the center. We use this structure
(shown in Fig. 5, upper panel) as start configuration and study
first the effect of a symmetric flow field (Fig. 1), correspond-
ing to a neutral squirmer, on the structure of the director field
in our self-propelling nematic model droplet. When the sur-
face flow is switched on, the internal convection develops, and
the structure of the �n field evolves in the concurrent influences
of elastic interactions and flow-aligning effects. The torque
on �n in a shear flow is proportional to the magnitude of the

FIG. 4. Flow alignment in a shear flow (blue arrows): the ne-
matic director (blue ellipse) experiences a torque M = (α2 sin2 ϑ −
α3 cos2 ϑ )|∇v| [53], M vanishes for ϑ = arctan

√
α3/α2 ≈ 10◦ for

most compounds (α2,3 are viscosity coefficients of the Ericksen-
Leslie theory, which can be related to the scalar order parameter q
and the quantities ξ and  of the Beris-Edwards framework [38]).

flow velocity gradient, | �∇v|, and depends on the orientation
of �n with respect to �∇v; see Fig. 4. As shown in Fig. 2, v

varies, in the equatorial plane of our model droplet, as a simple
parabola, i.e., | �∇v| goes to zero at the droplet center and is
maximum at the surface. Also, considering the initial �n field
(Fig. 5, upper panel) and the applied flow field (Fig. 1), we
note that the deviations between the initial orientation of �n
and the expected orientation of �n in the flow field (Fig. 4) are
larger in the lower half-sphere (z < 0) of our model droplet
compared to the upper (z > 0) half-sphere. Taking addition-
ally into account that the orientation of �n is held constant at the
surface (strong anchoring), we expect the largest flow aligning
effects in regions in the lower half-sphere and at some distance
from the center and the surface. Figure 5 (middle panel) shows
an intermediate state of the LB simulation confirming these
expectations.

The flow-induced changes of the orientation of �n result
in a shift of the point defect along the central symmetry
axis in the downstream direction. Because flow gradients are
small in the central region, this shift proceeds slower than the
changes in regions closer to the surface. However, the LB
simulation reaches finally a steady state in which the flow
aligning effects are balanced by the elastic interactions (Fig. 5,
lower panel). The position of the point defect is now near
the stagnation point at the leading pole of the self-propelling
droplet, in accordance with the experimental observation of
nematic droplets self-propelling in capillaries or microfluidic
channels (which enforce a straight motion of the droplets)
[3,8]. Structural changes of nematic director fields by convec-
tive flows have been observed also in cylindrical droplets, in
which the convection was induced by temperature gradients
[57], electric fields [58], or the advection of the droplet in
microfluidic channels [59].

The drawings in Fig. 5 show only every fourth of 64 nodes
along one dimension. Looking at the director field around the
defect in higher resolution, it seems that the point defect has
spread into a topological equivalent loop of a line defect, a
disclination line of strength + 1

2 (Fig. 6). The fine structure
around the core of a radial point defect and its possible trans-
formation into a disclination loop or other structures have
been subjects of several studies (see Ref. [60] and references
therein). However, the spatial resolution of our simulation (�x
in physical units is 50/64 μm) is too low to obtain reliable
results about the defect core. The reason for the appearance
of the disclination loop in the simulation is probably due to
shortcomings of the numerics: In grid-based simulations the
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FIG. 5. Upper panel: Radial director field used as start configu-
ration for the LB simulation; blue rods indicate the orientation of the
local director. Middle panel: Intermediate structure of the director
field, obtained after one quarter of the time span necessary to reach
the steady state. Lower panel: Final structure (steady state) of the
director field in a symmetric flow field (gray arrows, Fig. 1).

FIG. 6. Director field of the defect region in the steady state
(same data as in Fig. 5, lower panel) in higher resolution. The point
defect is replaced by a small disclination loop, which is located in the
plane perpendicular to the z axis; red dots indicate the intersection of
the disclination loop with the plane of the image.

numerical value of the elastic energy is in regions around
defects always smaller than the real value. This could be
compensated by adaptive grid techniques [61] which are be-
yond the scope of the present study. However, the numerical
error is for a line defect considerably larger than for a point
defect resulting in a misleadingly low elastic energy of the line
defect. Thus, in our simulated director fields the point defect
is always replaced by a small disclination loop.

In addition to the simple symmetric flow field shown in
Fig. 1 we have also studied the effect of the flow patterns
shown in Fig. 3. Figure 7 shows the internal structure (the
steady state at the end of the LB simulation) of self-propelling
nematic droplets possessing pusher or puller characteristics.
As to be expected, the largest changes in the �n field, with
respect to the initial configuration (Fig. 5, upper panel), occur
for the pusher in the rear and for the puller in the front half
of the droplet. The central point defect is shifted in the pusher
only by a small amount towards the internal stagnation point
of the flow pattern, whereas it is shifted to the leading pole of
the puller.

When nematic droplets self-propel in capillaries or mi-
crofluidic channels with a width comparable to the droplet
diameter, they move inevitably on a straight trajectory and
the point defect retains its position at the leading pole of the
droplet. In a two- or three-dimensional environment, how-
ever, it is observed that the defect is advected away from the
stagnation point at the front of the droplet, i.e., it adopts a
position somewhere between the leading pole and the equa-
tor. Also, the surface flow pattern is asymmetric and the
trajectory of the droplet becomes curved [8]. We have thus
studied how an asymmetric flow pattern as shown in the
lower panel of Fig. 3 affects the director field in our model
droplet. The start configuration of the LB simulation is again a
simple radial director field as shown in Fig. 5 (upper panel).
The first structural changes are similar to those observed
for the symmetric flow pattern: the central defect is shifted
towards the leading pole of the droplet. Near the surface, how-
ever, the position of the defect is deflected towards the side of
the maximum amplitude of the surface flow. Finally, a steady
state is reached (see Fig. 8) with the defect being located near
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FIG. 7. Upper panel: Director field (steady state) resulting from
the internal flow field (gray arrows, Fig. 3, upper panel) of a self-
propelling droplet with pusher characteristics. Lower panel: Director
field (steady state) resulting from the internal flow field (gray arrows,
Fig. 3, middle panel) of a puller.

the surface and with a deflection angle of 45◦ to 60◦ from the
leading pole, in accordance with the experimental observa-
tions [8]. The broadening of the point defect into a disclination
loop is more pronounced than for the symmetric flow pattern
but, as described above, this may be due to the numerical
underestimation of the elastic energy of a disclination loop
compared to a point defect.

The above described results confirm the experimental ob-
servation of an advection-like behavior of the central point
defect, which is shifted, depending on the flow pattern, either
to the leading pole of the droplet or to a position between
the leading pole and the equator on the side of the maximum
surface flow. If the final position of the defect in the flow
field is known from the experiment, we can use a kind of
shortcut to obtain the final structure of the director field in
the internal flow field of the whole droplet: The first step of
this approach is to set the defect position “manually” as a part
of the boundary conditions. This is done by defining, around

FIG. 8. Director field (steady state) resulting from an asymmetric
internal flow field (gray arrows, Fig. 3, lower panel). The point defect
has broadened to a disclination loop which is located in a plane
perpendicular to the image, red dots indicate the intersection of the
disclination loop with the plane of the image.

the known defect position, a small spherical volume in which
the director field is kept fixed in a radial configuration. The
next step is to minimize the elastic energy which results from
the perpendicular anchoring at the droplet surface and the
position of the defect. Because flow effects are not considered
at this stage, the energy minimization can be done, e.g., by
the fast Q-tensor method [62,63]. The obtained director field
is then used as start configuration for the LB simulation which
arrives faster at a steady state, saving at least 50% computation
time compared to the case where the defect position is not
held constant. Figure 9 illustrates this approach: the upper
panel shows the director field obtained by setting the defect
position near the leading pole and minimizing subsequently
the elastic energy, the lower panel shows the steady state of
the LB simulation, for which the structure shown in the upper
panel was used as start configuration. The final structure is
nearly the same as in the case where the defect position was
not kept fixed (Fig. 5, lower panel) but the computation time
is only one third of that case.

IV. JONES MATRIX CALCULATIONS

To what extent correspond the simulated structures de-
scribed in Sec. III to the structures of real self-propelling
nematic droplets? An important tool to study the structure
of liquid crystalline samples is the polarizing microscope.
The birefringence of the liquid crystal leads to characteristic
patterns and textures and some features, e.g., the presence
of topological defects, can be directly determined from mi-
croscopy images. A detailed comparison of a given model
structure with an experimental structure is provided by the
Jones matrix method [64], which enables the calculation of
microscopy images of a simulated structure. The numerical
micrographs can be directly compared with micrographs of
the real sample thereby probing the reliability of the simulated
structure.
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FIG. 9. Upper panel: Director field obtained by setting the defect
position near the lower surface of the droplet and subsequent min-
imization of the elastic energy. The small black circle indicates the
region in which the director orientation is kept constant in a radial
configuration. Lower panel: Director field (steady state) resulting
from a symmetric internal flow field (Fig. 1). The structure shown
in the upper panel was used as start configuration and the defect
position was held constant.

The Jones matrix formalism relates the electric field �Eout

of a light wave which has transmitted an optical system to
the electric field �Ein of the incident light wave. The incident
(monochromatic) light wave is assumed to possess a well-
defined polarization described by amplitude |E | and phase δ of
two orthogonal components, e.g., for a light wave propagating
along z:

�Ein =
(

Ex

Ey

)
with (21)

Ex,y = |Ex,y| exp(ιδx,y). (22)

The electric field of the transmitted light is then obtained as

�Eout = J �Ein, (23)

FIG. 10. Schematic illustrating the refraction of light rays taken
into account for computing the numerical micrograph.

where the 2 × 2 matrix J is determined by the structure and
optical properties of the transmitted system, which usually
consists of the sample and some optical elements (polarizers,
wave plates, etc.). The Jones matrix J of the complete trans-
mitted system is obtained as the product of the matrices of
all transmitted elements, e.g., for a typical configuration of a
polarizing microscope with polarizer P, sample S, wave plate
W , and analyzer A:

J = JAJW JSJP. (24)

The Jones matrix of the sample, JS , is obtained as a prod-
uct JS = ∏

i JS,i where the matrices JS,i correspond to small
voxels into which the sample is divided along the path of the
transmitting light. Within each voxel the optical properties,
which depend on the orientation of the local director, are
assumed as constant. Explicit expressions for the matrices of
the optical elements and the sample voxels can be found in
Ref. [65] and are given in the Supplemental Material [52].

Usually, for samples with plane boundaries, parallel light
rays are assumed which enter and leave the sample perpen-
dicular to the boundaries. For spherical samples (droplets)
refraction at the surface can be neglected if the difference
between the refractive indices of sample and environment is
small as is the case, e.g., for nematic droplets dispersed in a
polymer matrix [66,67] or for lyotropic liquid crystals [68].
A more elaborated Jones matrix method for liquid crystal
droplets, taking into account the numerical aperture of the
microscope optics, was proposed by Mur et al. [69]. In the
present study, we take refraction at the droplet surface into
account but we do not consider the numerical aperture of
the microscope, i.e., we assume that the image is formed by
parallel rays which arrive perpendicular to image plane but
travel with different angles through the droplet (Fig. 10). The
refraction angles at the droplet surface are calculated assum-
ing a mean refractive index of the liquid crystal, neglecting the
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different refraction of ordinary and extraordinary rays. The
birefringence of the liquid crystal, however, enters through
the phase difference between ordinary and extraordinary rays
which is calculated using the refractive index values of 5CB
reported in [70].

The calculated director field resulting from the LB simula-
tion gives the director orientation at each grid node. Because
the light ray transmits the droplet at some angle to the coordi-
nate axis, the director orientation at the sampling points along
the ray is approximated as described in [69]. For each pixel of
the numerical image, the transmitted field �Eout is calculated as
a function of light wavelength λ in the range between 390 nm
and 790 nm, and we obtain finally an intensity spectrum I (λ)
for each pixel. The last step is then the transformation of the
intensity spectrum to a color as seen by the human eye. For
this purpose, the intensity spectrum is weighted by three color
matching functions which reflect the wavelength sensitivity
of the optical receptors in the eye. We use the color matching
functions x̃(λ), ỹ(λ), and z̃(λ) of the CIE 1931 standard ob-
server [71] in order to obtain the X , Y , and Z coordinates in
the CIE XYZ color space:

X =
∫

I (λ)x̃(λ) dλ (25)

(equations for Y and Z read analogously). Comparing the col-
ors of an experimental image with those of a calculated image
is somewhat ambiguous because there are lot of factors which
influence the experimental recording of a color, e.g., the light
source and optical elements, the camera that was employed,
the software which is used to display or print the image, etc.
We found it useful to consider the magenta background color
that is obtained in a polarizing microscope with a wave plate
for optically isotropic samples (or without any sample), and
we vary the magenta color which is computed by the Jones
matrix formalism until it coincides, as judged by the eye,
with the experimental magenta. This variation is done by
adjusting the spectrum of the incident light �Ein: we assume
a shape of the spectrum corresponding to the black body
radiation and vary the temperature.

A basic test of our implementation is the comparison with
an experimental micrograph obtained for a liquid crystal sam-
ple the structure of which is well known. Figure 11 (upper
panel) shows the polarized micrograph (crossed polarizers
with diagonal wave plate) of a 5CB droplet floating in the
surfactant solution. Because the surfactant concentration is
below the threshold for self-propulsion, the droplet shows a
simple radial director field with a +1 point defect in its center.
The lower panel of Fig. 11 shows the numerical micrograph
calculated for a radial director field (see Fig. 5, upper panel).
The good agreement between experimental and calculated
image demonstrates the usefulness of our approach.

We first consider the case of the symmetric flow field
(Fig. 1) which is present in droplets self-propelling in capillar-
ies or microfluidic channels on a straight trajectory. Figure 12
shows an experimental micrograph of a 5CB droplet self-
propelling in a capillary, the point defect is located near the
bottom of the droplet. When we calculate a numerical mi-
crograph for the director field shown in the upper panel of
Fig. 9 (defect position set near the bottom, elastic energy
minimized, zero flow) we find only a poor agreement between

FIG. 11. Upper panel: Micrograph (crossed polarizers, as indi-
cated in the top right corner, with diagonal wave plate) of a 5CB
droplet (diameter 46 μm) floating in a surfactant solution inducing
strong perpendicular anchoring at the droplet surface resulting in
a radial director. Lower panel: Calculated micrograph for a model
radial director field under coincident conditions (diameter, refractive
indices, etc.).

experimental and numerical image (see Fig. 13). This is to
be expected because that director field is based solely on the
minimization of the elastic energy, without considering any
flow effects.

However, we get better results if we add the internal con-
vection to the simulation of the director field: Fig. 14 shows
numerical micrographs for three different director fields ob-
tained from LB simulations using as start configuration the
zero-flow director field with fixed defect position (upper panel
of Fig. 9). The simulations were run with different values
of the amplitude B1 of the surface flow field [see Eq. (1)]
until the steady states were reached for which then the mi-
crographs were calculated. The experimental and numerical
micrographs possess three salient features: the interference
pattern around the defect at the leading pole, the two larger
colored regions near the equator, and the two smaller colored
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FIG. 12. Micrograph (crossed polarizers with diagonal wave
plate, same orientation as shown in Fig. 11) of a 5CB droplet (di-
ameter 50 μm) self-propelling in a cylindrical capillary. The droplet
is moving downward, the point defect is located near the leading pole
of the droplet.

spots, with swapped colors of the larger regions, at the sides of
the interference pattern. The numerical micrograph displayed
in the middle panel of Fig. 14 shows a fair agreement to the
experimental image with regard to all three features. Using
the mapping between LB and physical units provided in the
Supplemental Material [52], the velocity of the internal flow
in the center of the droplet is of the order of 20 μm/s which
coincides well with the experimental observation.

We now turn to the case of the asymmetric internal flow
field, which is present in self-propelling nematic droplets

FIG. 13. Calculated micrograph for the model director field
shown in the upper panel of Fig. 9. Because flow effects were not
considered for that director field, there is only a poor agreement to
the experimental image (Fig. 12).

FIG. 14. Calculated micrographs for three model director fields
obtained from LB simulations with three different amplitudes B1

[Eq. (1)] of the surface flow field. With respect to the B1 value for the
upper panel, the value was increased by a factor of 2 for the middle
panel and by a factor of 4 for the lower panel.
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FIG. 15. Micrograph (crossed polarizers with diagonal wave
plate, orientation as indicated in the top left corner) of a 5CB
droplet (diameter 50 μm) self-propelling in a quasi-2D reservoir.
The droplet is moving downward; the approximate position of the
point defect is indicated by the white arrow.

which are not confined in a capillary but move in a quasi-2D
or 3D reservoir. Figure 15 shows an experimental micrograph
of a 5CB droplet self-propelling in a quasi-2D environ-
ment, the instantaneous motion direction is downward but
the trajectory is curved to the left. The position of the
point defect is near the droplet surface though not at the
leading pole but deflected towards the equator by an angle
of about π/4. The surface flow and the resulting internal
flow field is asymmetric as shown in the lower panel of
Fig. 3.

In order to determine a director field structure that repro-
duces the experimental micrograph, we use the same approach
as for the symmetric flow field. The defect is set to the po-
sition known from the experiment and the elastic energy is
minimized under the condition of zero flow. The obtained
director field (which is the same as shown in the upper panel
of Fig. 9 but rotated counterclockwise by π/4) is then used
as start configuration for the LB simulation with an asymmet-
ric surface flow pattern according to Eq. (10). As shown in
Fig. 16, we can achieve a good agreement between calculated
and experimental micrographs by varying the amplitude B1

(see middle panel of Fig. 16). The director field structures,
from which the micrographs shown in Fig. 16 were calculated,
were obtained with a defect position that was fixed as part
of the boundary conditions. Thus, the asymmetry in the flow
field would not be necessary to advect the defect to a certain
position and a symmetric flow field could have been used
in the LB simulation. Nevertheless, comparing the results
obtained with symmetric and asymmetric flow fields, we find
that a certain degree of asymmetry in the flow field, described
by the coefficient c in Eq. (10), improves the conformance
between calculated and experimental micrographs. In other
words, the asymmetry in the flow field determines not only
the defect position but influences also the whole director field
of the droplet.

FIG. 16. Calculated micrographs (crossed polarizers with diago-
nal wave plate, orientation as indicated in Fig. 15) for three model
director fields obtained from LB simulations with asymmetric sur-
face flow patterns according to Eq. (10) with c = 1/4 and different
amplitudes B1. With respect to the B1 value for the upper panel, the
value was increased by a factor of 2 for the middle panel and by a
factor of 4 for the lower panel.
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V. DISCUSSION AND CONCLUSION

So far we have obtained the following results: The inter-
nal flow in a self-propelling droplet, driven by a Marangoni
surface flow, can be described by a standard LB model with a
spherical boundary being realized by an interpolation proce-
dure [20]. The Marangoni surface flow can be implemented as
a tangential boundary velocity pattern, appropriate variation
of the surface flow pattern leads to symmetric or asymmet-
ric convective or puller- or pusher-like flow patterns in the
droplet. Concerning the nematic director field in the droplet,
a simplified version of the LB model of Denniston et al.
[38,39], neglecting the anisotropic viscosity and the backflow
coupling in the nematic phase, can sufficiently describe the
flow-induced changes of the director field and the advection of
the topological point defect. The final position of the defect, if
it is known from the experiment, can be implemented also as
an additional boundary condition, resulting in a considerably
shorter computation time for obtaining the final steady-state
structure. Jones matrix calculations enable an efficient check
of the reliability of the computed structures.

With our current implementation of the LB simulation, sev-
eral topics cannot be sufficiently addressed, e.g., the physical
origin of the asymmetry of the flow field of droplets self-
propelling in a quasi-2D or 3D environment. It was argued
[8], that the origin of the flow asymmetry is the structural
asymmetry of the director field: The first step is a spontaneous,
fluctuation-induced displacement of the point defect from the
leading pole. Then, because of the lower viscosity around the
defect, the flow becomes stronger in the droplet half in which
the defect is located and the asymmetry of the whole flow field
develops. The results of the present LB simulations show that
the inverse order could be also true because an asymmetry
in the flow field leads to an asymmetric position of the point
defect. Probably, both effects play a role and form a positive
feedback: the change of the defect position enhances the flow
asymmetry which in turn increases the deflection of the defect.
However, in order to study these effects numerically, two
features have to be implemented in the LB framework: (1)
the anisotropy of the nematic viscosity and (2) the surface
flow should become part of the simulation instead of being
a boundary condition. The anisotropic viscosity is necessary
for the correct description of the flow field, especially near
the point defect. The surface flow should be included in the
LB simulation because the prescription of the surface flow as

a boundary condition suppresses, at least to a certain degree,
the influence of regions with different effective viscosities in
the droplet which result from different director orientations.

We are currently conducting preliminary investigations of
the role of backflow and anisotropic viscosity in the LB
simulation of self-propelling nematic droplets. First results
indicate that the inclusion of the backflow coupling has some
influence on the intermediate states but only little influence on
the steady state at the end of the simulation. Thus, if we are
primarily interested in the steady-state structure of the director
field in the droplet, characterized by an equilibrium between
flow and elastic effects, our simple approach of prescribing a
certain surface flow pattern and neglecting the anisotropy of
the nematic viscosity seems to be sufficient.

The second point, the inclusion of the surface flow pattern
into the LB simulation, would require a considerable exten-
sion of the LB framework and is left for future research. One
approach could be to use a LB model for a binary system
like two immiscible liquids [72,73]. Then, the nematic droplet
would be simulated floating in the aqueous environment and
the self-propulsion could be induced by a body force the
direction of which is coupled to the flow field of the droplet.
Under these conditions, the flow field in the droplet could
develop independently of a certain velocity pattern prescribed
in the droplet surface.

The use of LB models for two immiscible liquids could be
also a first step for the simulation of self-propelling nematic
shells [11]: The nematic model droplet, as described in the
present paper, then would be a spherical reservoir in which
a smaller aqueous droplet is floating and one could study the
advection of the aqueous droplet in the nematic flow field and
the mutual interaction between the flow fields of the shell and
the internal droplet.
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