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Surface anchoring as a control parameter for shaping skyrmion or toron properties
in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets
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Existence of topological localized states (skyrmions and torons) and the mechanism of their condensation
into modulated states are the ruling principles of condensed matter systems, such as chiral nematic liquid
crystals (CLCs) and chiral magnets (ChM). In bulk helimagnets, skyrmions are rendered into thermodynamically
stable hexagonal skyrmion lattice due to the combined effect of a magnetic field and, e.g., small anisotropic
contributions. In thin glass cells of CLCs, skyrmions are formed in response to the geometrical frustration and
field coupling effects. By numerical modeling, I undertake a systematic study of skyrmion or toron properties in
thin layers of CLCs and ChMs with competing surface-induced and bulk anisotropies. The conical phase with
a variable polar angle serves as a suitable background, which shapes skyrmion internal structure, guides the
nucleation processes, and substantializes the skyrmion-skyrmion interaction. I show that the hexagonal lattice of
torons can be stabilized in a vast region of the constructed phase diagram for both easy-axis bulk and surface
anisotropies. A topologically trivial droplet is shown to form as a domain boundary between two cone states with
different rotational fashion, which underpins its stability. The findings provide a recipe for controllably creating

skyrmions and torons, possessing the features on demand for potential applications.
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I. INTRODUCTION

Multidimensional localized structures (e.g., two-
dimensional skyrmions [I-3] and/or three-dimensional
Hopfions [4,5]) are the focus of intense research in many
fields of modern physics including condensed-matter
physics, optics, biophysics, particle and nuclear physics,
astrophysics, and cosmology [6-9]. Since the late 1960s, the
fundamental interest in such localized solutions is related
to the explanation of countable particles in continuous
fields, the instabilities of which due the constraints of
the Hobart-Derrick theorem [10] can be overcome, if the
energy functionals contain, for example, contributions with
higher-order spatial derivatives. These topological solitons,
originally introduced by Skyrme in nuclear physics [11],
found their way into condensed-matter physics [2,12,13],
where they preserved their name, but acquired a different
stabilization mechanism—energy terms linear with respect
to spatial derivatives of order parameters [14,15]. A great
deal of interest, in particular, is attracted by chiral skyrmions,
which created a research boom in chiral liquid crystals (CLC)
and noncentrosymmetric chiral magnets (ChM) and gained,
not only fundamental physics importance, but generated
enormous interest in their applications in information storage
and processing devices [16,17] (in ChMs) as well as new
modes of displays (in CLCs) [18].
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In noncentrosymmetric magnetic materials, skyrmions
are stabilized by specific Dzyaloshinskii-Moriya interaction
(DMI) [14,15], which is phenomenologically expressed by the
so called Lifshitz invariants (LI):

0 =, 22y O

’ 8xk Bxk

where M; and M; are components of magnetization vec-

tors that arise in certain combinations depending on crystal

symmetry and x; are spatial coordinates. For cubic heli-

magnets belonging to 23 (T) (as MnSi, FeGe, and other

B20 compounds) and 432 (O) crystallographic classes,

Dzyaloshinskii-Moriya interactions are reduced to the follow-
ing form:

Wom =D (LY + LY + L)) =DM -rotM.  (2)
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In chiral liquid crystals [19,20], the acentric shape of under-
lying molecules being at the heart of chiral effects leads to
the same functional form of chiral interactions (2) for the
molecular alignment field n(r).

To additionally control the structure and topology of lo-
calized particlelike states in CLCs and ChMs, one employs
confinement effects with controllable boundary conditions
and coupling to applied fields [21-23]. Magnetic skyrmions
are commonly subjected to the effect of an applied magnetic
field, which contributes a Zeeman energy to the energy func-
tionals [24]. By the magnetic field, a hexagonal lattice of
skyrmions may be rendered into a thermodynamically sta-
ble state. The existence region of isolated skyrmions (IS)
becomes restricted by strip-out instabilities at low fields
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and a collapse at high fields [25]. The role of the surface-
induced anisotropy (anchoring) on magnetic skyrmions is
rather neglected by the magnetic skyrmionic community.
Phenomenologically, such a surface anisotropy is known to
appear due to the reduced coordination number at the surfaces
of magnetic materials. Moreover, it can be modified by cover-
ing the magnetic layers with different nonmagnetic materials
[26-28].

CLC skyrmions, on the contrary, are usually subjected to
boundary conditions in the form of an easy-axis or easy-
plane anisotropy (so called surface anchoring), since they are
confined in a glass cell with thickness comparable with the
helicoidal pitch [23,29-31]. Then, in principle, a Zeeman-like
term absent in CLCs can be substituted by the interplay of
an electric field, which fulfills the role of a bulk easy-plane
or easy-axis anisotropy, and the surface anchoring acting in
an opposite way [32,33]. This frustration would create a suit-
able environment for topologically nontrivial localized states
within the conical or homogeneous state. Interestingly, in
ferromagnetic CLCs formed by colloidal dispersion of mag-
netic monodomain nanoparticles, one may achieve a linear
coupling and facile response to applied magnetic fields, as
well [34,35]. These arguments facilitate the discussion of
topological phases in CLCs and ChMs on the same footing. At
the same time, the present manuscript allows one to highlight
the historic obstacles CLC and ChM communities faced along
the way by addressing the problem of soliton stability and
topology.

In the present manuscript, I undertake a systematic study
of skyrmion properties modified by the presence of defects
and a conical state with a variable polar angle in chiral liquid
crystals and chiral magnets. I notice that despite the well-
documented importance of surface boundary conditions, their
role in stabilizing different one-, two-, and three-dimensional
solitonic CLC structures has not been systematically explored
so far. Thus the first goal of this work is to study phase
diagram and director or magnetization structures that appear
because of geometrical frustration of CLCs and ChMs in
thin cells with homeotropic and planar anchoring. In the
next section, I introduce a phenomenological model and the
algorithms used for numerical simulations. I plot the phase
diagram of conical states in thin layers of CLCs and empha-
size the structural differences with the cone states in ChMs.
In Sec. IV by numerically solving the differential equations
minimizing the phenomenological functional, I derive the
equilibrium structures of confined isolated skyrmions as func-
tions of the material parameters and applied electric fields. I
discuss an anisotropic character of skyrmion interaction man-
ifested by skyrmion chains. Since the defects formed within
skyrmions by the strong surface anchoring have the ring shape
and are energetically costly, the skyrmion lattice (SkL) is
replaced by the lattice of torons that contain only two point de-
fects near the surfaces (Sec. V). The complete phase diagram
of states (Sec. VI) also exhibits one-dimensional (1D) straight
and oblique spiral states. I discuss the first- and second-order
phase transitions between these 1D modulations. 1 finalize
the manuscript by considering the structure of 3D droplets
with zero topological charge. Such droplets are shown to
appear as a domain boundary between the conical states
with different rotational structure. The topological charge

is conventionally defined as a way of wrapping the sphere
and it is calculated for different 2D crosscuts of obtained
structures as
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where m stands for the director in CLC or the magnetization
in chiral magnets. The topological charge is a quantity widely
used in the skyrmionics community. Whenever possible, I also
discuss connections of the theoretical results to the experi-
mental findings in different condensed-matter systems.

II. PHENOMENOLOGICAL MODEL AND
ONE-DIMENSIONAL SPIRAL STATES IN MAGNETS

The simplest model for magnetic states in bulk noncen-
trosymmetric ferromagnets is based on the following energy
density functional [15,36]

w = A (gradm)’ + Dm - rot m, 4)

includes only the exchange stiffness with constant A and the
Dzyaloshinskii-Moriya coupling energy with constant D, and

m = (sinf cos y;sind sin yr; cos ) (®)]

is the unity vector along the magnetization vector M = mM.

I also notice that the energy terms in model (4) correspond
to the elastic energy contributions in the Frank-Oseen free
energy [19] that pertain to splay K, twist K,, and bend K3
distortions of the director provided that the one-constant ap-
proximation K; = K, = K3 = K is utilized [20]: A — K/2,
D — Kqy (qo =27 /p is the chiral wave number of the
ground-state chiral nematic mixture; p is a helix pitch or the
width of one complete turn of the director n along the helical
axis). Indeed, the values of elastic constants in common CLCs
are comparable and this one-constant approximation can be
used to model their (ordinary) behavior. Commonly the Frank-
Oseen free energy is used for orientable director fields n. In
this case, the director fields are dressed smoothly with vectors
without introducing extra fictitious singularities [19]. In the
following, I use the vector field m for both the magnetization
and the director.

All solitonic structures discussed in this work are modeled
by minimizing the free energy (4) with the constraint |m| = 1,
i.e., I avoid the “softening” of the magnetization modulus that
has dramatic consequences near the ordering temperatures: in
this case, skyrmionic textures consist of complex combina-
tions of rotational and longitudinal modulations, the essence
of aforementioned precursor effects [37,38]. At the same time,
I notice that Landau—de Gennes modeling can be additionally
used to properly model singular half-integer defect lines, in
particular, in the cholesteric fingers of the third type (CF-3)
[39]. The Landau—de Gennes modeling is based on a traceless
and symmetric tensor Q;; [19].

A. Helical modulations

In chiral magnets, the Dzyaloshinskii-Moriya interactions
play a crucial role in destabilizing the homogeneous ferro-
magnetic arrangement and twisting it into a helix, which is
a single-harmonic mode forming the global minimum of the
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functional (4) [15]:
M = M[n;cos(q-r)+nsin(q-r)]. (6)

n;, n, are the unit vectors in the plane of the magnetiza-
tion rotation orthogonal to the wave vector q = n3/Lp with
n;Lln, ln; (i.e, nj, nmy, and n3 are three mutually orthogonal
unit vectors). Lp is proportional to the ratio of the counter-
acting exchange and Dzyaloshinskii constants and introduces
a fundamental length characterizing the periodicity of chiral
modulations in chiral magnets, L, = A/D.

The helical modulations have a fixed rotation sense de-
termined by the sign of Dzyaloshinskii-Moriya constant D
and are continuously degenerate with respect to propaga-
tion directions of the helical modulations in space. An
applied magnetic field lifts this degeneracy and stabilizes
two types of one-dimensional modulations: cones and heli-
coids with propagation directions parallel and perpendicular
to the applied magnetic field, respectively. An applied mag-
netic field H contributes the Zeeman energy term to (4) in
ChMs,

wz = —poMm - H, )

For helicoids, analytical solutions for the polar angle
6(x) of the magnetization written in spherical coordinates,
M = M[sin O (x) cos ¥, sin 8 (x) sin {, cos B (x)], are derived
by solving a pendulum equation A d*6/dx*> — H cos@ = 0.
Such solutions are expressed as a set of elliptical functions
[15] and describe a gradual expansion of the helicoid period
with increased magnetic field. In a sufficiently high mag-
netic field Hy the helicoid infinitely expands and transforms
into a system of isolated noninteracting 27 -domain walls
(kinks) separating domains with the magnetization along the
applied field [2,15]. The dimensionless value of this critical
field is

hy = Hy /Hp = 72/8 = 0.30843, (8)

with Hp = D?/AM. The azimuthal angle v, on the contrary,
is fixed by the different forms of the Lifshitz invariants. In the
considered case of cubic helimagnets ¢ = 7 /2.

B. Conical state in chiral helimagnets

The wave vector of a conical state is oriented along the
field. The conical state combines the properties of the ferro-
magnetic and the helical states as a compromise between the
Zeeman and DMI energies and, as a solution with the period
p = 4nLp, exists below the critical field H- = Hp/2. The
equilibrium parameters for this cone phase are expressed in
the analytical form [36] as

0. = arccos 2H/Hp), .= 2mz/po, )

with the constant polar angle 6, and linearly varying azimuthal
angle .. Above the critical field Ho the cone phase trans-
forms into the saturated state with 6 = 0.

I also supplement the model (4) with the uniaxial

anisotropy (UA) energy term
Wia = —K,(m - 2)*. (10)

For the easy-plane UA, K,, < 0, the conical phase remains the
global minimum in the whole region of the phase diagram

[24,40]. An additional uniaxial anisotropy, K, > 0, must be
included to suppress the conical state and thus unveil the
regions of SKL and helicoidal stability [24].

The problem of SkL stability in bulk chiral helimagnets
originates from the phenomenon of the A phase. It was found
that there are only small energy differences between various
modulated states including skyrmions. On the other hand,
weaker energy contributions, such as uniaxial (10) or cubic
anisotropies, impose distortions on different modulated states
and thus determine their stability limits on the correspond-
ing phase diagrams. That is why in particular the uniaxial
anisotropy of the easy-axis type, which does not affect the
ideal single-harmonic type of the magnetization rotation in the
conical spiral but just leads to the gradual closing of the cone,
grants the thermodynamical stability to the SkL in a broad
region of a theoretical phase diagram [24].

III. CONICAL STATE IN THIN LAYERS
OF CHIRAL NEMATICS

In the following, I consider CLC sandwiched between two
glass plates with the layer thickness 7. When the surface
anchoring energy is considered finite and taken into account,
Eq. (4) is supplemented by the Rapini-Papoular surface an-
choring potential:

W, = —/ K,(m - z)* d*r, (11)
where the easy axis orientation is chosen to be along z, i.e.,
along the surface normal of the substrates. The type of an-
choring (e.g., planar or homeotropic) is specified by the sign
of the constant K.

All forthcoming calculations will be done for thin films
with the ratio T /4w Lp = 1, although I discuss some implica-
tions for thicker samples. Solutions for particlelike skyrmions
as well as for different modulated states are derived by mini-
mization of Eq. (4) including the bulk w,, (10) and surface w,
(11) uniaxial anisotropy terms with both signs of the constants
K, and K;. In CLC, the uniaxial anisotropy is imposed by, e.g.,
an applied electric field E and has the same functional form as
(9): —(e9Ae/2)(n - E), where Ace is the dielectric anisotropy.
The Zeeman term w, (7) is omitted henceforth. Besides, in
usual apolar nematic liquid crystals, such a linear coupling
does not exist, which additionally justifies its omission.

The complexity of many CLC structures also involving
defects usually does not allow simple analytic descriptions of
the director configuration. Therefore, I use numerical routines
with finite-difference discretization on rectangular grids with
adjustable grid spacings and periodic boundary conditions
in the plane xy. The minimization procedure is described in
detail in Refs. [41]. The solutions depend on the two control
parameters, the reduced value of the bulk uniaxial anisotropy,
KA /D2, and the value of the reduced surface anchoring,
KLp/A, with the fixed thickness of the layer. In the following,
the spatial coordinates are measured in units of Lp. In this pa-
per, I also neglect effects imposed by spatial inhomogeneity of
the induced anisotropy as well as the surface terms, e.g., K3 or
K, [19]. The steep magnetization gradient close to the Bloch
point can be addressed by atomistic modeling of the region
close to the defect center [42]. However, a recent comparison
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FIG. 1. Diagram of the cone solutions for model (4) in the space of control parameters (K, — K;) and fixed value of the thickness, 7' =
47 Lp. Filled areas designate the regions, where the conical state has distinct internal structure: in region 1 (yellow shading), the conical state is
flat across the layer thickness with 6, = 7 /2; in region 2 (green shading), the magnetization near the surfaces starts to align along z in response
to the increasing homeotropic anchoring (line b—d). At the line b—e, the spins at the surface point along z and the conical structure is practically
frozen. In region 3 (blue shading), the surface states acquire flat structure due to the planar anchoring, whereas the spins in the middle of the
layer are in the homogeneous state along z. The color plots in (b) exhibit m, component in all aforementioned conical states. Black arrows
show projection of the magnetization onto the xz plane. Average magnetization (m.) for the conical state is plotted within the regions 1-2
(c) and 3 (e) in dependence on the surface-induced anisotropy K; for fixed values of the bulk anisotropy K. The surface anchoring leads to the
saturation of (m,) with the magnitude different from the FM state in (c) and/or planar cone in (e): once the surface states are formed according
to the strong anchoring, the core structure within the layer does not change. Magnetization profiles plotted for several values of K; in (d) and
(f) show that the surface states almost do not intersect and the state in the middle of the layer is fully specified by the bulk anisotropy K.

between micromagnetics and atomistic simulations indicated
that the two approximations come to a quantitative agreement
when the micromagnetic simulation cell is comparable to the
lattice constant [43,44].

As shown in Fig. 1, the cone angle 6, in thin layers does
not maintain its constant value (9) and effectively changes
across the CLC cell thickness. But only at the line a—b—c
can the cone transform into the homogeneous state as would
be easily achieved by the magnetic field in Eq. (9). Within
the present model system, however, both easy-axis bulk and
surface anisotropies are needed for such a process. In the
yellow-shaded region 1 with the easy-plane bulk anisotropy,
the conical state retains the flat structure with 6, = 7 /2. And
some finite value of easy-axis surface anisotropy Kj is re-
quired to force the magnetization out of the xy plane, which
occurs at the line b—d. At the line b—e, the magnetization at the
surface is fully aligned, 6.(z = £7/2) = 0, whereas within
the layer interior the magnetization undergoes a rotation and is
almost horizontal in the middle of the layer even for relatively
large values of Kj, 6.(z = 0) ~ /2 [see the magnetization
profiles in Fig. 1(d)]. According to Fig. 1(c), the average m,
component for such conical profiles also saturates for increas-
ing K; value.

For the case of easy-axis bulk anisotropy (region 3), the
easy-plane surface anisotropy cants the magnetization near the
surfaces until it is fully horizontal with 6.(z = £T7/2) = /2
(line b—c). The magnetization profiles in Fig. 1(f) demonstrate
the finite penetration depth of such surface states. According
to Fig. 1(e), the average m, components also saturate at some
finite K values. With the decreasing value of K,,, however, the
saturation occurs at smaller values of (m;). And eventually,
at the line b—f, the conical state again acquires a flat struc-
ture with the constant polar angle 7 /2. Analytical solutions
for such conical states resemble the solutions for so called
chiral surface twists formed at the free boundaries of cubic
helimagnets and have the form of kink solitons of the double
sine-Gordon model (see for details, e.g., Refs. [45-47]).

IV. ISOLATED SKYRMIONS WITHIN THE CONICAL
STATE OF CLC

The conical phase in thin CLC layers represents an interest-
ing medium to accommodate isolated skyrmions and to shape
their intrinsic properties. The internal patterns of ISs with their
axes along the wave vector of the conical phase in each region
of the phase diagram [Fig. 1(a)] are depicted in Figs. 2 and 3
and exhibit a distinct variety of particlelike states.

A convenient way to depict these skyrmions, which has
been proven to be particularly illustrative in addressing the
character of skyrmion-skyrmion interaction, is as follows
[41]. T extract the spins corresponding to the conical phase
in accordance with the following criterium:

|m'(r) — mi(r)| <, (12)

where m/(r) and mi(r) are the components of the magneti-
zation within the skyrmion and the conical states, i = x, y, z;
€ represents a required accuracy: the smaller € is, the more
spins are retained within the skyrmion structure. Then, I plot
the remaining spins as spheres colored according to their m,
component [e.g., a 3D skyrmion model depicted in Fig. 2(a)].

In this way, all intricate details of the internal structure are
explicitly revealed: skyrmions are composed of a cylinderlike
(blue) core centered around the magnetization opposite to z
and a (red) coil with the magnetization along the z axis. At
the same time, I also plot skyrmion crosscuts along the differ-
ent directions including all the spins [e.g., Fig. 2(b)]. Many
ongoing experimental attempts are particularly focused on
unveiling the three-dimensional spin texture of such skyrmion
tubes [48-51].

A. Anisotropic character of skyrmion interaction manifested
by skyrmion chains

The skyrmion-skyrmion interaction within the conical
phase in regions 1 and 2 is argued to have an anisotropic
character: it is attractive but with the largest energy reduction
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FIG. 2. Internal structure of isolated skyrmions subjected to increasing homeotropic anchoring K > 0: K,A/D* = 0 (a), 5 (c), and 25 (e).
The structure of isolated skyrmions is represented as color plots of m, (b), (d), and (f) in the plane xz (first column) and in the xy cross sections
at the surface (second column) and in the middle of the layer (third column). Skyrmion profiles in the middle of the layer remain visually
unchanged, whereas the profiles at the surface acquire axisymmetric shape. Projections of the magnetization onto the corresponding plane
are indicated with black arrows. The three-dimensional constructs with excluded spins of the conical phase are shown in (a), (c), and (e) for

three values of the surface anchoring and fixed value of the bulk anisotropy K,A/D? =

—0.2. In (e), a ring of formed defects is shown by the

white dashed line. Blue arrows indicate that the red coil associated with the domain boundary between isolated skyrmions and a conical state
is squeezed into the interior of the layer. The internal structure of isolated skyrmions implies anisotropic character of their interaction (see text

for details).

along particular directions. Qualitatively, the attracting
anisotropic nature of such a skyrmion-skyrmion interaction
can be explained on the basis of the so-called skyrmion shell
[52,53]—a domain wall region separating the skyrmion core
from the cone phase. After averaging over the z coordinate,
the energy density of an isolated skyrmion on the plane xy can
be characterized by characteristic lengths R; and R, that
indicate several distinct regions in the radial energy density
profiles (see, e.g., Ref. [53] and Fig. 4 therein for details).
Then the energy density pattern consists of the positive
energy “bag” located in the skyrmion center (p < R;) and
encompassed by extended areas with negative energy density,
where the DM coupling dominates [2]. Negative asymptotics
of the radial energy densities [Ae(p) < 0 for p > 1] prede-
termine the repulsive intersoliton potential for axisymmetric
skyrmions [2], as would be the case for ISs in Fig. 3(a). For
nonaxisymmetric skyrmions [Figs. 2(a)-2(f)] the energy den-
sities Ae(p) are positive at large distances from the skyrmion
center (p > R;). These areas correspond to the aforemen-
tioned ‘““shells” separating the skyrmion core from the cone
phase. The positive energy density of the shell leads to the at-
tractive interactions between nonaxisymmetric skyrmion [52].

In other words, the phenomenon of the skyrmion-skyrmion
attractive interaction in the cone phase is explained by the
excessive energy density of the asymmetric shell (compared
to those in the skyrmion core and the cone phase) [52].

In thin films, however, with the thickness corresponding to
a fractional number of spiral periods, ISs would rather develop
an anisotropic interaction since the excess of energy in a shell
becomes more pronounced along particular directions or even
spans a finite range of angles. If the number of skyrmion
loops [red coils surrounding skyrmions in Figs. 2(a), 2(c) and
2(e)] is slightly larger than an integer, then two skyrmions
arrange along the line, which connects a skyrmion center and
a point, where a skyrmionic coil starts a new loop. If, on
the contrary, the number of skyrmion coils is slightly smaller
than an integer, the interskyrmion potential is almost isotropic.
In this respect, three skyrmions may form two energetically
different configurations: a skyrmion chain (lower energy) and
a skyrmion cluster with skyrmions in the vertices of a triangle
(higher energy). In both configurations skyrmionic clusters
reduce their energy as compared with isolated entities, but ap-
parently a potential barrier must be overcome to implement a
transition between them (which will be computed elsewhere).
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FIG. 3. Internal structure of isolated skyrmions subjected to increasing planar anchoring K; < 0. The structure of isolated skyrmions
is represented as color plots of m;, (b), (d), and (f) in the plane xz (first column) and in the xy cross sections in the middle of the layer
(second column) and at the surface (third column). Whereas the central profiles retain their axisymmetric shape, the surface profiles become
pronouncedly nonaxisymmetric. Projections of the magnetization onto the corresponding plane are indicated with black arrows. The three-
dimensional constructs with excluded spins of the conical phase are shown in (a), (c), and (e) for three values of the surface anchoring and
fixed value of the bulk anisotropy K,A/D? = 0.5. Crescents formed only near the confining surfaces imply an anisotropic character of skyrmion
interaction with two possible configurations within the skyrmion chains (see text for details).

Recently, such a tendency to form skyrmion chains has
been demonstrated in CLCs with the thickness slightly larger
than the spiral pitch, thus proving the 2D character of the
skyrmion-skyrmion interaction [29,32]. Moreover, by using
ambient-intensity unstructured light, the authors demonstrated
large-scale multifaceted reconfigurations of skyrmion clusters
(called skyrmion “crowds”) into single-file lines or chains.
Attraction of magnetic skyrmions mediated by the conical
phase has been observed experimentally in thin (70 nm)
single-crystal samples of Cu,0SeOj; taken using transmission
electron microscopy [53]. In all of the videos recorded in
Ref. [53], however, the skyrmions were in constant motion
caused by the specimen charging under the electron beam,
and different cluster configurations except skyrmion chains
have been detected including even a squarelike arrangement of
skyrmions [as shown by a snapshot of Fig. 2(a) in Ref. [53]].
Such a motion, although at a smaller scale, can be a result of
frustration, when the constituent skyrmions attempt to mini-
mize the anisotropic interskyrmion attraction.

Direct evidence of the field-dependent character of the
interaction between individual magnetic skyrmions as well
as between skyrmions and edges in B20-type FeGe nanos-

tripes was also reported in Ref. [54]. Skyrmion clusters were
observed by means of high-resolution Lorentz transmission
electron microscopy. It was shown that above certain criti-
cal values of an external magnetic field the character of a
long-range skyrmion interaction changed from attraction to
repulsion. Such a behavior demonstrated a quantitative agree-
ment with the results of micromagnetic simulations [55].

B. Attracting skyrmions specify the angular phase
of the conical phase

I also notice that the structure of an isolated skyrmion
reveals the phase of the conical state ¥, (9), since the rota-
tion in the conical phase is directly related to the formation
of skyrmion coils. For example, from the location of the
skyrmion crescent at the surface [Figs. 3(c) and 3(e)], one
can deduce the in-plane component of the magnetization in
the conical state. Such an insight becomes especially valuable
in Lorentz transmission electron microscopy (LTEM) investi-
gations of thin films or wedges of cubic helimagnets. Indeed,
the electron microscopy shows featureless images for both the
cone and saturated phases so one cannot directly confirm that
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FIG. 4. (a) Schematic representation of torons—spatially localized three-dimensional skyrmions composed of a skyrmion filament of finite
length cupped by two point defects terminating its prolongation. According to the 3D model in (b), torons are composed of a globulelike (blue)
core centered around the magnetization opposite to the field and a fragment of a (red) coil with the magnetization along the field. Color plots
of the magnetization component m, exhibit the structure of an isolated toron in different crosscuts (c) and (d). Whereas in the middle of the
layer [second panel in (d)], the magnetization distribution is similar to that of an isolated skyrmion [see, e.g., for comparison Fig. 2(b), third
panel], the spins at the surface are all magnetized homogeneously along z [first panel in (d)]. The internal structure of constituent torons within
the toron lattice is shown in (e) and (g). Above the dotted line A-B (f), such a lattice is energetically more favorable as compared with the

skyrmion lattice (see text for details).

featureless regions of experimental images are, e.g., the cone
phase [53,56]. One can, however, identify the conical phase
owing to the skyrmion attraction (otherwise, skyrmions would
repulse in the homogeneous state), and moreover deduce its
phase from the skyrmionic pattern.

From Fig. 3(c), it becomes evident that the crescent at the
lower surface does not correlate with the crescent at the upper
surface, which is valid while the edge conical states are local-
ized near the surfaces and do not intersect in the middle of the
layer, which is the case far from the line b—f within the region
3 of the phase diagram [Fig. 1(a)]. Two interacting skyrmions,
however, prefer to align along the line going through their
centers and the centers of their crescents. This phenomenon
was deduced in Refs. [57-59] for 2D skyrmions in polar
magnets with easy-plane anisotropy. It was shown that, in the
head-to-head configuration, 2D skyrmions form pairs with a
fixed interskyrmion distance, implying the attractive nature of
their interaction. The calculated interskyrmion potential for
the side-by-side configuration reveals the repulsive character
of skyrmion-skyrmion interaction at large distances. Thus I
expect that the same logic would hold for quasi-2D skyrmions
in Figs. 3(c) and 3(e). One can envision two energetically
degenerate configurations of such a skyrmion pair, in which
the crescents of one skyrmion are located either on the same
side with respect to the skyrmion core or on the opposite
sides. In any case, a pair of interacting skyrmions adapts
the surrounding conical phase to reach the minimum of the
interskyrmion potential. Moreover, these skyrmions are also
expected to form one-dimensional chains running along the
canted magnetization at the surface.

V. TORONS AS AN ENERGETICALLY FAVORABLE
SUBSTITUTE OF SKYRMIONS

For ISs with K, < 0 [Figs. 2(a)-2(f)] as well as for K, > 0
(not shown), the homeotropic surface anchoring (K; > 0) in
the first place compresses the magnetization distributions at
the surfaces and eventually results in a ring of energy-costly
defects [compare profiles in the second row of Figs. 2(b),
2(d) and 2(f)]. Skyrmion profiles in the middle of the layer
remain virtually unchanged [compare profiles in the third
row of Figs. 2(b), 2(d) and 2(f)]. The red coil “sinks” deep
into the layer [shown by blue arrows in Fig. 2(e)]. Such an
incompatibility with the surrounding state and the associated
energy cost due to formed defects encourages one to consider
another skyrmion-based particle—a toron (Fig. 4).

Toron [4,39,60,61] represents a localized particle consist-
ing of two Bloch points at finite distance and a convex-shaped
skyrmion stretching between them [Fig. 4(a)]. The central
magnetization distribution [Fig. 4(d)] is similar to that of an IS
[third column in Figs. 2(b), 2(d) and 2(f)], whereas the surface
profiles are the saturated states [Fig. 4(d)]. Due to the grad-
ually varying skyrmion helicity, the energy density becomes
negative in the toron’s cross section, which is balanced by
the positive energy contributions from two Bloch points (see
for details, e.g., Refs. [60,61]). Helicity here is defined as the
angle y, which enters the formula ¢ = Q¢ + y. To describe
skyrmionic states, one usually uses spherical coordinates for
the magnetization (4) and cylindrical coordinates (p, ¢) for
the spatial variable. Thus such a particle as a toron utilizes
energetically favorable additional twists due to LI E)(j;, as
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FIG. 5. Phase diagram of states in the space of control param-
eters (K, K;). The regions of the thermodynamical stability are
colored by red (hexagonal lattice of torons), yellow (cones), green
(helicoids), blue (oblique spiral state), and white (ferromagnetic
state). The detailed description of the phase transitions between
modulated phases is given in the text.

described in Sec. VIII, and simultaneously satisfies the bound-
ary conditions at the confining substrates with strong surface
anchoring, which makes it an energetically more favorable
particle as compared with a skyrmion in a range of control
parameters. The transition between skyrmions and torons has
been recently observed [39] to occur via so called toron or
skyrmion hybrid structure—a particle with a point defect near
one surface (like in a toron) and a ring of defects near the
other surface (like in a skyrmion). The energy barriers for such
a process calculated with the geodesic nudged elastic band
method will be published elsewhere.

From the corresponding 3D model [Fig. 4(b)], it follows
that the torons also develop an attracting anisotropic inter-
action as was discussed for ISs in Sec. IV A. According to
numerical simulations, the lattice of torons (TL) [Figs. 4(e)
and 4(g)] replaces the SkL at the line A-B of the phase di-
agram [Fig. 5(f)], i.e., for higher values of the homeotropic
anchoring K. Moreover, with the simultaneous effect of the
easy-axis bulk and easy-axis surface anisotropies, TL be-
comes a thermodynamically stable state. In the phase diagram
(Fig. 5), the region of TL stability is shown by the red-shaded
region. Interestingly, there is no upper boundary for such a
region. The reason is the same as already discussed for the
conical phase: once the spins at the confining surfaces are
aligned by the surface anchoring [e.g., for the conical phase
above the line b—e in the region 1 of Fig. 1(a)], the core
structure in the middle of the layer does not change. The
line A;—A>—Aj in Fig. 5, which signifies the first-order phase
transition with respect to one-dimensional spirals, lies a bit
higher than the line A-B in Fig. 4(f), which merely repre-
sents the computed transition between metastable SkL. and
the lattice of torons. At the line A;—A,, TL undergoes a first-
order phase transition with the one-dimensional oblique spiral
state, whereas at the line A,—Aj5 it is with the one-dimensional
helicoid.

Surface profiles for skyrmions with planar anchoring K; <
0 and, e.g., easy-axis bulk anisotropy K, [Figs. 3(c)-3(f)],
on the contrary, reduce to two point defects centered at the
crescent and skyrmion core [Fig. 3(f), second panel], whereas

the central profiles retain their axisymmetric shape [third row
in Figs. 3(b), 3(d) and 3(f)]. Obviously, torons cannot provide
any energetic alternative to SkLs.

VI. PHASE DIAGRAM OF STATES IN THIN LAYERS
OF CLCs

At the phase diagram (Fig. 5), the helicoid [also called a
chiral soliton lattice (CSL)] occupies the green-shaded area.
The wave vector of CSL is directed within the plane xy (for
definiteness, along y axis). For zero anisotropy values, such
spirals have lower energy as compared with the conical state,
which is readily explained by the additional surface twists in
thin-film nanosystems, i.e., owing to the same LIs [Z)(f;, which
also underlie skyrmion stability. In the same way, whereas
the LIs with the derivatives along the axes x and y govern
the magnetization rotation in spiral states, the LI with the
derivative along z leads to the gradual change of the spiral
