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Critical point for demixing of binary hard spheres
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We use a two-level simulation method to analyze the critical point associated with demixing of binary hard-
sphere mixtures. The method exploits an accurate coarse-grained model with two- and three-body effective
interactions. Using this model within the two-level methodology allows computation of properties of the full
(fine-grained) mixture. The critical point is located by computing the probability distribution for the number of
large particles in the grand canonical ensemble and matching to the universal form for the 3D Ising universality
class. The results have a strong and unexpected dependence on the size ratio between large and small particles,
which is related to three-body effective interactions and the geometry of the underlying hard-sphere packings.
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I. INTRODUCTION

Hard-sphere systems are central to our understanding
of many physical systems and phenomena, including the
structure of the liquid state [1]; the behavior of colloidal
suspensions [2–4]; jamming and glass transitions [5,6]; and
packing problems [7,8]. In equilibrium statistical mechanics,
hard-particle systems are simple and elegant, because every
allowed configuration has the same statistical weight. Despite
this simplicity, these systems are of practical importance:
they are amenable to experiments [2,4,5,9]; and they support
complex behavior including a variety of phase transitions 10–
15], which continue to challenge theoretical and computer
simulation methods. We focus here on mixtures of large and
small hard spheres, which are predicted to undergo fluid-fluid
phase separation (demixing), if the size disparity and the
concentrations are large enough [16–21]. The phase where
the large particles predominate corresponds to a (metastable)
colloidal liquid [22]. Contrary to the usual intuition that liq-
uids are stabilized by attractive forces, this phase appears
in an equilibrium system with additive mixing rules and
without any attractive forces between particles. This illus-
trates the depletion mechanism for demixing [22–24], which
is one of the prototypical mechanisms for fluid-fluid phase
separation.

Given its status as a theoretical benchmark, it may be
surprising that this fluid-fluid phase separation of hard spheres
has never been accurately characterized. Buhot and Krauth
[25] showed that large particles cluster together strongly, in
small systems at moderate overall volume fractions; Dijkstra,
van Roij, and Evans [26] analyzed fluid-solid and solid-solid
demixing. These numerical studies confirm that depletion
leads to strong effective interactions in these systems [25],
whose behavior is captured semiquantitatively by theoretical

arguments [16,19,20]. However, the critical point for demix-
ing has never been observed directly, nor have the coexisting
fluid phases.

The reason for this state of affairs is that demixing involves
collective behavior of the large particles, which can be ob-
served only if their number is great enough. Additionally, a
depletion effect that is strong enough to produce demixing
requires a large disparity in size between the particles, and
a large concentration of the small particles. Hence one must
analyze configurations with very many small particles, and
there is also a huge disparity between the timescales on which
the two species relax. Figure 1 illustrates the severe chal-
lenges that this poses for computer simulation: the systems
are extremely crowded, and they include many particles of
disparate sizes, with significant interparticle correlations. This
complexity also means that exact theoretical computations are
out of reach, so efficient numerical methods are necessary for
accurate results.

This work uses a two-level numerical method [27] to char-
acterize the critical point for fluid-fluid phase separation in
hard-sphere mixtures. The first level of the method relies
on an accurate coarse-grained (CG) model where the small
particles are integrated out, providing an effective theory for
the large ones. Then, the second level restores the small parti-
cles, providing (numerically) exact results for the full mixture.
The method was previously validated for the Asakura-Oosawa
model [23], which is a much simpler example of demixing, for
which an exact CG model is available. The results presented
here show that the method is viable in complex systems,
finally allowing direct observation of the phase transition in
the hard-sphere system. The results also reveal new physics, in
that the packing of the hard particles influences the phase tran-
sition via three-body depletion interactions, which have been
neglected in previous theories [16,19–21,28,29]. As such, our
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FIG. 1. (a) Snapshot of a binary hard-sphere system at size ratio
11:1, near criticality (ηr

S = 0.302). The box size is L̃ = 44, and there
are N = 50 large particles. (b) The same configuration with the small
particles removed; this is a configuration of the CG model.

results confirm the qualitative picture proposed in [16,19,20],
so that arguments against fluid-fluid demixing are not correct
[30,31]. But they also highlight that the standard two-body de-
pletion theories are not adequate for accurate characterization
of this important phase transition [32,33] (see also [27,34] for
a discussion of their effects in the Asakura-Oosawa model).

The paper is organized as follows: Sec. II introduces the
model and the relevant theory. Then Sec. III presents re-
sults for the critical point of the hard-sphere mixture, and
Sec. IV assesses the accuracy and efficiency of the method.
A summary and outlook is given in Sec. V. We also include
Appendixes with additional theoretical details (Appendix A),
computational details (Appendix B), and information about
the CG model that we have developed (Appendix C).

II. HARD SPHERE MODEL AND ITS CRITICAL POINT

A. Fine-grained model

We analyze a binary mixture of hard spheres whose diam-
eters are σS (small particles) and σB = �σS (big particles, so
� > 1). We use a cubic simulation box of linear size L with
periodic boundaries, in the grand canonical ensemble. A con-
figuration of the system has N large particles with positions
R1, . . . , RN and n small particles with positions r1, . . . , rn.
The relevant dimensionless parameters are the size ratio �,
the system size L̃ = L/σS and the chemical potentials μB, μS

(measured relative to kBT ). Further details of the model and
the underlying theory are given in Appendix A. We param-
eterize μS in terms of the (reservoir) small-particle volume
fraction ηr

S, using an accurate equation of state [35].
Figure 2(c) illustrates the phase diagram proposed in

[19,20]. As a signature of demixing, we seek the critical point.
Define p(N ) as the probability that the system contains N
large particles. For large systems in a single-phase regime,
p(N ) is unimodal and Gaussian. As one approaches the crit-
ical point (μ∗

B, ηr∗
S ), the distribution p(N ) broadens; at the

critical point the large particles form a fractal structure, and
p(N ) has a characteristic (universal) scaling form [36,37]. For
ηr

S > ηr∗
S one expects a phase coexistence line in the (μB, ηr

S)
plane, where p(N ) is bimodal.

We locate the critical point by matching the observed p(N )
to its universal scaling form [37,38], corresponding to the 3D
Ising universality class. Since N (or equivalently the concen-
tration N/L̃3) is the natural order parameter for the demixing

FIG. 2. Results for � = 11. Histograms for the number of large particles for CG model (a, d) and FG model (b, e), with ηr
S = 0.3020, 0.3010

for L̃ = 34, 44, respectively. The universal critical form [36] is shown by dashed lines. The underlying data are shown as points and the solid
lines are Gaussian kernel density estimates with width parameters h as shown. (c) Schematic phase diagram, following [20], as a function of
ρB = N/L3 and ηr

S. The critical point for demixing is indicated, together with the coexistence region (shaded). The demixed state is metastable
with respect to crystallization of the large particles (the coexistence region between a fluid mixture and a crystal is labeled as FM + C). The
region of coexistence between two crystal phases is omitted for simplicity; see [20]. (f) Finite-size scaling collapse for coarse-grained data at
L̃ = 34, 44, 55; results for L̃ = 55 have ηr

S = 0.3006.
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transition, it is natural to work in the grand canonical ensem-
ble, where the finite-size scaling of the critical fluctuations is
well understood [37].

Sampling p(N ) is not tractable by standard methods—it
requires that large particles are inserted and removed from the
system, which is almost impossible in crowded environments
like that shown in Fig. 1. This problem is avoided by the two-
level method. We outline the approach; see [27] and Appendix
A for details. The critical points of interest generically occur
for parameters where the fluid phase is metastable with respect
to crystallization of the large particles [20] [recall Fig. 2(c)]; in
fact, the two-level method helps to control for crystallization
(see Sec. IV B below).

B. Coarse-grained model

The method relies on a coarse-grained (CG) model, where
the small particles are integrated out, leaving only the large
ones. It involves an effective interaction among the large par-
ticles, the corresponding energy is

ECG(C) = N�μ +
∑

1�i< j�N

V2(Ri j )

+
∑

1�i< j<k�N

V3(Ri j, Rik, Rjk ), (1)

where Ri j = |Ri − R j | is the distance between particles i and
j; also V2 and V3 are two- and three-body effective interac-
tions, and the term N�μ ensures that the chemical potentials
coincide between FG and CG models. The �μ,V2,V3 are ob-
tained by grand-canonical Monte Carlo (GCMC) simulation
of small particles in systems which contain a few fixed large
particles; see [27] and Appendix B.

The resulting CG model is highly accurate but it is not a
perfect description of the large-particle behavior. Hence the
second step of the method, which computes the difference
between the coarse-grained result and the result for the full
[fine-grained (FG)] model. Recalling that p(N ) is the proba-
bility that the FG model has N large particles, define pCG(N )
as the corresponding quantity for the CG model. Then

p(N ) = pCG(N ) + �p(N ), (2)

where �p(N ) is the coarse-graining error.
The distribution pCG is computed by GCMC simulation of

the CG model and the correction �p is calculated following
[27], using a free-energy estimate based on Jarzynski’s equal-
ity [39–42]. The computation of �p(N ) distinguishes our
approach from traditional coarse-graining methods [43–47]
in which the main concern is that the CG model is as ac-
curate as possible, but its error is not usually quantified. In
practice, our CG model is accurate enough that the correction
�p will turn out to be small. (Computation of this correc-
tion has similarities with free-energy perturbation theory [48],
as recently exploited to correct coarse-graining errors for
machine-learned potentials [49]).

III. RESULTS: CRITICAL POINT

A. Size ratio 11:1 (� = 11)

We begin with results that demonstrate the critical point
in a mixture with � = 11. The CG model was computed

following Appendix B, details of the interactions are given
in Appendix C.

Figure 2 shows results at the critical point. For a tractable
analysis, we considered relatively small system sizes L̃ =
34, 44, which are between three and four times the diameter of
a large particle. The behavior of pCG(N ) is shown in Figs. 2(a)
and 2(d). By adjusting ηr

S and μB, we obtained estimates of the
critical point, where the distribution pCG matches its universal
critical form (black dashed line), which has been scaled to
give the correct mean and variance. The systems are small
but the fit to the universal form is good. The agreement with
the universal distribution ensures that cumulant ratios [50] are
also in agreement with their universal values at criticality.

Turning to the FG model, we estimate the correction
�p, and hence the distribution p(N ) for the binary mix-
ture. The method requires M configurations of the CG model
which we denote as C1, C2, . . . , CM , obtained by GCMC sim-
ulation. (Specifically, we take M = 1280). For each coarse
configuration, we then perform a GCMC simulation for the
small particles, with the large ones held fixed. This yields
a reweighting factor ω̂α (see Appendix A), then �p(N ) is
estimated as

�p̂(N ) =
M∑

α=1

(ω̂α − 1)IN (Cα ), (3)

where IN (Cα ) = 1 if Cα contains N large particles, and
IN (Cα ) = 0 otherwise.

Results for p(N ) are shown in Figs. 2(b) and 2(e), including
individual estimates of p(N ), and (smoothed) kernel density
estimates of p, based on the same data. The resulting dis-
tributions match the universal scaling form, indicating that
the FG model is indeed very close to its critical point; see
also [37,51]. The large-particle volume fraction at criticality is
estimated at η∗

B ≈ 0.25, which is broadly consistent with other
estimates [20,28] and with general expectations for systems
with very short-ranged attraction [52,53]. For a finite-size
scaling analysis, we recenter and scale the particle number N
to zero mean and unit variance:

X = N − 〈N〉
�N

, �N =
√

〈N2〉 − 〈N〉2. (4)

Figure 2(f) shows additional finite-size scaling results for the
CG model at � = 11, including results at a larger system size
L̃ = 55. These results are consistent with behavior in the Ising
universality class, although the systems are small enough that
corrections to scaling are significant; see [37] and Sec. III D.

It can be shown that the estimates of p(N ) are asymptot-
ically unbiased [27], but they do suffer from large variance
if either (1) the CG model is not sufficiently accurate or (2)
the free-energy computations are performed too quickly [54].
These effects can lead to fat-tailed distributions of reweighting
factors ω̂α , so that the estimate � p̂ starts to be dominated by a
few (nontypical) configurations Cα . This can be easily checked
from the numerical data, providing a consistency check on
the method. In fact efficient performance with moderate M
(as used here) requires a typical coarse-graining error signifi-
cantly less than kBT in the total energy ECG.

The behavior of the weights ω̂α is discussed in Sec. IV,
showing that this condition holds. We also note the FG data
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FIG. 3. Distributions of the order parameter X in the CG model
at � = 10. The system size is L = 3σB (so L̃ = 30), dashed lines
indicate the universal critical form. (a) Results for increasing ηr

S,
indicating that η∗

S � 0.348 (the results at this largest ηr
S appear close

to criticality, but demixing has not yet occurred). (b) Comparison
of the CG model (1) [labeled as (2 + 3)-body] and a two-body
CG model (V3 = 0), both at ηr

S = 0.348. The three-body interaction
suppresses demixing.

points in Fig. 2 are scattered around the kernel density esti-
mate, this indicates the size of the numerical errors (which
would be very large if the CG model was not accurate).

B. Size ratio 10:1 (� = 10)

In contrast to the results for � = 11, the behavior of the
CG system for � = 10 is shown in Fig. 3(a), for a small
system L = 3σB. The distributions of X in Fig. 3(a) are “less
bimodal” than the (universal) critical form, indicating that if
this system has a critical point, it has ηr∗

S � 0.35. For such
high-volume fractions, any computations involving small par-
ticles become challenging, including accurate estimation of
the coarse-graining potential, so we have not explored further
into this regime. In the range shown, the three-body effective
interactions for � = 10 are repulsive, especially for larger ηr

S;
see Appendix C. To illustrate their effect, Fig. 3(b) compares
the CG model with a similar (2-body CG) model without any
three-body interactions (V3 = 0). For the two-body CG model,
it is clear that ηr∗

S < 0.348, but the three-body interaction
drives the critical point to larger ηr

S.
To summarize: Fig. 2 demonstrates a demixing critical

point in CG and FG models of binary hard spheres with
� = 11 and ηr∗

S ≈ 0.30, but Fig. 3 shows that for � = 10
the corresponding critical point is beyond the reach of our
numerics, ηr∗

S � 0.35. For � = 10, previous estimates of ηr∗
S

[16,19–21,28] were smaller (0.29–0.32), but such treatments
assumed that two-body CG models are accurate. Figure 3(b)
shows explicitly that three-body effective interactions sup-
press demixing at � = 10, explaining the difference in ηr∗

S . By
contrast, for � = 11 the two-body CG model is more accurate;
indeed, the Noro-Frenkel criterion [52] holds quite accurately
at the critical point (see Sec. III D below).

C. Differences between � = 10, 11

For a physical explanation of these substantial differences
between � = 10, 11, note that demixing is favored if the col-
loidal liquid (large-N) phase supports efficient packing. The
depletion effect makes it likely that large particles are very

FIG. 4. Packing of large and small particles. (a) Planar configu-
ration with three large particles touching each other and three small
particles in the (gray shaded) space between them. (b) Measure of
packing efficiency φin as defined in the discussion, for ηr

S = 0.32.
This quantity increases sharply between � = 10 and � = 11.

close to each other, so it matters whether the small particles
pack efficiently into the gaps between them.

To understand a key difference between hard-sphere pack-
ing at � = 10, 11, note that planar configurations similar to
Fig. 4(a) are efficient for packing, but they are possible only
for � � 5 + √

24 ≈ 9.9. Hence, such configurations are very
rare for � = 10 (which is close to the marginal case), but they
are much more common for � = 11.

To show this explicitly, we used GCMC simulation for
small particles to compute a (normalized) number density φin

in the shaded gray region of Fig. 4(a), which we interpret
as a measure of packing efficiency. Specifically, we fix three
large particles in mutual contact [as in Fig. 4(a)] and simulate
the small particles in the grand canonical ensemble. Let n�
be average number of small particles within the shaded gray
area of Fig. 4(a) (more precisely, we take a three-dimensional
region that extends above and below the plane of the figure
by a distance δz/2 in each direction). The area of the shaded
region is A� = (2

√
3 − π )σ 2

B/8 and

φin = σ 3
S

δzA�
n� (5)

is the number density in the relevant volume (in units of σ−3
S ).

This quantity depends on the small-particle volume fraction,
the comparison in Fig. 4 is at ηr

S = 0.32, and we take δz = σS.
For very large � then φin tends to the bulk number density but
its behavior for moderate � is subtle, because of the complex-
ity of the underlying sphere packings. For the representative
volume fraction ηr

S = 0.32, Fig. 4(b) shows that the packing
efficiency φin increases sharply between � = 10 and � = 11,
which we interpret as a contributing factor to the enhanced
demixing at � = 11.

Other signatures of more efficient packing at � = 11 are
discussed in Appendix C. We note from those results that
while the packing around triplets of large particles enters
the three-body effective interaction, there are also nontrivial
packing effects for small particles that are close to two large
ones. This can be seen from the nontrivial form of the two-
body interaction. Such interactions are partially captured by
the predictions of density functional theory (DFT) [21], but
as ηr

S increases, there are increasing differences between the
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predictions of DFT and the numerically computed potential—
these are also due to packing effects, which are not captured
accurately by simple density functionals [33].

D. Critical behavior—Discussion

This section discusses some physical features of the criti-
cal point for demixing that we have found and some further
details of the results.

1. Finite-size effects and field mixing in p(N)

The systems considered in this work are relatively small,
compared to the diameter of the large particles, which does
affect the results. However, the finite-size scaling theory of
the critical point is well developed [37], which allows these ef-
fects to be rationalized. In particular, one sees from Figs. 2(a)
and 2(d) that the probability p(0) is not completely negligi-
ble, so the system may contain no large particles at all. The
universal form is relevant for large N—it does not account
for the fact that this number is an integer, nor that it must be
non-negative. Hence one cannot expect an exact match to this
form in small systems. So-called field-mixing effects arising
from the lack of symmetry between the fluid phases [37] can
also lead to asymmetry in p(N ), resulting in deviations from
the (symmetric) scaling form for finite-sized systems. Larger
systems would allow a more detailed analysis of these effects,
as well as estimation of critical exponents. However, given the
various types of corrections to scaling that should be expected,
the close agreement observed here between the numerical data
and the universal form is remarkable, and represents strong
evidence for a demixing critical point.

2. Extended law of corresponding states

Noro and Frenkel [52] proposed that critical points for
systems with short-ranged attractive (two-body) potentials can
be estimated by a criterion based on the reduced second virial
coefficient, which in this context is B∗

2 = (3/σ 3
B)

∫ ∞
0 [1 −

e−V2(r)]r2 dr. (The factor of 3 is included so that B∗
2 = 1 for

a hard-sphere potential). They defined

τ = 1

4(1 − B∗
2 )

(6)

so that small positive τ corresponds to strong attractive in-
teractions. For short-ranged attractive systems, they found
that critical points generically occur for τ ≈ 0.1. For ad-
hesive hard-sphere (AHS) models (corresponding to very
short-ranged attractive attractions), it was later estimated [53]
that τ ≈ 0.113 at criticality. This can be interpreted as an
(extended) law of corresponding states [52].

For the potentials studied here, we find for the critical pa-
rameters � = 11 and ηr

S ≈ 0.30 that τ = 0.11. The three-body
effect is weak at this state point: if we revert to a two-body CG
model with the same parameters, the system is close to crit-
icality. For � = 10, Fig. 3(b) indicates that the two-body CG
system is critical for ηr

S slightly below 0.348, corresponding
again to τ 	 0.1, similar to [33]. These results are consistent
with the extended law of corresponding states. Note, however,
that the two-body CG system is not an accurate description of
the full mixture at � = 10 because of the three-body effective

FIG. 5. Distributions of the reweighting factors ωα for the FG
models of Fig. 2. The important feature is that large reweighting
factors (above ω = 10, for example) are rare.

interactions (recall Fig. 3). Hence, the Noro-Frenkel criterion
does not provide an accurate estimate of the critical behavior
of the binary mixture, in that case.

3. Behavior for very large �

We offer a few comments on the limit of large �, cor-
responding to very extreme size ratio. This limit � → ∞ is
quite subtle [20]. It is convenient to fix σB and take σS → 0.
This can be done in three different ways: (1) keeping the
concentration of small particles constant [55], (2) keeping the
volume fraction of small particles constant [56], and (3) keep-
ing the second virial coefficient B∗

2 constant, for the effective
interactions [57].

There is obviously no demixing in case (1) [55], and
crystallization tends to dominate in case (2) [20]. As noted
in [53], the relevant case for fluid-fluid demixing is (3). In
this case one expects [20] that ηr

S ∼ (1/�) log �, which tends
to zero � → ∞. For very small ηr

S, interactions among the
small particles can be neglected and we expect the system to
behave similarly to an Asakura-Oosawa model, with a short-
ranged two-body attraction, and negligible three-body and
higher contributions. The qualitative behavior that we find for
� = 11 is consistent with this physical picture: that two-body
interactions dominate for very large � and fluid-fluid demixing
should occur. However, it is not clear how large � should be in
general, for three-body interactions to have a negligible effect.

IV. ACCURACY AND EFFICIENCY OF TWO-LEVEL
METHOD

A. Reweighting factors and model accuracy

As a consistency check between the CG and FG models,
Fig. 5 shows the distribution of the reweighting factors ω̂α that
appear in (3). This distribution has 〈ω̂〉 = 1 by construction,
but its variance has a significant impact on the results of
the two-level method. In particular, if the CG model is not
accurate (or the Jarzysnki integration has large variance) then
there will be some configurations with very large ωα: these
tend to dominate the estimate (3), resulting in a large statistical
uncertainty in � p̂. (An example of this effect was shown in
[27]).

Both histograms in Fig. 5 show a few samples with ω̂ ≈
10, which have some impact on the FG results in Fig. 2. In
particular, the data for L̃ = 44 are somewhat scattered in that
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FIG. 6. CG model. (a) Tabulated two-body interaction V2(r) for parameters ηr
S = 0.302 and � = 11 (close to the critical point). This is

shown together with the data from which it is estimated. The RED potential [21] is shown for comparison; it is mostly consistent with the
data, but it underestimates the repulsive part of the potential. (b) The strength of the two-body interaction is illustrated using the value of the
potential V2 when the particles are touching. The strength increases (that is, the potential becomes more negative) on increasing ηr

S and �.
Dashed lines are a comparison with the RED potential. (c) The strength of the three-body interaction is illustrated using the value of V3 when
all three particles are touching. The dependence on the model parameters is more complicated in this case, as we discuss. Dotted lines are
guides to the eye.

figure. Still, the kernel density estimate for p(N ) reduces the
uncertainty by averaging over several values of N and appears
to yield reliable estimates.

An ideal numerical computation would have ω̂α = 1 for
all configurations—this is possible only if the CG model is
perfectly accurate and the Jarzysnki integration is carried out
quasi-statically. As an indication of the differences between
this (ideal) case and our practical computation, we show in
Appendix C 3 that D̂ = − 1

M

∑
α log ω̂α is an estimated upper

bound on the KL divergence (or relative entropy) between our
CG model and a (putative) “perfect CG model” that captures
the full (many-body) effective interaction potential. From the
distributions of Fig. 5, we estimate D̂ ≈ 0.32 for L̃ = 34 and
D̂ ≈ 0.37 for L̃ = 44. Hence, the error of the (total) energy of
a configuration in the CG model is less than 0.4 (in units of
kBT , relative to an exact coarse-grained model). Since these
are total energies for systems with significant numbers of par-
ticles, this indicates that the two- and three-body interactions
are indeed accurate.

Note, however, that this high accuracy is essential for the
two-level method to be effective. Since the (total) CG energy
enters ω̂α through an exponential, the numerical uncertainties
in �p grow quickly if typical errors on the CG energy start to
be comparable with kBT , or larger [27]. This is the main lim-
itation in general application of such methods—very accurate
CG models are required.

B. The role of crystallization

An additional advantage of the two-level method arises
because the critical point in binary hard-sphere systems is
metastable to crystallization. In our study, crystallization of
the large particles was sometimes observed during simulation
of the CG model. Crystallization must eventually occur in
any accurate simulation of the large particles, because of
the metastability. However, the critical point is sufficiently
metastable that typical simulation runs can fully explore the
critical distribution of N before crystallization takes place.

This effect is discussed in [28]; see, for example, Fig. 6 of that
work. (Crystallization can be identified quite easily because
N increases sharply to a large value that is typical for the
crystal but is not representative of the fluid phases. Similar
to [28], we found typical times before crystallization were of
order 108–109 Monte Carlo sweeps). As a practical solution
to this problem, we take the simple approach of discarding
those CG simulation runs where crystallization occurs. Since
the CG model is relatively easy to simulate, this still allows
generation of sufficient data, at manageable cost. By contrast,
methods that requires full simulation of the FG model tend
to be frustrated by crystallization, because they require large
quantities of costly data to be discarded. Other solutions to this
crystallization problem could also be considered, including
different criteria for identifying crystalline states. However,
since the system is able to explore the (metastable) critical
distribution of N before crystallization, we expect that dif-
ferent approaches would lead to very similar results. The
approach taken here amounts to a dynamical definition of the
metastable state, as the state that is explored in simulations
before crystallization occurs.

V. OUTLOOK

A. Demixing transitions

The main result of this work is that we have characterized
the demixing critical point of hard-sphere mixtures at � = 11.
This proved a challenging task, because of the scale separation
between large and small particles (necessitating the use of a
CG model), and the fact that the effective interactions among
the large particles are complex, with strong dependence on �.

We recall from the Introduction that these binary hard-
sphere mixtures are prototypical model systems, which we
use to gain generic insight into colloidal systems. We do not
expect that the details of the three-body interactions derived
here will be generic. For example, realistic colloidal systems
have some polydispersity which would likely disrupt the ide-
alized situation shown in Fig. 4(a), and spheres with perfectly
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hard interactions may also be unrealistic in generic colloidal
systems [4] (especially since many practical depletants are
polymers, which are certainly not hard).

With this in mind, we draw two generic conclusions from
this work, beyond the characterization of the demixing critical
point. First, we note that two-body CG models are widely used
in soft matter [58], and such models are generally expected
to be accurate in hard-sphere mixtures with large � [19,20].
Since three-body interactions turn out to be relevant even in
this case, our results indicate that caution is advisable when
applying two-body CG models in generic soft matter systems
[33]. Second, our results show the power of the two-level
approach (or more general multiscale approaches), which can
be used to obtain fully quantitative and accurate results for
underlying fine-grained systems, if the effective interactions
can be computed accurately.

B. Two-level method

We close with a few comments on the two-level method
[27]. To characterize the critical point to high accuracy, we
use GCMC simulation and match p(N ) to its critical form.
In this setting, the two-level method sidesteps the problem
of inserting large particles into the crowded environment
shown in Fig. 1, because particle insertion is performed at
the coarse-grained level, while the small particles appear only
in the second (FG) level. The method requires a very accu-
rate CG model [27] and considerable computational effort,
but this is mitigated by the fact that the FG level is trivial
to parallelize. This method falls into the general class of
multilevel approaches [59–64]; the results presented here are
further evidence that multilevel coarse-graining methods have
useful application in the physical sciences [27,65–67] (see
also [68–70]), especially if it can be combined with machine-
learned effective potentials [71–74], similar to [49].

In principle, the methodology is very flexible, as long as
suitable CG models can be derived (or inferred). For example,
extensions to this work might include the solid-solid critical
point that is predicted in hard-sphere mixtures [20], or hard-
sphere mixtures in inhomogeneous settings, as commonly
considered in density functional theory (see, for example,
[75]). On the other hand, these methods are not trivial to
apply—two requirements are a very accurate CG model, and a
tractable method for computing the reweighting factors ω̂α to
sufficient accuracy. For the first, the limitation of our results
to ηr

S � 0.35 (for � = 10) is partly because computation of
a sufficiently accurate CG model becomes very challenging.
(GCMC simulations of small particles at larger ηr

S become
increasingly difficult). The same issue also hinders accurate
computations of ω̂α . In addition, our limitation to relatively
small systems arises because the computational time to obtain
highly accurate reweighting factors ω̂α grows with L̃: the
reweighting factors are obtained from small-particle free ener-
gies which must be computed to an absolute accuracy of order
kBT , while the absolute value of the free energy is growing
proportional to the system volume L̃3. This necessitates small
relative errors, and makes simulations increasingly costly at
large � (because L̃ ∼ � if one increases the size ratio at fixed
〈N〉). These caveats should be borne in mind when applying
the method to other systems. Nevertheless, we look forward

to future work exploiting these methods in soft matter systems
and elsewhere.
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APPENDIX A: THEORY

This Appendix describes the theory of the two-level
method as it applies to binary hard-sphere mixtures.

1. FG model (binary mixture)

We define the relevant properties of the binary hard-sphere
system (BHS) and the corresponding CG model. Follow-
ing [27], we denote the large-particle (coarse) degrees of
freedom by

C = (N, R1, . . . , RN ), (A1)

and the small-particle (fine) degrees of freedom by

F = (n, r1, . . . , rn). (A2)

Define a function eBHS(C,F ) such that eBHS = 1 if none of
the hard spheres overlap each other, and eBHS = 0 otherwise.
Then the Boltzmann weight for any configuration of the BHS
system is

wBHS(C,F ) = eBHS(C,F )
exp(μBN + μSn)

N! n!
, (A3)

and the probability density for configurations in the grand
canonical ensemble is

pBHS(C,F ) = wBHS(C,F )

σ 3N
B σ 3n

S 
, (A4)

where the normalization constant  is the grand-canonical
partition function. Specifically

 =
∑
N,n

∫
dR1 . . . dRN dr1 . . . drn

wBHS(C,F )

σ 3N
B σ 3n

S

, (A5)

where each particle position is integrated over the simula-
tion box (which is a cube of size L). Hence  depends on
�, μB, μS, L̃.

Averages in the FG and CG models are denoted by
〈·〉FG/CG. Specifically, if A is an observable quantity in the FG
model then

〈A(C,F )〉FG =
∑
N,n

∫
dRN drn A(C,F )pBHS(C,F ), (A6)

where the integrals are over all particle positions, within the
simulation box.

Here and in the following, note that weight functions like
wBHS are dimensionless (and not normalized as probabil-
ity distributions), but p indicates a normalized probability
density.
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It is natural to define the small-particle volume fraction as

ηS = π

6L̃3
〈n〉FG. (A7)

The reservoir volume fraction ηr
S is the value of ηS that one

obtains in a system with no large particles at all, as L̃ → ∞.
This depends only on μS and can be estimated very accurately
using the equation of state of [35]. This ηr

S depends mono-
tonically on μS; it is used to parameterize the dependence of
the results on μS (whose value is not particularly intuitive) in
terms of the more natural parameter ηr

S.

2. CG model

The coarse degrees of freedom C from (A1) describe con-
figurations of the CG model. Define eHS(C) = 1 if none of
the large particles overlap with each other and eHS(C) = 0
otherwise, analogous to eBHS above. The Boltzmann weight
for the CG model is

wCG(C) = eHS(C)
exp[μBN − ECG(C)]

N!
, (A8)

where the effective interaction energy ECG is given in Eq. (1).
Similar to the FG case define

pCG(C) = wCG(C)

σ 3N
B CG

, CG =
∑

N

∫
dR1 . . . dRN

wCG(C)

σ 3N
B

.

(A9)

If A is an observable quantity in the CG model, then its
average is

〈A(C)〉CG =
∑

N

∫
dR1 . . . dRN A(C)pCG(C). (A10)

3. Transformation between models and computation of �p

To connect the CG and FG models, we (formally) integrate
out the small particles from the FG model. The result is
an effective Boltzmann weight for the large particles alone,
which is

weff (C) =
∞∑

n=0

∫
dr1 . . . drn

wBHS(C,F )

σ 3n
S

. (A11)

Now define �(C) as the grand-canonical free energy of
the small particles, evaluated for a fixed large-particle
configuration C:

�(C) = − log
∞∑

n=0

∫
dr1 . . . drn

eBHS(C,F ) exp(μSn)

σ 3n
S n!

.

(A12)
[This quantity is finite as long as the large particles do not
overlap, eHS(C) = 1. If eHS(C) = 0 then eBHS(C,F ) = 0 also,
so weff (C) = 0]. Comparing the integrals in the two preceding
equations and using (A3), we find

weff (C) = eHS(C)
exp[μBN − �(C)]

N!
. (A13)

A perfect CG model would have wCG(C) = weff (C)/0

for some constant 0 (independent of C): in this case the
CG model would exactly reproduce the behavior of the large
particles in the FG model. Comparing (A8) with (A13), this

amounts to ECG(C) = �(C) + log 0. However, in the ab-
sence of an exact coarse-grained computation, such a perfect
CG model is not available.

Still, one can make progress if the CG model provides a
good approximation to weff , because averages in the FG and
CG models are related. Let A be an observable quantity that
depends only on the large particles. Combining the ingredients
gathered above one finds

〈A(C)〉FG = 1

Z

〈
A(C)

weff (C)

wCG(C)

〉
CG

, Z =
〈
weff (C)

wCG(C)

〉
CG

.

(A14)

Now define IN (C) to be equal to unity if the system con-
tains N large particles and zero otherwise. Hence p(N ) =
〈IN (C)〉FG, so using Eq. (3) with Eqs. (A8), (A13), and (A14)
yields

�p(N ) =
〈
IN (C)

[
W (C)

Z
− 1

]〉
CG

(A15)

with

W (C) = exp [ECG(C) − �(C)]. (A16)

[Similarly, one may write Z = 〈W (C)〉CG]. This means that if
� can be computed (or estimated) then so can �p, and hence
also p. Moreover, (A15) is an average in the CG model, which
is computationally tractable. The same idea is used in free-
energy perturbation theory [48], to relate complicated models
to simpler (more tractable) ones.

4. Estimation of small-particle free energy �

To make use of (3) in practice, we require a computational
estimate of W (C). The object � p̂ in (3) is an estimator for
(A15), with ω̂α in (3) corresponding to the ratio W (C)/Z in
(A15). We estimate e−�(C) using a method based on Jarzyn-
ski’s equality [39], as described in [27]. We give a short
outline here. It is important that �(C) depends on the small-
particle chemical potential μS via wBHS. First select a very
small chemical potential μS = μ0, in which case the integral
can be estimated directly from a grand canonical simulation.
Denote the corresponding value of �(C) by �0(C). Then,
starting from an equilibrated system at chemical potential μ0,
perform an GCMC simulation during which the small-particle
chemical potential increases in K steps from μ0 to μS. Then
compute

I (C) =
K∑

j=1

n j�μ j, (A17)

where �μ j is the change in μ on the jth step and n j is
the number of small particles in the system when that step
takes place. Since this quantity is the work done to insert
the small particles, it follows from Crooks’ theorem [40] that
eI(C)−�0(C) is an unbiased estimate of e−�(C). That is,

〈eI(C)−�0(C)〉MC = e−�(C), (A18)

where the average is over many realizations of the random MC
algorithm (always with the same large-particle configuration
C). Hence

Ŵ (C) = eECG (C)+I(C)−�0(C) (A19)
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is an unbiased estimate of W (C). Note that this result does
not depend on the parameters of the GCMC simulation that
was used to compute I. However, the variance of the estimate
Ŵ does depend strongly on these parameters, which must be
chosen judiciously for the method to be effective.

In practice, each step in (A17) corresponds to one Monte
Carlo sweep (corresponding to L̃3 insertion and deletion at-
tempts). The �μ j are adjusted so that one expects a typical
change of δn j in the average number of small particles on
step j, for a bulk system of small particles alone. The value
of δn j depends on the overall volume fraction and on the
accuracy required: Smaller values of δn lead to more accurate
results (slower annealing during the integration of I), but the
computational expense is higher. Very small δn is required at
large ηr

S, because of significant MC rejection rates in these
crowded systems. Further details are given in the relevant
sections below.

APPENDIX B: COMPUTATIONAL DETAILS

This Appendix explains the numerical procedures that are
used to compute the CG interaction potentials in (1) and the
reweighting factors ω̂α that appear in (3).

1. Computation of CG potentials

For the two-body CG potential V2, consider a configuration
Cr that contains exactly two particles (N = 2), separated by
a distance r. The exact two-body effective potential is (by
definition)

V exact
2 (r) = �(Cr ) − �(C∞). (B1)

Since �(Cr ) can be estimated from (A18), this quantity can be
estimated. If one also considers the configuration C(0) which
has no large particles at all, and the configuration C(1) with
exactly one large particle, the exact one-body term in the CG
model is

�μexact = �(C(0) ) − �(C(1) ), (B2)

which allows �μ to be estimated by (A18). One may also fix
�(C∞) = 2�(C(1) ) − �(C(0) ).

This procedure provides point estimates of V2 at equally
spaced values of r; a smoothed estimate of V2 is obtained by
fitting to a continuous function, and then tabulated for use in
simulations of the CG model. [See Fig. 6(a), discussed below
in Appendix C]. A similar method enables computation of the
three-body interaction potential V3, using systems with three
large particles.

So far the method is identical to [27]. However, two aspects
of the three-body potential are different from that work. First,
we set V3(r12, r23, r13) = 0 unless σB < ri j < σB + 0.8σS for
all pairs of particles. (It is expensive to estimate this function
to high accuracy, so it is convenient to set it to zero in regions
of space where its value is not much larger than the numerical
error. Small errors in V3 will be corrected by the two-level
method in any case). We tabulate V3(x, y, z) for x, y, z on a
cubic grid with spacing σS/10, and we use linear interpolation
to estimate its value for generic arguments.

The second difference from [27] is that we compute
V3 based on a deterministically chosen set of large-particle

configurations (a random sample was used in [27]). These
samples correspond to the points of the cubic grid de-
scribed above, and the symmetry of V3 under interchange
of all arguments is ensured by ordering the arguments by
increasing size.

We require high accuracy in these free-energy estimates
so we use small values for the parameter δn that is used in
the estimate of (A17). For V2 we take δn = 10−3 for ηr

S �
0.2, also δn = 5 × 10−4 for 0.2 < ηr

S � 0.3, and δn = 6.25 ×
10−5 for 0.3 < ηr

S � 0.35. For computation of the three-body
potential, larger systems are required (hence more expensive
computations) but less accuracy is needed, so we increase δn
by a factor of 2.5.

2. Computation of � p̂

In order to estimate �p using (4), we take M representa-
tive configurations of the CG model, denoted by C1, . . . , CM ,
obtained by GCMC simulation of the CG model. For each
sample, we compute Ŵ (Cα ). Then define a normalized
reweighting factor

ω̂α = Ŵ (Cα )
1
M

∑M
β=1 Ŵ (Cβ )

. (B3)

With this choice, it is shown in [27] that (4) is an appropriate
estimate of �p, in the sense that its mean converges for large
M to the true �p, and its variance converges to zero [27].
We emphasize that this property holds even if the CG model
is not accurate, although very large M may be required in
that case.

We note that each estimate of Ŵ (Cα ) requires a GCMC
simulation for the small particles that may take several days on
a single CPU core. However, all the Ŵ computations are inde-
pendent, allowing efficient use of high-performance (parallel)
computing resources. In practice, we make four independent
estimates of the weight Ŵ for each coarse configuration; the
average of these estimated weights is used as an unbiased
estimate of the true weight.

For the results of the main text we take M = 1280. When
computing the reweighting factors ωα in the two-level method
we take δn = 10−2 for ηr

S � 0.2, also δn = 5 × 10−3 for
0.2 < ηr

S � 0.3, and δn = 6.25 × 10−4 for 0.3 < ηr
S � 0.35.

(This is a suitable compromise between accuracy and compu-
tational time).

APPENDIX C: COARSE-GRAINED MODEL

1. Interaction potentials

Figure 6 illustrates the behavior of the effective interactions
in the CG model. We give a brief description of its main
properties.

Figure 6(a) shows the two-body effective interaction,
which has the form of a depletion potential. There is a strong
effective attraction between the particles, whose range is com-
parable with σS. Also, the layering of the small particles
around the large ones means that the potential has oscillations,
with both attractive and repulsive parts. We show results for
parameters close to the critical point of the model, which
are compared with the potential proposed by Roth, Evans,
and Dietrich (RED) [21]. As previously noted in [33], the
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FIG. 7. (a) Illustration of the packing of small particles in the vicinity of three large ones. This (planar) configuration is possible for size
ratios � � 5 + √

24 = 9.90. (b) Local density of small particles in the vicinity of three (fixed) large ones for ηr
S = 0.32 and � = 8, 9, 10, 11.

In the case � = 11, three particles fit the gap, visible as three local peaks in the density. Scale bars are 3σS.

RED potential is close to the true V2, but there are significant
differences in the repulsive parts of these potentials. The error
bars on V2 are no larger than symbol sizes, hence the depletion
potential is accurate.

Figure 6(b) shows how the strength of the depletion inter-
action depends on the size ratio � and on ηr

S. This is quantified
by the value of the depletion potential at contact. As expected,
the potential gets stronger as � and ηr

S increase.
By contrast, Fig. 6(c) indicates the strength of the three-

body potential, for the specific case where all three particles
are touching each other. (The strong two-body attraction
means that this arrangement is the most common, so it is
suitable for illustrative purposes). The three-body potential
is smaller in absolute value than V2, and it may be either
attractive (V3 < 0) or repulsive (V3 > 0). Note also that there
is no clear trend for the dependence on ηr

S and �: the potential
may increase or decrease.

2. Three-body interactions

Figure 7 presents additional information to allow the be-
havior of V3 to be rationalized. It shows the density of small
particles in the vicinity of three large ones, which have fixed
positions, all touching each other. For � = 11, three particles
can fit into the (approximately) triangular region between the
particles, while for � � 10, this does not occur. (Exactly at
� = 10, three small particles can just fit in the planar ar-
rangement of Fig. 7 but their positions are tightly constrained
and the associated phase-space volume is extremely small. A
similar effect can also be observed for packing of hard spheres
in wedge-shaped geometries [76]). As a result, the packing
for � = 11 is much more efficient than for � = 10, and the
corresponding V3 is smaller. By contrast, for � = 8, putting a
single small particle into this region corresponds to a relatively

efficient packing and a smaller V3, at least compared with
� = 9, 10.

These three-body effects have many subtle features. For the
purposes of this work, two aspects are important. First, the
potential at contact has values that are smaller than unity, but
these are certainly not negligible contributions to the energy.
Second, the sign of the interaction (and its dependence on ηr

S)
has a nontrivial dependence on �. Specifically, the three-body
effect for � = 10 is significantly repulsive (and increasingly
so at large ηr

S), while the corresponding effect for � = 11
is weakly repulsive for ηr

S ≈ 0.3 but becomes attractive at
larger ηr

S.

3. Accuracy of CG model

Recalling that a perfect coarse-grained model would have
energy function E ex

CG(C) = �(C) (up to an additive constant),
it is useful to define the Kullback-Leibler divergence between
the Boltzmann distributions of our CG model and the exact
one, which is

DCG
KL =

∑
N

∫
dR1 . . . dRN pCG(C) log[Z/W (C)] (C1)

with W (C) as in (A16). This DCG
KL is non-negative and mea-

sures how different is the CG model from the exact one. It
is zero if (and only if) the CG model is exact. This may be
observed by writing it in the form

DCG
KL = 〈

E ex
CG(C) − ECG(C)

〉
CG + log

〈
eECG (C)−E ex

CG (C)〉
CG,

(C2)
which shows that it can be interpreted as the average coarse-
graining error in ECG.

In a free-energy perturbation theory computation [48], this
quantity could be computed. In the method used here, the
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W (C) are not available but we do have their (unbiased) es-
timates Ŵ (C). Consider the quantity

D̂ = − 1

M

∑
α

log ω̂α (C3)

with ω̂ as in (B3), and recall that the configurations Cα are
representative samples from the CG model. Since Ŵ (C) is
an unbiased estimate of W (C), we have 〈Ŵ (Cα )〉J = W (Cα )
where 〈·〉J is the expectation value with respect to the stochas-
tic computation of Ŵ ; see also [27]. By (B3) we have

〈D̂〉J = − 1

M

∑
α

〈logŴ (Cα )〉J +
〈

log
1

M

∑
α

Ŵ (Cα )

〉
J

.

(C4)
For large M then 1

M

∑
α Ŵ (Cα ) ≈ 〈W 〉CG = Z (because the

Cα are representative CG configurations). Also, Jensen’s

inequality means that 〈logŴ (Cα )〉J � log〈Ŵ (Cα )〉J =
logŴ (Cα ). Using these facts we obtain

〈D̂〉J � − 1

M

∑
α

logŴ (Cα ) + log Z. (C5)

Finally using again that the Cα are representative coarse con-
figurations we have

〈D̂〉J � 〈log[Z/Ŵ (C)]〉CG. (C6)

The right-hand side is the KL divergence as in (C1), so we
finally obtain

DCG
KL � 〈D̂〉J (C7)

That is, the computable quantity D̂ is an estimated upper
bound for the error DCG

KL of the CG model.

[1] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd
ed. (Academic Press, London, 2005).

[2] P. N. Pusey and W. van Megen, Nature (London) 320, 340
(1986).

[3] S. Auer and D. Frenkel, Nature (London) 409, 1020
(2001).

[4] C. P. Royall, W. C. K. Poon, and E. R. Weeks, Soft Matter 9, 17
(2013).

[5] E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A.
Weitz, Science 287, 627 (2000).

[6] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
[7] J. de Graaf, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 107,

155501 (2011).
[8] G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel, and S. C.

Glotzer, Proc. Natl. Acad. Sci. U. S. A. 111, E4812 (2014).
[9] S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine,

Nature (London) 464, 575 (2010).
[10] B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208

(1957).
[11] W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207

(1957).
[12] E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704

(2011).
[13] P. F. Damasceno, M. Engel, and S. C. Glotzer, Science 337, 453

(2012).
[14] A. P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, Phys.

Rev. Lett. 111, 015501 (2013).
[15] D. J. Ashton, R. L. Jack, and N. B. Wilding, Phys. Rev. Lett.

114, 237801 (2015).
[16] T. Biben and J.-P. Hansen, Phys. Rev. Lett. 66, 2215 (1991).
[17] Y. Rosenfeld, Phys. Rev. Lett. 72, 3831 (1994).
[18] Y. Rosenfeld, J. Phys. Chem. 99, 2857 (1995).
[19] M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett. 81,

2268 (1998).
[20] M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E 59, 5744

(1999).
[21] R. Roth, R. Evans, and S. Dietrich, Phys. Rev. E 62, 5360

(2000).
[22] W. C. K. Poon, J. Phys.: Condens. Matter 14, R859 (2002).
[23] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).

[24] H. N. W. Lekkerkerker, W. C.-K. Poon, P. N. Pusey, A.
Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992).

[25] A. Buhot and W. Krauth, Phys. Rev. Lett. 80, 3787 (1998).
[26] M. Dijkstra, R. v. Roij, and R. Evans, Phys. Rev. Lett. 82, 117

(1999).
[27] H. Kobayashi, P. B. Rohrbach, R. Scheichl, N. B. Wilding, and

R. L. Jack, J. Chem. Phys. 151, 144108 (2019).
[28] J. Largo and N. B. Wilding, Phys. Rev. E 73, 036115 (2006).
[29] A. Ayadim and S. Amokrane, Phys. Rev. E 74, 021106 (2006).
[30] M. López de Haro, C. F. Tejero, and A. Santos, J. Chem. Phys.

138, 161104 (2013).
[31] A. Santos, S. B. Yuste, and M. López de Haro, J. Chem. Phys.

153, 120901 (2020).
[32] D. Goulding and S. Melchionna, Phys. Rev. E 64, 011403

(2001).
[33] D. J. Ashton, N. B. Wilding, R. Roth, and R. Evans, Phys. Rev.

E 84, 061136 (2011).
[34] M. Dijkstra, R. van Roij, R. Roth, and A. Fortini, Phys. Rev. E

73, 041404 (2006).
[35] J. Kolafa, S. Labik, and A. Malijevsky, Phys. Chem. Chem.

Phys. 6, 2335 (2004).
[36] M. M. Tsypin and H. W. J. Blöte, Phys. Rev. E 62, 73 (2000).
[37] N. B. Wilding, Phys. Rev. E 52, 602 (1995).
[38] A. D. Bruce and N. B. Wilding, in Advances in Chemical

Physics, edited by I. Prigogine and S. A. Rice (Wiley Online
Library, 2003), Vol. 127, p. 1.

[39] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[40] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).
[41] R. M. Neal, Stat. Comput. 11, 125 (2001).
[42] G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 98,

3658 (2001).
[43] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov,

G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. 128,
244114 (2008).

[44] M. Praprotnik, L. Delle Site, and K. Kremer, J. Chem. Phys.
126, 134902 (2007).

[45] T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys.
134, 085101 (2011).

[46] B. M. Mladek, J. Fornleitner, F. J. Martinez-Veracoechea, A.
Dawid, and D. Frenkel, Soft Matter 9, 7342 (2013).

044603-11

https://doi.org/10.1038/320340a0
https://doi.org/10.1038/35059035
https://doi.org/10.1039/C2SM26245B
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1103/PhysRevLett.107.155501
https://doi.org/10.1073/pnas.1418159111
https://doi.org/10.1038/nature08906
https://doi.org/10.1063/1.1743957
https://doi.org/10.1063/1.1743956
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1126/science.1220869
https://doi.org/10.1103/PhysRevLett.111.015501
https://doi.org/10.1103/PhysRevLett.114.237801
https://doi.org/10.1103/PhysRevLett.66.2215
https://doi.org/10.1103/PhysRevLett.72.3831
https://doi.org/10.1021/j100009a048
https://doi.org/10.1103/PhysRevLett.81.2268
https://doi.org/10.1103/PhysRevE.59.5744
https://doi.org/10.1103/PhysRevE.62.5360
https://doi.org/10.1088/0953-8984/14/33/201
https://doi.org/10.1063/1.1740347
https://doi.org/10.1209/0295-5075/20/6/015
https://doi.org/10.1103/PhysRevLett.80.3787
https://doi.org/10.1103/PhysRevLett.82.117
https://doi.org/10.1063/1.5120833
https://doi.org/10.1103/PhysRevE.73.036115
https://doi.org/10.1103/PhysRevE.74.021106
https://doi.org/10.1063/1.4803097
https://doi.org/10.1063/5.0023903
https://doi.org/10.1103/PhysRevE.64.011403
https://doi.org/10.1103/PhysRevE.84.061136
https://doi.org/10.1103/PhysRevE.73.041404
https://doi.org/10.1039/B402792B
https://doi.org/10.1103/PhysRevE.62.73
https://doi.org/10.1103/PhysRevE.52.602
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1023/A:1008923215028
https://doi.org/10.1073/pnas.071034098
https://doi.org/10.1063/1.2938860
https://doi.org/10.1063/1.2714540
https://doi.org/10.1063/1.3552946
https://doi.org/10.1039/c3sm50701g


HIDEKI KOBAYASHI et al. PHYSICAL REVIEW E 104, 044603 (2021)

[47] A. J. Pak and G. A. Voth, Curr. Opin. Struct. Biol. 52, 119
(2018).

[48] R. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).
[49] B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M.

Ceriotti, Proc. Natl. Acad. Sci. U. S. A. 116, 1110
(2019).

[50] K. Binder and D. Heermann, Monte Carlo Simulation in Statis-
tical Physics (Springer, Berlin, Heidelberg, 2019).

[51] P. G. Debenedetti, F. Sciortino, and G. H. Zerze, Science 369,
289 (2020).

[52] M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000).
[53] M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702

(2003).
[54] H. Oberhofer and C. Dellago, J. Comput. Chem. 30, 1726

(2009).
[55] C. Vega, J. Chem. Phys. 108, 3074 (1998).
[56] G. Stell, J. Stat. Phys. 63, 1203 (1991).
[57] R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).
[58] C. N. Likos, Phys. Rep 348, 267 (2001).
[59] M. B. Giles, Oper. Res. 56, 607 (2008).
[60] D. F. Anderson and D. J. Higham, SIAM Multiscale Modell.

Simul. 10, 146 (2012).
[61] V. H. Hoang, C. Schwab, and A. M. Stuart, Inverse Probl. 29,

085010 (2013).
[62] T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup,

SIAM/ASA J. Uncertainty Quant. 3, 1075 (2015).
[63] A. Beskos, A. Jasra, K. Law, R. Tempone, and Y. Zhou, Stoch.

Proc. Appl. 127, 1417 (2017).

[64] T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup,
SIAM Rev. 61, 509 (2019).

[65] M. Rosin, L. Ricketson, A. Dimits, R. Caflisch, and B. Cohen,
J. Comput. Phys 274, 140 (2014).

[66] K. Jansen, E. H. Müller, and R. Scheichl, Phys. Rev. D 102,
114512 (2020).

[67] E. Løvbak, B. Mortier, G. Samaey, and S. Vandewalle,
in Computational Science—ICCS 2020, edited by V. V.
Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra,
P. M. A. Sloot, S. Brissos, and J. Teixeira (Springer Interna-
tional, Cham, 2020), pp. 374–388.

[68] A. Brandt and D. Ron, J. Stat. Phys. 102, 231 (2001).
[69] D. Ron, R. H. Swendsen, and A. Brandt, Phys. Rev. Lett. 89,

275701 (2002).
[70] A. Brandt and V. Ilyin, in Multiscale Computational Meth-

ods in Chemistry and Physics, edited by A. Brandt, J.
Bernholc, and K. Binder (IOS Press, Amsterdam, 2001),
pp. 187–197.

[71] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
[72] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys.

Rev. Lett. 104, 136403 (2010).
[73] K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko,

and K. R. Müller, J. Chem. Phys. 148, 241722 (2018).
[74] T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z.

Panagiotopoulos, and P. G. Debenedetti, Proc. Natl. Acad. Sci.
U. S. A. 117, 26040 (2020).

[75] R. Roth, J. Phys.: Condens. Matter 22, 063102 (2010).
[76] M. Schoen and S. Dietrich, Phys. Rev. E 56, 499 (1997).

044603-12

https://doi.org/10.1016/j.sbi.2018.11.005
https://doi.org/10.1063/1.1740409
https://doi.org/10.1073/pnas.1815117116
https://doi.org/10.1126/science.abb9796
https://doi.org/10.1063/1.1288684
https://doi.org/10.1103/PhysRevLett.90.135702
https://doi.org/10.1002/jcc.21290
https://doi.org/10.1063/1.475698
https://doi.org/10.1007/BF01030007
https://doi.org/10.1063/1.1670482
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1137/110840546
https://doi.org/10.1088/0266-5611/29/8/085010
https://doi.org/10.1137/130915005
https://doi.org/10.1016/j.spa.2016.08.004
https://doi.org/10.1137/19M126966X
https://doi.org/10.1016/j.jcp.2014.05.030
https://doi.org/10.1103/PhysRevD.102.114512
https://doi.org/10.1023/A:1026520927784
https://doi.org/10.1103/PhysRevLett.89.275701
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1063/1.5019779
https://doi.org/10.1073/pnas.2015440117
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1103/PhysRevE.56.499

