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Existence of topological localized states (skyrmions and torons) and the mechanism of their condensation
into modulated states are the ruling principles of condensed matter systems, such as chiral nematic liquid
crystals (CLCs) and chiral magnets (ChM). In bulk helimagnets, skyrmions are rendered into thermodynamically
stable hexagonal skyrmion lattice due to the combined effect of a magnetic field and, e.g., small anisotropic
contributions. In thin glass cells of CLCs, skyrmions are formed in response to the geometrical frustration and
field coupling effects. By numerical modeling, I undertake a systematic study of skyrmion or toron properties in
thin layers of CLCs and ChMs with competing surface-induced and bulk anisotropies. The conical phase with
a variable polar angle serves as a suitable background, which shapes skyrmion internal structure, guides the
nucleation processes, and substantializes the skyrmion-skyrmion interaction. I show that the hexagonal lattice of
torons can be stabilized in a vast region of the constructed phase diagram for both easy-axis bulk and surface
anisotropies. A topologically trivial droplet is shown to form as a domain boundary between two cone states with
different rotational fashion, which underpins its stability. The findings provide a recipe for controllably creating
skyrmions and torons, possessing the features on demand for potential applications.
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I. INTRODUCTION

Multidimensional localized structures (e.g., two-
dimensional skyrmions [1–3] and/or three-dimensional
Hopfions [4,5]) are the focus of intense research in many
fields of modern physics including condensed-matter
physics, optics, biophysics, particle and nuclear physics,
astrophysics, and cosmology [6–9]. Since the late 1960s, the
fundamental interest in such localized solutions is related
to the explanation of countable particles in continuous
fields, the instabilities of which due the constraints of
the Hobart-Derrick theorem [10] can be overcome, if the
energy functionals contain, for example, contributions with
higher-order spatial derivatives. These topological solitons,
originally introduced by Skyrme in nuclear physics [11],
found their way into condensed-matter physics [2,12,13],
where they preserved their name, but acquired a different
stabilization mechanism—energy terms linear with respect
to spatial derivatives of order parameters [14,15]. A great
deal of interest, in particular, is attracted by chiral skyrmions,
which created a research boom in chiral liquid crystals (CLC)
and noncentrosymmetric chiral magnets (ChM) and gained,
not only fundamental physics importance, but generated
enormous interest in their applications in information storage
and processing devices [16,17] (in ChMs) as well as new
modes of displays (in CLCs) [18].
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In noncentrosymmetric magnetic materials, skyrmions
are stabilized by specific Dzyaloshinskii-Moriya interaction
(DMI) [14,15], which is phenomenologically expressed by the
so called Lifshitz invariants (LI):

L(k)
i, j = Mi

∂Mj

∂xk
− Mj

∂Mi

∂xk
, (1)

where Mi and Mj are components of magnetization vec-
tors that arise in certain combinations depending on crystal
symmetry and xk are spatial coordinates. For cubic heli-
magnets belonging to 23 (T) (as MnSi, FeGe, and other
B20 compounds) and 432 (O) crystallographic classes,
Dzyaloshinskii-Moriya interactions are reduced to the follow-
ing form:

WDM = D
(
L(z)

yx + L(y)
xz + L(x)

zy

) = D M · rotM. (2)

In chiral liquid crystals [19,20], the acentric shape of under-
lying molecules being at the heart of chiral effects leads to
the same functional form of chiral interactions (2) for the
molecular alignment field n(r).

To additionally control the structure and topology of lo-
calized particlelike states in CLCs and ChMs, one employs
confinement effects with controllable boundary conditions
and coupling to applied fields [21–23]. Magnetic skyrmions
are commonly subjected to the effect of an applied magnetic
field, which contributes a Zeeman energy to the energy func-
tionals [24]. By the magnetic field, a hexagonal lattice of
skyrmions may be rendered into a thermodynamically sta-
ble state. The existence region of isolated skyrmions (IS)
becomes restricted by strip-out instabilities at low fields

2470-0045/2021/104(4)/044701(15) 044701-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044701&domain=pdf&date_stamp=2021-10-13
https://doi.org/10.1103/PhysRevE.104.044701


ANDREY O. LEONOV PHYSICAL REVIEW E 104, 044701 (2021)

and a collapse at high fields [25]. The role of the surface-
induced anisotropy (anchoring) on magnetic skyrmions is
rather neglected by the magnetic skyrmionic community.
Phenomenologically, such a surface anisotropy is known to
appear due to the reduced coordination number at the surfaces
of magnetic materials. Moreover, it can be modified by cover-
ing the magnetic layers with different nonmagnetic materials
[26–28].

CLC skyrmions, on the contrary, are usually subjected to
boundary conditions in the form of an easy-axis or easy-
plane anisotropy (so called surface anchoring), since they are
confined in a glass cell with thickness comparable with the
helicoidal pitch [23,29–31]. Then, in principle, a Zeeman-like
term absent in CLCs can be substituted by the interplay of
an electric field, which fulfills the role of a bulk easy-plane
or easy-axis anisotropy, and the surface anchoring acting in
an opposite way [32,33]. This frustration would create a suit-
able environment for topologically nontrivial localized states
within the conical or homogeneous state. Interestingly, in
ferromagnetic CLCs formed by colloidal dispersion of mag-
netic monodomain nanoparticles, one may achieve a linear
coupling and facile response to applied magnetic fields, as
well [34,35]. These arguments facilitate the discussion of
topological phases in CLCs and ChMs on the same footing. At
the same time, the present manuscript allows one to highlight
the historic obstacles CLC and ChM communities faced along
the way by addressing the problem of soliton stability and
topology.

In the present manuscript, I undertake a systematic study
of skyrmion properties modified by the presence of defects
and a conical state with a variable polar angle in chiral liquid
crystals and chiral magnets. I notice that despite the well-
documented importance of surface boundary conditions, their
role in stabilizing different one-, two-, and three-dimensional
solitonic CLC structures has not been systematically explored
so far. Thus the first goal of this work is to study phase
diagram and director or magnetization structures that appear
because of geometrical frustration of CLCs and ChMs in
thin cells with homeotropic and planar anchoring. In the
next section, I introduce a phenomenological model and the
algorithms used for numerical simulations. I plot the phase
diagram of conical states in thin layers of CLCs and empha-
size the structural differences with the cone states in ChMs.
In Sec. IV by numerically solving the differential equations
minimizing the phenomenological functional, I derive the
equilibrium structures of confined isolated skyrmions as func-
tions of the material parameters and applied electric fields. I
discuss an anisotropic character of skyrmion interaction man-
ifested by skyrmion chains. Since the defects formed within
skyrmions by the strong surface anchoring have the ring shape
and are energetically costly, the skyrmion lattice (SkL) is
replaced by the lattice of torons that contain only two point de-
fects near the surfaces (Sec. V). The complete phase diagram
of states (Sec. VI) also exhibits one-dimensional (1D) straight
and oblique spiral states. I discuss the first- and second-order
phase transitions between these 1D modulations. I finalize
the manuscript by considering the structure of 3D droplets
with zero topological charge. Such droplets are shown to
appear as a domain boundary between the conical states
with different rotational structure. The topological charge

is conventionally defined as a way of wrapping the sphere
and it is calculated for different 2D crosscuts of obtained
structures as

Q = 1

4π

∫
m

(
∂m
∂x

× ∂m
∂y

)
dx dy, (3)

where m stands for the director in CLC or the magnetization
in chiral magnets. The topological charge is a quantity widely
used in the skyrmionics community. Whenever possible, I also
discuss connections of the theoretical results to the experi-
mental findings in different condensed-matter systems.

II. PHENOMENOLOGICAL MODEL AND
ONE-DIMENSIONAL SPIRAL STATES IN MAGNETS

The simplest model for magnetic states in bulk noncen-
trosymmetric ferromagnets is based on the following energy
density functional [15,36]

w = A (grad m)2 + D m · rot m, (4)

includes only the exchange stiffness with constant A and the
Dzyaloshinskii-Moriya coupling energy with constant D, and

m = (sin θ cos ψ ; sin θ sin ψ ; cos θ ) (5)

is the unity vector along the magnetization vector M = mM.
I also notice that the energy terms in model (4) correspond

to the elastic energy contributions in the Frank-Oseen free
energy [19] that pertain to splay K1, twist K2, and bend K3

distortions of the director provided that the one-constant ap-
proximation K1 = K2 = K3 = K is utilized [20]: A → K/2,
D → Kq0 (q0 = 2π/p is the chiral wave number of the
ground-state chiral nematic mixture; p is a helix pitch or the
width of one complete turn of the director n along the helical
axis). Indeed, the values of elastic constants in common CLCs
are comparable and this one-constant approximation can be
used to model their (ordinary) behavior. Commonly the Frank-
Oseen free energy is used for orientable director fields n. In
this case, the director fields are dressed smoothly with vectors
without introducing extra fictitious singularities [19]. In the
following, I use the vector field m for both the magnetization
and the director.

All solitonic structures discussed in this work are modeled
by minimizing the free energy (4) with the constraint |m| = 1,
i.e., I avoid the “softening” of the magnetization modulus that
has dramatic consequences near the ordering temperatures: in
this case, skyrmionic textures consist of complex combina-
tions of rotational and longitudinal modulations, the essence
of aforementioned precursor effects [37,38]. At the same time,
I notice that Landau–de Gennes modeling can be additionally
used to properly model singular half-integer defect lines, in
particular, in the cholesteric fingers of the third type (CF-3)
[39]. The Landau–de Gennes modeling is based on a traceless
and symmetric tensor Qi j [19].

A. Helical modulations

In chiral magnets, the Dzyaloshinskii-Moriya interactions
play a crucial role in destabilizing the homogeneous ferro-
magnetic arrangement and twisting it into a helix, which is
a single-harmonic mode forming the global minimum of the
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functional (4) [15]:

M = M[n1 cos (q · r) + n2 sin (q · r)]. (6)

n1, n2 are the unit vectors in the plane of the magnetiza-
tion rotation orthogonal to the wave vector q = n3/LD with
n3⊥n2⊥n1 (i.e., n1, n2, and n3 are three mutually orthogonal
unit vectors). LD is proportional to the ratio of the counter-
acting exchange and Dzyaloshinskii constants and introduces
a fundamental length characterizing the periodicity of chiral
modulations in chiral magnets, LD = A/D.

The helical modulations have a fixed rotation sense de-
termined by the sign of Dzyaloshinskii-Moriya constant D
and are continuously degenerate with respect to propaga-
tion directions of the helical modulations in space. An
applied magnetic field lifts this degeneracy and stabilizes
two types of one-dimensional modulations: cones and heli-
coids with propagation directions parallel and perpendicular
to the applied magnetic field, respectively. An applied mag-
netic field H contributes the Zeeman energy term to (4) in
ChMs,

wZ = −μ0 Mm · H, (7)

For helicoids, analytical solutions for the polar angle
θ (x) of the magnetization written in spherical coordinates,
M = M[sin θ (x) cos ψ, sin θ (x) sin ψ, cos θ (x)], are derived
by solving a pendulum equation A d2θ/dx2 − H cos θ = 0.
Such solutions are expressed as a set of elliptical functions
[15] and describe a gradual expansion of the helicoid period
with increased magnetic field. In a sufficiently high mag-
netic field HH the helicoid infinitely expands and transforms
into a system of isolated noninteracting 2π -domain walls
(kinks) separating domains with the magnetization along the
applied field [2,15]. The dimensionless value of this critical
field is

hH = HH/HD = π2/8 = 0.30843, (8)

with HD = D2/AM. The azimuthal angle ψ , on the contrary,
is fixed by the different forms of the Lifshitz invariants. In the
considered case of cubic helimagnets ψ = π/2.

B. Conical state in chiral helimagnets

The wave vector of a conical state is oriented along the
field. The conical state combines the properties of the ferro-
magnetic and the helical states as a compromise between the
Zeeman and DMI energies and, as a solution with the period
p = 4πLD, exists below the critical field HC = HD/2. The
equilibrium parameters for this cone phase are expressed in
the analytical form [36] as

θc = arccos (2H/HD), ψc = 2πz/p0, (9)

with the constant polar angle θc and linearly varying azimuthal
angle ψc. Above the critical field HC the cone phase trans-
forms into the saturated state with θ = 0.

I also supplement the model (4) with the uniaxial
anisotropy (UA) energy term

wua = −Ku(m · z)2. (10)

For the easy-plane UA, Ku < 0, the conical phase remains the
global minimum in the whole region of the phase diagram

[24,40]. An additional uniaxial anisotropy, Ku > 0, must be
included to suppress the conical state and thus unveil the
regions of SkL and helicoidal stability [24].

The problem of SkL stability in bulk chiral helimagnets
originates from the phenomenon of the A phase. It was found
that there are only small energy differences between various
modulated states including skyrmions. On the other hand,
weaker energy contributions, such as uniaxial (10) or cubic
anisotropies, impose distortions on different modulated states
and thus determine their stability limits on the correspond-
ing phase diagrams. That is why in particular the uniaxial
anisotropy of the easy-axis type, which does not affect the
ideal single-harmonic type of the magnetization rotation in the
conical spiral but just leads to the gradual closing of the cone,
grants the thermodynamical stability to the SkL in a broad
region of a theoretical phase diagram [24].

III. CONICAL STATE IN THIN LAYERS
OF CHIRAL NEMATICS

In the following, I consider CLC sandwiched between two
glass plates with the layer thickness T . When the surface
anchoring energy is considered finite and taken into account,
Eq. (4) is supplemented by the Rapini-Papoular surface an-
choring potential:

Ws = −
∫

Ks(m · z)2 d2r, (11)

where the easy axis orientation is chosen to be along z, i.e.,
along the surface normal of the substrates. The type of an-
choring (e.g., planar or homeotropic) is specified by the sign
of the constant Ks.

All forthcoming calculations will be done for thin films
with the ratio T/4πLD = 1, although I discuss some implica-
tions for thicker samples. Solutions for particlelike skyrmions
as well as for different modulated states are derived by mini-
mization of Eq. (4) including the bulk wua (10) and surface ws

(11) uniaxial anisotropy terms with both signs of the constants
Ku and Ks. In CLC, the uniaxial anisotropy is imposed by, e.g.,
an applied electric field E and has the same functional form as
(9): −(ε0�ε/2)(n · E), where �ε is the dielectric anisotropy.
The Zeeman term wz (7) is omitted henceforth. Besides, in
usual apolar nematic liquid crystals, such a linear coupling
does not exist, which additionally justifies its omission.

The complexity of many CLC structures also involving
defects usually does not allow simple analytic descriptions of
the director configuration. Therefore, I use numerical routines
with finite-difference discretization on rectangular grids with
adjustable grid spacings and periodic boundary conditions
in the plane xy. The minimization procedure is described in
detail in Refs. [41]. The solutions depend on the two control
parameters, the reduced value of the bulk uniaxial anisotropy,
KuA/D2, and the value of the reduced surface anchoring,
KsLD/A, with the fixed thickness of the layer. In the following,
the spatial coordinates are measured in units of LD. In this pa-
per, I also neglect effects imposed by spatial inhomogeneity of
the induced anisotropy as well as the surface terms, e.g., K13 or
K4 [19]. The steep magnetization gradient close to the Bloch
point can be addressed by atomistic modeling of the region
close to the defect center [42]. However, a recent comparison
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FIG. 1. Diagram of the cone solutions for model (4) in the space of control parameters (Ku − Ks ) and fixed value of the thickness, T =
4πLD. Filled areas designate the regions, where the conical state has distinct internal structure: in region 1 (yellow shading), the conical state is
flat across the layer thickness with θc = π/2; in region 2 (green shading), the magnetization near the surfaces starts to align along z in response
to the increasing homeotropic anchoring (line b–d). At the line b–e, the spins at the surface point along z and the conical structure is practically
frozen. In region 3 (blue shading), the surface states acquire flat structure due to the planar anchoring, whereas the spins in the middle of the
layer are in the homogeneous state along z. The color plots in (b) exhibit mz component in all aforementioned conical states. Black arrows
show projection of the magnetization onto the xz plane. Average magnetization 〈mz〉 for the conical state is plotted within the regions 1–2
(c) and 3 (e) in dependence on the surface-induced anisotropy Ks for fixed values of the bulk anisotropy Ku. The surface anchoring leads to the
saturation of 〈mz〉 with the magnitude different from the FM state in (c) and/or planar cone in (e): once the surface states are formed according
to the strong anchoring, the core structure within the layer does not change. Magnetization profiles plotted for several values of Ks in (d) and
(f) show that the surface states almost do not intersect and the state in the middle of the layer is fully specified by the bulk anisotropy Ku.

between micromagnetics and atomistic simulations indicated
that the two approximations come to a quantitative agreement
when the micromagnetic simulation cell is comparable to the
lattice constant [43,44].

As shown in Fig. 1, the cone angle θc in thin layers does
not maintain its constant value (9) and effectively changes
across the CLC cell thickness. But only at the line a–b–c
can the cone transform into the homogeneous state as would
be easily achieved by the magnetic field in Eq. (9). Within
the present model system, however, both easy-axis bulk and
surface anisotropies are needed for such a process. In the
yellow-shaded region 1 with the easy-plane bulk anisotropy,
the conical state retains the flat structure with θc = π/2. And
some finite value of easy-axis surface anisotropy Ks is re-
quired to force the magnetization out of the xy plane, which
occurs at the line b–d . At the line b–e, the magnetization at the
surface is fully aligned, θc(z = ±T/2) = 0, whereas within
the layer interior the magnetization undergoes a rotation and is
almost horizontal in the middle of the layer even for relatively
large values of Ks, θc(z = 0) ≈ π/2 [see the magnetization
profiles in Fig. 1(d)]. According to Fig. 1(c), the average mz

component for such conical profiles also saturates for increas-
ing Ks value.

For the case of easy-axis bulk anisotropy (region 3), the
easy-plane surface anisotropy cants the magnetization near the
surfaces until it is fully horizontal with θc(z = ±T/2) = π/2
(line b–c). The magnetization profiles in Fig. 1(f) demonstrate
the finite penetration depth of such surface states. According
to Fig. 1(e), the average mz components also saturate at some
finite Ks values. With the decreasing value of Ku, however, the
saturation occurs at smaller values of 〈mz〉. And eventually,
at the line b– f , the conical state again acquires a flat struc-
ture with the constant polar angle π/2. Analytical solutions
for such conical states resemble the solutions for so called
chiral surface twists formed at the free boundaries of cubic
helimagnets and have the form of kink solitons of the double
sine-Gordon model (see for details, e.g., Refs. [45–47]).

IV. ISOLATED SKYRMIONS WITHIN THE CONICAL
STATE OF CLC

The conical phase in thin CLC layers represents an interest-
ing medium to accommodate isolated skyrmions and to shape
their intrinsic properties. The internal patterns of ISs with their
axes along the wave vector of the conical phase in each region
of the phase diagram [Fig. 1(a)] are depicted in Figs. 2 and 3
and exhibit a distinct variety of particlelike states.

A convenient way to depict these skyrmions, which has
been proven to be particularly illustrative in addressing the
character of skyrmion-skyrmion interaction, is as follows
[41]. I extract the spins corresponding to the conical phase
in accordance with the following criterium:∣∣mi(r) − mi

c(r)
∣∣ < ε, (12)

where mi(r) and mi
c(r) are the components of the magneti-

zation within the skyrmion and the conical states, i = x, y, z;
ε represents a required accuracy: the smaller ε is, the more
spins are retained within the skyrmion structure. Then, I plot
the remaining spins as spheres colored according to their mz

component [e.g., a 3D skyrmion model depicted in Fig. 2(a)].
In this way, all intricate details of the internal structure are

explicitly revealed: skyrmions are composed of a cylinderlike
(blue) core centered around the magnetization opposite to z
and a (red) coil with the magnetization along the z axis. At
the same time, I also plot skyrmion crosscuts along the differ-
ent directions including all the spins [e.g., Fig. 2(b)]. Many
ongoing experimental attempts are particularly focused on
unveiling the three-dimensional spin texture of such skyrmion
tubes [48–51].

A. Anisotropic character of skyrmion interaction manifested
by skyrmion chains

The skyrmion-skyrmion interaction within the conical
phase in regions 1 and 2 is argued to have an anisotropic
character: it is attractive but with the largest energy reduction
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FIG. 2. Internal structure of isolated skyrmions subjected to increasing homeotropic anchoring Ks > 0: KsA/D2 = 0 (a), 5 (c), and 25 (e).
The structure of isolated skyrmions is represented as color plots of mz (b), (d), and (f) in the plane xz (first column) and in the xy cross sections
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white dashed line. Blue arrows indicate that the red coil associated with the domain boundary between isolated skyrmions and a conical state
is squeezed into the interior of the layer. The internal structure of isolated skyrmions implies anisotropic character of their interaction (see text
for details).

along particular directions. Qualitatively, the attracting
anisotropic nature of such a skyrmion-skyrmion interaction
can be explained on the basis of the so-called skyrmion shell
[52,53]—a domain wall region separating the skyrmion core
from the cone phase. After averaging over the z coordinate,
the energy density of an isolated skyrmion on the plane xy can
be characterized by characteristic lengths R1 and R2 that
indicate several distinct regions in the radial energy density
profiles (see, e.g., Ref. [53] and Fig. 4 therein for details).
Then the energy density pattern consists of the positive
energy “bag” located in the skyrmion center (ρ < R1) and
encompassed by extended areas with negative energy density,
where the DM coupling dominates [2]. Negative asymptotics
of the radial energy densities [�e(ρ) < 0 for ρ � 1] prede-
termine the repulsive intersoliton potential for axisymmetric
skyrmions [2], as would be the case for ISs in Fig. 3(a). For
nonaxisymmetric skyrmions [Figs. 2(a)–2(f)] the energy den-
sities �e(ρ) are positive at large distances from the skyrmion
center (ρ > R2). These areas correspond to the aforemen-
tioned “shells” separating the skyrmion core from the cone
phase. The positive energy density of the shell leads to the at-
tractive interactions between nonaxisymmetric skyrmion [52].

In other words, the phenomenon of the skyrmion-skyrmion
attractive interaction in the cone phase is explained by the
excessive energy density of the asymmetric shell (compared
to those in the skyrmion core and the cone phase) [52].

In thin films, however, with the thickness corresponding to
a fractional number of spiral periods, ISs would rather develop
an anisotropic interaction since the excess of energy in a shell
becomes more pronounced along particular directions or even
spans a finite range of angles. If the number of skyrmion
loops [red coils surrounding skyrmions in Figs. 2(a), 2(c) and
2(e)] is slightly larger than an integer, then two skyrmions
arrange along the line, which connects a skyrmion center and
a point, where a skyrmionic coil starts a new loop. If, on
the contrary, the number of skyrmion coils is slightly smaller
than an integer, the interskyrmion potential is almost isotropic.
In this respect, three skyrmions may form two energetically
different configurations: a skyrmion chain (lower energy) and
a skyrmion cluster with skyrmions in the vertices of a triangle
(higher energy). In both configurations skyrmionic clusters
reduce their energy as compared with isolated entities, but ap-
parently a potential barrier must be overcome to implement a
transition between them (which will be computed elsewhere).

044701-5



ANDREY O. LEONOV PHYSICAL REVIEW E 104, 044701 (2021)

-6

0

6

-10 -5 0 5 10

z

x

-6

0

6

-10 -5 0 5 10

z

x

-6

0

6

-10 -5 0 5 10

z

x
0 5 10-5-10

-10

-5

0

5

10

y

x

0 5 10-5-10

-10

-5

0

5

10

y

x

0 5 10-5-10

-10

-5

0

5

10

y

x

0 5 10-5-10

-10

-5

0

5

10

y

x

0 5 10-5-10

-10

-5

0

5

10

y

x

0 5 10-5-10

-10

-5

0

5

10

y

x

z

z

z

1

-1

mz

0

1

-1

mz

0

1

-1

mz

0

mz
1

-1

mz
1

-1

mz
1

-1

(a) (b)

(c) (d)

(e) (f)

z = T/2 z = 0

K  = 0s

  = 0.5K  A/Du
2

  = - 5

  = - 25

K  

K  

s

s

FIG. 3. Internal structure of isolated skyrmions subjected to increasing planar anchoring Ks < 0. The structure of isolated skyrmions
is represented as color plots of mz (b), (d), and (f) in the plane xz (first column) and in the xy cross sections in the middle of the layer
(second column) and at the surface (third column). Whereas the central profiles retain their axisymmetric shape, the surface profiles become
pronouncedly nonaxisymmetric. Projections of the magnetization onto the corresponding plane are indicated with black arrows. The three-
dimensional constructs with excluded spins of the conical phase are shown in (a), (c), and (e) for three values of the surface anchoring and
fixed value of the bulk anisotropy KuA/D2 = 0.5. Crescents formed only near the confining surfaces imply an anisotropic character of skyrmion
interaction with two possible configurations within the skyrmion chains (see text for details).

Recently, such a tendency to form skyrmion chains has
been demonstrated in CLCs with the thickness slightly larger
than the spiral pitch, thus proving the 2D character of the
skyrmion-skyrmion interaction [29,32]. Moreover, by using
ambient-intensity unstructured light, the authors demonstrated
large-scale multifaceted reconfigurations of skyrmion clusters
(called skyrmion “crowds”) into single-file lines or chains.
Attraction of magnetic skyrmions mediated by the conical
phase has been observed experimentally in thin (70 nm)
single-crystal samples of Cu2OSeO3 taken using transmission
electron microscopy [53]. In all of the videos recorded in
Ref. [53], however, the skyrmions were in constant motion
caused by the specimen charging under the electron beam,
and different cluster configurations except skyrmion chains
have been detected including even a squarelike arrangement of
skyrmions [as shown by a snapshot of Fig. 2(a) in Ref. [53]].
Such a motion, although at a smaller scale, can be a result of
frustration, when the constituent skyrmions attempt to mini-
mize the anisotropic interskyrmion attraction.

Direct evidence of the field-dependent character of the
interaction between individual magnetic skyrmions as well
as between skyrmions and edges in B20-type FeGe nanos-

tripes was also reported in Ref. [54]. Skyrmion clusters were
observed by means of high-resolution Lorentz transmission
electron microscopy. It was shown that above certain criti-
cal values of an external magnetic field the character of a
long-range skyrmion interaction changed from attraction to
repulsion. Such a behavior demonstrated a quantitative agree-
ment with the results of micromagnetic simulations [55].

B. Attracting skyrmions specify the angular phase
of the conical phase

I also notice that the structure of an isolated skyrmion
reveals the phase of the conical state ψc (9), since the rota-
tion in the conical phase is directly related to the formation
of skyrmion coils. For example, from the location of the
skyrmion crescent at the surface [Figs. 3(c) and 3(e)], one
can deduce the in-plane component of the magnetization in
the conical state. Such an insight becomes especially valuable
in Lorentz transmission electron microscopy (LTEM) investi-
gations of thin films or wedges of cubic helimagnets. Indeed,
the electron microscopy shows featureless images for both the
cone and saturated phases so one cannot directly confirm that
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core centered around the magnetization opposite to the field and a fragment of a (red) coil with the magnetization along the field. Color plots
of the magnetization component mz exhibit the structure of an isolated toron in different crosscuts (c) and (d). Whereas in the middle of the
layer [second panel in (d)], the magnetization distribution is similar to that of an isolated skyrmion [see, e.g., for comparison Fig. 2(b), third
panel], the spins at the surface are all magnetized homogeneously along z [first panel in (d)]. The internal structure of constituent torons within
the toron lattice is shown in (e) and (g). Above the dotted line A–B (f), such a lattice is energetically more favorable as compared with the
skyrmion lattice (see text for details).

featureless regions of experimental images are, e.g., the cone
phase [53,56]. One can, however, identify the conical phase
owing to the skyrmion attraction (otherwise, skyrmions would
repulse in the homogeneous state), and moreover deduce its
phase from the skyrmionic pattern.

From Fig. 3(c), it becomes evident that the crescent at the
lower surface does not correlate with the crescent at the upper
surface, which is valid while the edge conical states are local-
ized near the surfaces and do not intersect in the middle of the
layer, which is the case far from the line b– f within the region
3 of the phase diagram [Fig. 1(a)]. Two interacting skyrmions,
however, prefer to align along the line going through their
centers and the centers of their crescents. This phenomenon
was deduced in Refs. [57–59] for 2D skyrmions in polar
magnets with easy-plane anisotropy. It was shown that, in the
head-to-head configuration, 2D skyrmions form pairs with a
fixed interskyrmion distance, implying the attractive nature of
their interaction. The calculated interskyrmion potential for
the side-by-side configuration reveals the repulsive character
of skyrmion-skyrmion interaction at large distances. Thus I
expect that the same logic would hold for quasi-2D skyrmions
in Figs. 3(c) and 3(e). One can envision two energetically
degenerate configurations of such a skyrmion pair, in which
the crescents of one skyrmion are located either on the same
side with respect to the skyrmion core or on the opposite
sides. In any case, a pair of interacting skyrmions adapts
the surrounding conical phase to reach the minimum of the
interskyrmion potential. Moreover, these skyrmions are also
expected to form one-dimensional chains running along the
canted magnetization at the surface.

V. TORONS AS AN ENERGETICALLY FAVORABLE
SUBSTITUTE OF SKYRMIONS

For ISs with Ku < 0 [Figs. 2(a)–2(f)] as well as for Ku > 0
(not shown), the homeotropic surface anchoring (Ks > 0) in
the first place compresses the magnetization distributions at
the surfaces and eventually results in a ring of energy-costly
defects [compare profiles in the second row of Figs. 2(b),
2(d) and 2(f)]. Skyrmion profiles in the middle of the layer
remain virtually unchanged [compare profiles in the third
row of Figs. 2(b), 2(d) and 2(f)]. The red coil “sinks” deep
into the layer [shown by blue arrows in Fig. 2(e)]. Such an
incompatibility with the surrounding state and the associated
energy cost due to formed defects encourages one to consider
another skyrmion-based particle—a toron (Fig. 4).

Toron [4,39,60,61] represents a localized particle consist-
ing of two Bloch points at finite distance and a convex-shaped
skyrmion stretching between them [Fig. 4(a)]. The central
magnetization distribution [Fig. 4(d)] is similar to that of an IS
[third column in Figs. 2(b), 2(d) and 2(f)], whereas the surface
profiles are the saturated states [Fig. 4(d)]. Due to the grad-
ually varying skyrmion helicity, the energy density becomes
negative in the toron’s cross section, which is balanced by
the positive energy contributions from two Bloch points (see
for details, e.g., Refs. [60,61]). Helicity here is defined as the
angle γ , which enters the formula ψ = Qφ + γ . To describe
skyrmionic states, one usually uses spherical coordinates for
the magnetization (4) and cylindrical coordinates (ρ, φ) for
the spatial variable. Thus such a particle as a toron utilizes
energetically favorable additional twists due to LI L(z)

x,y, as
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described in Sec. VIII, and simultaneously satisfies the bound-
ary conditions at the confining substrates with strong surface
anchoring, which makes it an energetically more favorable
particle as compared with a skyrmion in a range of control
parameters. The transition between skyrmions and torons has
been recently observed [39] to occur via so called toron or
skyrmion hybrid structure—a particle with a point defect near
one surface (like in a toron) and a ring of defects near the
other surface (like in a skyrmion). The energy barriers for such
a process calculated with the geodesic nudged elastic band
method will be published elsewhere.

From the corresponding 3D model [Fig. 4(b)], it follows
that the torons also develop an attracting anisotropic inter-
action as was discussed for ISs in Sec. IV A. According to
numerical simulations, the lattice of torons (TL) [Figs. 4(e)
and 4(g)] replaces the SkL at the line A–B of the phase di-
agram [Fig. 5(f)], i.e., for higher values of the homeotropic
anchoring Ks. Moreover, with the simultaneous effect of the
easy-axis bulk and easy-axis surface anisotropies, TL be-
comes a thermodynamically stable state. In the phase diagram
(Fig. 5), the region of TL stability is shown by the red-shaded
region. Interestingly, there is no upper boundary for such a
region. The reason is the same as already discussed for the
conical phase: once the spins at the confining surfaces are
aligned by the surface anchoring [e.g., for the conical phase
above the line b–e in the region 1 of Fig. 1(a)], the core
structure in the middle of the layer does not change. The
line A1–A2–A3 in Fig. 5, which signifies the first-order phase
transition with respect to one-dimensional spirals, lies a bit
higher than the line A–B in Fig. 4(f), which merely repre-
sents the computed transition between metastable SkL and
the lattice of torons. At the line A1–A2, TL undergoes a first-
order phase transition with the one-dimensional oblique spiral
state, whereas at the line A2–A3 it is with the one-dimensional
helicoid.

Surface profiles for skyrmions with planar anchoring Ks <

0 and, e.g., easy-axis bulk anisotropy Ku [Figs. 3(c)–3(f)],
on the contrary, reduce to two point defects centered at the
crescent and skyrmion core [Fig. 3(f), second panel], whereas

the central profiles retain their axisymmetric shape [third row
in Figs. 3(b), 3(d) and 3(f)]. Obviously, torons cannot provide
any energetic alternative to SkLs.

VI. PHASE DIAGRAM OF STATES IN THIN LAYERS
OF CLCs

At the phase diagram (Fig. 5), the helicoid [also called a
chiral soliton lattice (CSL)] occupies the green-shaded area.
The wave vector of CSL is directed within the plane xy (for
definiteness, along y axis). For zero anisotropy values, such
spirals have lower energy as compared with the conical state,
which is readily explained by the additional surface twists in
thin-film nanosystems, i.e., owing to the same LIs L(z)

x,y, which
also underlie skyrmion stability. In the same way, whereas
the LIs with the derivatives along the axes x and y govern
the magnetization rotation in spiral states, the LI with the
derivative along z leads to the gradual change of the spiral
helicity towards upper and lower surfaces with the penetration
depth 4πLD/10. This effect accumulates additional negative
energy compared with the cones not decorated by the addi-
tional surface twists [56,62]. Hence the CSL is stabilized in
some range of anisotropic contributions [56,63] and is the
main modulated state for the easy-plane anchoring Ks (which
supports in-plane magnetization rotation at the surfaces) and
easy-axis bulk anisotropy Ku (which supports magnetization
rotation in the plane xz in the middle of the layer).

The CSL transforms into the FM state only at the line A–B
[Fig. 6(a)]. In this case, the spiral profiles in the middle of the
layer dominate and overcome the effect of the homeotropic
anchoring to pin the spins at the surface and to “freeze” the
whole structure in the middle of the layer, as was considered
for cones and torons. Above the line A–B for a sufficiently
high anchoring, the spiral represents a system of isolated
noninteracting domain walls (DW). Such DWs contain discli-
nation lines running along the surface and separate domains
with the magnetization along and opposite to the z axis [Fig. 6,
third panel in (c)]. Such a spiral expansion is similar to the
process of a field-driven CSL expansion in bulk helimagnets
with the critical field (8) although being defect free: while the
polar angle in the spiral state retains its constant value π/2,
the azimuthal angle is expressed as a set of elliptical func-
tions; as derived by Dzyaloshinskii within phenomenological
theory, the solutions for this field-distorted spiral are obtained
from the well-known differential equations for the nonlinear
pendulum. Recently, such an expansion of the chiral magnetic
soliton lattice has been observed by Lorenz microscopy and
small-angle electron diffraction [64] in the chiral helimagnet
Cr1/3NbS2.

Along the line C–D, the CSL transforms into the conical
state. Since it is the first-order phase transition, it must be
accompanied by the coexisting domains of both phases, which
are readily resolved experimentally by Lorentz transmission
electron microscopy investigations in thin layers of cubic he-
limagnets, e.g., in FeGe [56].

In the vast region between the lines D–E–F and D–G–F ,
the transition between CSL and cones occurs via an interme-
diate oblique spiral state, which originates from the interplay
between the surface twists and the anisotropies Ks and Ku

[65]: whereas the negative energy associated with the surface
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also text for details).

twists remains almost unchanged, the canting leads to the
lowering of the positive easy-plane anisotropy energy Ku. To
introduce a procedure for defining a canting angle, I notice
that an oblique spiral represents a combination of a flat spiral
in the middle of the layer and a roundish part near the surfaces
related to the chiral surface twists [Fig. 6, third panel in (c)].
Therefore, I consider two profiles of the my components of
the magnetization located at some fixed distance b from each
other near the layer middle [Fig. 6, inset in (b)]. In this undis-
torted part of an oblique spiral, these profiles are essentially
the same but acquire a phase shift with respect to each other
[65]; a is the distance between, e.g., the neighboring minima
of my profiles. Thus the canting angle can be introduced as
tan α = b/a. For a straight CSL state, α = 90◦, and for a con-
ical state, α = 0. As shown by Fig. 6(b), the angle of canting
α for Ks = 3 and variable Ku monotonically decreases with
the growing UA and thus signifies transition into the conical
phase at the line D–E–F .

Since in CLC an electric field fulfills the role of Ku and
hence is often used to switch between different textures, the
considered transition can be easily devised experimentally.
Interestingly, being unidentified in experiments on thin lay-
ers of chiral helimagnets (although predicted theoretically
in Ref. [65] for epitaxial films of MnSi), oblique spirals
are known in CLCs under the name of “nonsingular fingers

of CF1 type” [19,66]. In Ref. [66] in particular, a periodic
finger pattern composed of CF1s was experimentally shown
to transform into a conical state [called translationally in-
variant configuration (TIC) with uniform in-plane twist θc ≈
π/2 because of the weak in-plane anchoring]. The fingers
gradually widened and then merged in order to form the
modulated TIC.

VII. 3D SKYRMION DROPLETS AS A DOMAIN
BOUNDARY BETWEEN TWO TYPES

OF THE CONICAL STATE

In addition to the conical state with the positive values
of the polar angle, θc(z) ∈ [0, π/2], one may also encounter
its higher-energy counterpart [Fig. 7(a)], in which the po-
lar angle sweeps the whole diapason θc ∈ [−π/2, π/2],
i.e., the magnetization rotates from the state opposite to
the z axis at the lower surface to the state along z at
the upper surface. Although such a state emerges as a
metastable solution in the whole range of control parame-
ters for the fixed layer thickness T = 4πLD, I expect that
the energy difference between the two conical states be-
comes negligibly small with the increasing film thickness;
i.e., if the central part with the planar magnetization θc(z =
0) = π/2 [Fig. 7(b)] becomes wider and does not allow
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in (b) demonstrate the full cycle of spin rotation from the state down at the lower surface to the state up at the upper surface. Interestingly,
the domain boundary between two conical states reduces to the so called droplet—a topologically trivial particle with zero topological charge
Q = 0. The 3D model of such a droplet is shown in (c) and the magnetization distribution in the xy plane in (d). For completeness, I also
construct 3D models for so called chiral bobbers localized near layer surfaces and culminating in two point defects (e). I notice that the
metastable conical state (a), which may actually acquire the same energy as the cone in region 2 of Fig. 1(a) with the increasing film thickness,
would accommodate chiral bobbers with opposite polarities (see text for details).

intersection of surface states, the bulk and surface anisotropies
would have no preferences as for the realized conical
state.

Interestingly, the domain boundary between two conical
states transforms into a 3D skyrmion droplet [Figs. 7(c) and
7(d)] confined near the surfaces [67]. In this sense, such
a droplet reminds one of a chiral bobber [68], the inter-
nal structure of which is balanced by the negative energy
contribution from additional surface twists due to L(z)

x,y and
the positive energy due to the point defect [60]. The 3D
model of such a bobber within the conical state is shown in
Fig. 7(e). I note that the bobbers within the second conical
state would have opposite polarities at both surfaces, which
would extend functionalities of bobber-based spintronic
devices.

Droplets are topologically trivial states with Q = 0. The
magnetization distribution at the lower surface shows that
they have skyrmion and antiskyrmion parts with the former
occupying a larger area [67]. Such skyrmion droplets also
may be considered as nuclei of a spiral state if going from
the region of cone stability into the region with the CSL. In
the same way, isolated skyrmions within the homogeneous
state undergo elliptical instability and stretch into a spiral
domain that has lower energy as compared with the saturated
one [25]. Two-dimensional analogs of skyrmion droplets have
been studied in a number of papers [67,69]. Interestingly,
the droplets are stabilized not only owing to DMI or dipolar
interactions, but also can be dynamically nucleated, sustained,
and manipulated [69].

VIII. DISCUSSION: THE RISE OF MAGNETIC
AND LIQUID-CRYSTAL SKYRMIONICS

A. From stable SkL in bulk cubic helimagnets to metastable
skyrmions in spintronic devices

The study of magnetic skyrmions emerged from the
search for stabilization mechanisms helping to overcome the
constraint of the Hobart-Derrick theorem [10]. Hobart and
Derrick found with general arguments that multidimensional
localized states are unstable in many physical field models.
Inhomogeneous states may appear only as dynamic excita-
tions, but static configurations collapse spontaneously into
topological singularities. As a consequence, the solutions
of corresponding nonlinear field equations are restricted to
one-dimensional solitons and such localized structures as
magnetic skyrmions are not expected to exist.

In this search, one managed not to become deceived by
magnetic bubbles [70], which represent circular domains with
the magnetization antiparallel to the homogeneously magne-
tized state and thin domain walls as transition regions between
the two magnetization orientations. In spite of the topological
similarity between skyrmions and common bubbles (indeed,
the skyrmion may be naively visualized as a bubble without
its core), they are different branches of solutions of micro-
magnetic equations. Bubble domains arise only as a result
of the surface depolarization and the tension of ordinary
domain walls and are intrinsically unstable. This fact, how-
ever, does not impede nowadays calling magnetic bubbles
skyrmions.
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Existence of chiral skyrmions in magnetism was predicted
and investigated theoretically by Bogdanov, Yablonsky, and
Hubert starting in 1989 and subsequent works [1,2]. They
identified a group of low-symmetry magnetic materials with
broken inversion symmetry that defy skyrmion instability. As
discussed in the Introduction, magnetic interactions imposed
by the handedness of the crystal structure [DMI (1)] provide
a cherished stabilization mechanism. Investigations of such
chiral magnetic skyrmions, however, for a long time have
been restricted to theoretical studies and skyrmions were even
hailed as some exotic elusive objects, which is partially re-
lated to the inability of experimental techniques to identify
nanoscale particles.

An intensive experimental search for magnetic skyrmions
commenced two decades after their theoretical prediction in
bulk helimagnets with a cubic chiral B20 structure like MnSi
and FeGe [13]. Long-term experimental investigations of the
chiral helimagnet MnSi [71,72], which is considered to be
the most investigated chiral helimagnet—the “toy tool” of
the chiral magnetism—reported numerous physical anomalies
along the magnetic ordering transition and, particularly, indi-
cated the existence of a small closed area in the (H, T ) phase
diagram, the so-called “A phase.” However, only in 2009 by
the group of Pfleiderer [13] was a complex multidimensional
character of chiral modulated magnetic states within the A-
phase pocket associated with skyrmions. On one hand, the
small size of a region at the phase diagram, where skyrmions
were rendered into a thermodynamically stable hexagonal
skyrmion lattice (SkL), was discouraging and skyrmions were
thought to be only responsible for experimentally observed
precursor effects near the ordering temperatures [73]. On the
other hand, however, the A-phase region posed the question
of thermodynamical stability of skyrmions. The quest for
stabilization mechanisms showed that, within an isotropic
phenomenological model, the skyrmion lattice is always a
metastable solution. However, the energetic difference to its
main competitor, the conical phase, is weak and reduces to
a minimum for those magnetic fields that stabilize the A
phase [24]. As a consequence, weak interactions such as the
softening of the magnetization modulus [37], dipolar inter-
actions, fluctuations [13,74], etc., may modify the energetic
landscape and eventually stabilize the SkL in the A-phase
pocket. Due to this subtle energetic balance, the boundaries
of the A phase can be changed substantially by relatively
small external stimuli, such as pressure [75] or electric fields
[76–79]. Recent experimental findings also revealed a vast
area of low-temperature skyrmion stability in the bulk insu-
lating cubic helimagnet Cu2OSeO3, when the magnetic field
is applied along the easy 〈001〉 crystallographic axis, thus
identifying the crucial role of cubic and exchange anisotropies
[80,81].

The first direct observations of SkLs in nanolayers of
cubic helimagnets (Fe0.5Co0.5)Si [82] and FeGe [83] demon-
strated that the internal structure of chiral skyrmions, being
modulated by additional surface twists, also leads to their
thermodynamical stability even without any anisotropic con-
tributions [49,50,56,62]. Indeed, in bulk cubic helimagnets,
only the Lifshitz invariants L(x,y)

x,y govern the magnetization ro-
tation in skyrmions. These LIs fix the skyrmion helicity at the
value γ = π/2 (Bloch-like fashion of rotation). In magnetic

nanolayers on the contrary, the LI L(z)
x,y with the magnetization

derivative along z comes into play. This is the energy term
that stipulates the magnetization rotation within the conical
phase as well. For skyrmions, L(z)

x,y leads to the gradual change
of the skyrmion helicity [γ = π/2 ± ξ (z)] towards upper and
lower surfaces with the penetration depth 4πLD/10 [56,62].
This effect accumulates additional negative energy compared
with the cones not decorated by the surface twists [56,62].
Hence SkL is stabilized in a broad range of applied out-of-
plane magnetic fields and nanolayer thicknesses T (up to the
confinement ratio ν = T/4πLD ≈ 8). ISs within the conical
phase, however, are metastable particles for all values of the
confinement ratio [52,60] (except the small region for ν � 1
in which the energy of an IS becomes negative). The rea-
son lies in the specific transient region between an IS and
the conical phase (dubbed “shell” in Ref. [52]) that bears
the positive energy density and increases linearly with the
thickness. Moreover, the additional surface twist (and hence
an associated negative energy) is essentially reduced in IS as
compared with SkL [52,60,63]. Still, an applied out-of-plane
magnetic field is considered as a crucial ingredient for both
bulk and thin-film chiral magnets to stabilize a hexagonal
skyrmion order [24].

For applications in magnetic data storage technologies
and in the emerging spin electronics, the isolated skyrmions
are more preferable, since they represent metastable parti-
cles within the conical or the homogeneous states [25,52].
Such localized skyrmionic excitations may be controlled and
manipulated [84] and, therefore, may find application in spin-
tronic devices. Skyrmionic “particles” may be also driven
together to form complex noncollinear magnetic textures—
skyrmion lattices. The formation of the lattice is determined
by the stability of the localized solitonic cores and their ge-
ometrical incompatibility that frustrates homogeneous space
filling. However, if the formation of skyrmion lattices is
suppressed, isolated skyrmions continue to exist until they
elongate and expand into a band with helicoidal modulation
and eventually fill the whole space. Below the critical “strip-
out” field, the spiral state represents the minimum with lower
energy as compared to the local minima with the metastable
isolated skyrmions. Therefore, one usually avoids the regions
of phase diagrams where the energy of an IS becomes neg-
ative and thus stipulates the formation of SkL. Still, creating
patterns from metastable solitonic units poses the question of
mutual interactions, in particular at high densities.

Axisymmetric skyrmions exist as ensembles of weakly re-
pulsive particles in the saturated phase of noncentrosymmetric
magnets [25,85], in which all the atomic spins are parallel to
an applied magnetic field, which is strong enough to saturate
all the modulated states. Axisymmetric chiral skyrmions may
also exist in systems with strong easy-axis anisotropy, poten-
tially even at zero field. The detailed evolution of isolated
skyrmions from the strip out at low fields to the collapse at
high fields has been reported in PdFe/Ir(111) bilayers with
the induced DMI and a relatively high value of the uniaxial
anisotropy [85,86]. On the other hand, being embedded in the
cone phase of chiral ferromagnets, isolated skyrmions acquire
a nonaxisymmetric shape, become mutually attractive, and so
tend to produce skyrmion clusters [52]. Thus, generically, the
character of skyrmion-skyrmion interaction as well as their
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internal structure are shaped by a surrounding “parental” state.
In the skyrmion racetrack [16,87,88]—a prominent model for
future information technology—information flow is encoded
in the isolated skyrmions [17] moving within a narrow strip.
Then, the knowledge of skyrmion characteristics allows one to
foresee the skyrmion behavior in spintronic devices. Indeed,
the ISs may run along the side boundaries of racetracks being
attracted by the edge states with the complex spin structure
in the conical state. Alternatively, skyrmions may become re-
pelled by the flat edge states formed within the homogeneous
state [89].

B. Chiral liquid crystals as model systems for probing behavior
of skyrmions

In CLCs, a rich variety of 2D and 3D localized structures
such as cholesteric bubbles (spherulitic domains) [90,91],
cholesteric fingers [66], torons [92], and other specific soli-
tonic textures [93] have been observed during the past four
decades. In contrast to magnetic systems favoring smooth dis-
tributions of the order parameter, liquid crystals usually form
patterns composed of various types of singularities. Defects in
liquid crystals are of various dimensionalities, not only point
defects but also the line and walls, and appear due to the
prevalence of orientational order over positional order in the
applied magnetic or electric fields. Thus the CLC skyrmionics
commenced rather from the classification and resolution of
an internal structure of versatile particlelike states emerg-
ing due to strong boundary conditions incompatible with the
favored twist. In this sense, elastic constant anisotropy and
confinement (surface anisotropy) provide alternative routes
[39] to overcome the constraints of the Derrick-Hobbart theo-
rem [10]. Consequently, CLCs are ordinarily modeled within
the Landau–de Gennes theory in terms of the tensor order
parameter [19,22], which encompasses the full degree of the
order and orientation in CLCs. A comprehensive comparative
study of tensor-based CLCs and vector-based ChMs theoret-
ical models have been performed in Ref. [22] with a number
of important conclusions. In particular, a decisive role of an
applied magnetic field in the stability of magnetic skyrmions
was underlined. A square lattice of merons was shown to in-
clude disclination lines in CLCs [22], which are treated as the
regions with the suppressed magnitude of the magnetization
in ChMs [12]. Such a “softening” of the magnetization occurs
via the energy terms in the Landau expansion for small values
of the magnetization and includes only even powers related to
reversal in the sign of the magnetization (only for even powers
of M is time reversal symmetry preserved). From numerical
investigations on 2D models of isotropic chiral ferromagnets,
such a staggered half-skyrmion square lattice at zero field
of the phase diagram near the transition temperature appears
through a rare case of an instability-type nucleation transition
[12] and is thought to be responsible for observed precursor
anomalies [73]. For lower temperatures, however, nonuniform
magnetic states include only rotation of M without any change
in its magnitude. For CLCs, the bulk free energy within the
Landau–de Gennes theory includes also cubic energy terms
[22]. Interestingly, a square lattice of vortices and antivortices
with topological charges Q = ±1/2 (alternatively called a
meron cluster) can be stabilized in frustrated magnets with

competing exchange interactions. Such a state does not face
the problem of defects, since the skyrmion helicity as well as
the sign of the topological charge are arbitrary [94].

The simpler Frank-Oseen model used in the present
manuscript has its own merits and can translate insights
between CLCs and ChMs communities. Indeed, the role
of mentioned surface twists in the stability of magnetic
skyrmions in thin-layered samples has been investigated
theoretically [62] and experimentally [48,56] since 2013.
Reference [23], however, unintentionally overlooked those
findings and developed a theory of CLC skyrmion states with
varying azimuth. Thus, to avoid any unintended reproduc-
tion of known results, one should bridge the gap between
the CLC and ChM communities and concertedly address the
topological phases realized in both condensed-matter systems.
Presently, chiral liquid crystals are deservedly considered as
an ideal model system for probing behavior of different mod-
ulated structures on the mesoscopic scale [4] due to much
more developed experimental techniques. And, in particular, it
was shown that different regimes of skyrmion interaction (i.e.,
mentioned interskyrmion attraction and/or repulsion) can be
achieved by an analog of the conical phase with variable polar
angle [95].

IX. CONCLUSIONS

To conclude, I have demonstrated the effect of surface
anchoring on the internal structure and properties of isolated
skyrmions and torons based on numerical minimization of the
free-energy functional. I found that depending on the control
parameters (bulk and surface anisotropies) the conical phase
is uniquely modulated across the film thickness and thus hosts
isolated skyrmions or torons with a distinct internal structure.
Isolated skyrmions are argued to develop an anisotropic
skyrmion-skyrmion interaction, which is dominated either
by the skyrmion profiles in the middle of the layer (Fig. 2)
or by the profiles near the confining surfaces (Fig. 3). In
either case, skyrmions form energetically favorable chains
as an alternative to skyrmion clusters with the hexagonal
arrangement of constituent particles. In the limit of strong
homeotropic anchoring, torons (Fig. 4) were shown to gain
the thermodynamical stability in a vast area of the constructed
phase diagram (Fig. 5). The mechanism of toron stability
owing to the combined effect of easy-axis bulk and surface
anisotropies is reminiscent of the SkL stability in an applied
magnetic field in cubic helimagnets. The constructed phase
diagram was also shown to contain one-dimensional straight
and oblique spiral states (Fig. 6) that undergo first- and
second-order phase transitions with the conical state. Just
like the spiral solutions obtained within the Dzyaloshinskii
theory, the spirals in CLCs may expand and release isolated
solitons or alternatively they may become “frozen” by the
surface anchoring with almost unchanged internal structure.
Skyrmion droplets (Fig. 7)—topologically trivial particles—
were in addition considered from a different perspective as
a domain boundary between the conical states with different
internal structure. Thus I emphasize that the control over
the skyrmion structure provided by the applied magnetic
field in chiral magnets can be substituted by the interplay
of confinement and anchoring bringing about potential
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soliton-based information displays and other technologies.
Moreover, since the surface- or interface-induced interactions
(e.g., the Dzyaloshinskii-Moriya interaction and the surface
or interfacial anisotropy) emerge in chiral magnets, the way of
engineering the skyrmion properties by means of the surface
anchoring is applicable for both condensed-matter systems.
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