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Low-temperature ordering of the dimer phase of a two-dimensional model of core-softened particles

F. Mambretti ,1,2,* M. Martinelli ,1 F. Civillini,1 M. Bertoletti,1 S. Riva,1 N. Manini ,1 D. E. Galli ,1 and D. Pini 1

1Università degli Studi di Milano, Dipartimento di Fisica “Aldo Pontremoli,” via Celoria 16, 20133 Milan, Italy
2Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, via Marzolo 8, 35131 Padua, Italy

(Received 3 August 2021; accepted 17 September 2021; published 7 October 2021)

Purely pairwise interactions of the core-softened type, i.e., featuring a soft repulsion followed by a hard-core
interaction at shorter distance, give rise to nontrivial equilibrium structures entirely different from the standard
close packing of spheres. In particular, in a suitable low-temperature region of their phase diagram, such
interactions are well known to favor a transition from a fluid to a cluster crystal. The residual mutual interaction
between individual clusters can lead to the formation of patterns of their reciprocal orientations. In this work,
we investigate two examples of such models in two dimensions, at the density most appropriate to the dimer
phase, whereby clusters consist of just two particles, studying them with optimization techniques and Monte
Carlo simulations. We focus on the dimer crystal, and unveil a second phase transition at extremely low
temperature. This transition leads from a triangular dimer lattice with randomly disordered dimer orientations at
high temperature to a reduced-symmetry ground state with nematic orientational order and a slightly distorted
structure characterized by a centered-rectangular lattice at low temperature.
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I. INTRODUCTION

The broad range of structures observed in crystallography
is usually ascribed to the variety of interatomic forces, with
intricate dependences on mutual distances, angles, dihedrals,
leading to different kinds of coordination [1]. In the realm of
soft matter, however, one is faced with a different scenario:
in that case, the effective interactions which arise between
complex molecular systems when they are regarded as effec-
tive pointlike objects may behave very differently from those
between their atomic counterparts, and even purely pairwise
forces, which only depend on particle-particle distances, can
give rise to nontrivial crystalline equilibrium structures dif-
ferent from the standard close packing of spheres (triangular
lattice in two dimensions, face-centered cubic in three), which
is the paradigm, e.g., for Lennard-Jones forces or for monodis-
perse hard spheres [2].

A remarkable instance of this behavior is found for
the interactions variously referred to as core-corona or
core-softened or hard-core–soft-shell potentials, such that a
hard-core, singular repulsion is followed by a softer, bounded
repulsion at larger distance. These potentials come along
as a modelization of the effective interactions in several
systems, such as colloidal particles coated by a polymer
brush grafted to their surface [3–5], dendrimers [6], and block
copolymer micelles [7–9]. The most popular example is the
square-shoulder potential [10,11], where the soft repulsion is
identically constant up to a certain cutoff length, and vanishes
elsewhere, but other forms have been proposed as well, such
as the one-parameter family considered by Jagla [12], which
is again identically vanishing beyond a given cutoff, but does
not feature the harsh discontinuity of the square shoulder,
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and can assume a variety of profiles, from a convex slide to a
concave shoulder.

Despite their deceptively simple forms, these interactions
give rise to a remarkable wealth of ground states featuring
several lattices other than the close-packed ones, depending
on the particle density and on the thickness of the soft shell
compared to that of the hard core. In two dimensions this
was pointed out by Jagla [12,13], and subsequently found also
in the square-shoulder case, where genetic algorithms were
used to find the minimum-energy configurations in both two
dimensions [14,15] and three [16,17]. Indeed, even quasicrys-
tals may occur [13,18].

Several of these nontrivial structures are characterized by
the spontaneous formation of particle aggregates such as clus-
ters, stripes, or rings [14–17]. The reason for this behavior
lies in the very soft character of the shell repulsion: Because
of that, the energy penalty two particles have to pay in order
to come close to each other is only weakly dependent on
the degree of overlap of their shells (for a square shoulder,
it is actually independent of it). Particles may then find it
energetically convenient to self-organize into domains made
up of strongly overlapping particles separated by relatively
large gaps, so that the interactions between particles belonging
to different domains is very weak or absent altogether [19].

The present paper addresses the characterization of the
phase consisting of two-particle clusters, i.e., dimers, with
particular regard to their orientational order. It was already
pointed out that the square-shoulder potential at suitably large
shell-to-core ratio displays a low-density “nematic” phase,
consisting of parallel dimers arranged on the sites of a slightly
distorted triangular lattice [14,15]. The first issue which we
address is whether the kind of arrangement reported there
should be expected also for other core-softened interactions.

To this end, we consider two core-softened potentials, both
of which have a smooth soft-shell part, unlike the square
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shoulder. Moreover, while in one of them the short-range
repulsive forces are again described by a hard core, the other
one features a continuous repulsion, diverging as an inverse
power law at zero particle separation [20]. Our results for
the ground state at density appropriate to dimer formation
obtained via gradient minimization of the potential energy
conform qualitatively to the picture drawn in Refs. [14,15],
and highlight the central role played by the lattice distortion in
stabilizing the nematic phase. In fact, removing the distortion
by forcing the dimers to be located on the sites of a perfect
triangular lattice would lead to a completely different kind of
orientational order.

Next, we investigate whether the orientational order char-
acteristic of the ground state is bound to survive at finite
temperature. We tackle this issue by studying the behavior of
particle-particle correlations obtained via accurate numerical
simulations and provide evidence that this is indeed the case.
In addition to the fluid-crystal transition, at which the dimers
crystallize into an orientationally disordered state, there will
be a second transition at a (much) lower temperature, marked
by the occurrence of the nematic order of the dimers.

In detail, we discuss the pair potentials investigated in
the current work and their properties in Fourier space in
Sec. II. The gradient minimization method used to obtain the
minimum-energy state of the system is detailed in Sec. III;
the other numerical approaches used in this work, namely,
Monte Carlo and parallel tempering simulations are intro-
duced in Sec. IV. Section V presents the thermodynamic,
structural, and correlation results obtained for the two models
studied. The results are discussed in Sec. VI. The details of
the method employed in energy minimization are described in
Appendix.

II. MODEL POTENTIALS

A. Pair interactions and clustering

We consider two similar pair potentials. Each of them is
based on a “soft” bounded repulsive interaction, to which we
add a repulsive contribution which diverges at short range, re-
alistically preventing a full overlap of the individual particles.

In the first instance, the soft part is a generalized exponen-
tial model of order 4 (GEM4) [21–23]

wGEM4(r) = ε exp[−(r/R)4] (1)

as a function of the interparticle distance r. The parameters
R and ε set respectively the range and strength of this interac-
tion. We then add a singular hard-core repulsion of diameter δ,
obtaining the hard-core plus GEM4 (HCGEM4) φHCGEM4(r)
potential given by

φHCGEM4(r) =
{∞ r < δ

ε exp[−(r/R)4] r � δ
. (2)

Throughout the paper we set δ = 0.05 R, corresponding to a
rather large shell to core ratio equal to 20.

The second model interaction is obtained by considering a
generalized Lorentzian with exponent 6 (GL6) [24]

wGL6(r) = ε

1 + (r/R)6
, (3)
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FIG. 1. Hard-core plus GEM4 potential φHCGEM4(r) of Eq. (2)
with hard-core diameter δ = 0.05R. The inset displays the Fourier
transform of the GEM4 potential w̃GEM4(k), exhibiting a negative
minimum at km � 5.09618 R−1.

with strength and range again fixed by ε and R. To this we add
a diverging power-law repulsion of small amplitude to obtain
the following smooth-core plus GL6 (SCGL6) potential:

φSCGL6(r) = ε

[
1

1 + (r/R)6
+ A

(R

r

)6]
, (4)

where, following Ref. [20], the parameter A setting the relative
strength of the diverging contribution is fixed to A = 5 × 10−5

throughout the paper.
Figures 1 and 2 depict the φHCGEM4(r) and φSCGL6(r)

functions, respectively. Both the GEM4 and the GL6 po-
tentials belong to the so-called Q± class [25], i.e., their
Fourier transform changes sign and reaches a negative min-
imum at a nonzero wave vector km: in the present case, km =
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FIG. 2. Same as Fig. 1, but here for the smooth-core plus GL6
potential φSCGL6(r) of Eq. (4) with smooth-core repulsion strength
A = 5 × 10−5. The negative minimum of the Fourier transform of
GL6 occurs at km � 4.82021 R−1.
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5.09618 R−1 for the GEM4 potential and km = 4.82021 R−1

for the GL6 potential, as displayed in the insets of Figs. 1
and 2.

Because of these negative minima, Q± interactions exhibit
an intrinsic instability toward spontaneous density modula-
tions, which at low temperature or high density manifest
themselves as nonhomogeneous, periodic phases. The period-
icity of these phases is essentially dictated by km: specifically,
to a high degree of approximation km identifies with the
size of a reciprocal-lattice vector [22], resulting in a nearly
density-independent lattice spacing d ∝ k−1

m in real space. As
a consequence, an increase in density is brought about by
having more numerous particles pile up at the same lattice
site rather than by increasing the number of sites—hence
clustering. Recent works have addressed the emergence of
such collective phases in one-dimensional (1D) classical [26]
and quantum [27,28] softly repulsive systems.

At temperatures comparable to the characteristic energy
scale of the interaction, kBT ∼ ε, the thermal average nc of
the cluster occupation number depends linearly on the average
number density ρ according to

nc = ρv0, (5)

where v0 ∝ d2 ∝ k−2
m is the area of the primitive cell of the

lattice of clusters. In two dimensions, the triangular lattice is
expected to be the preferred structure. For a triangular lattice,
one has

d = 4π√
3 km

, (6)

which with the above values of km gives d � 1.4 R for the
GEM4 and d � 1.5 R for the GL6.

For bounded Q± interactions such as the GEM4 and the
GL6, nothing prevents particles from fully overlapping with
each other, so that clusters actually consist of structureless,
pointlike objects in the T → 0 limit. This is no longer true
when a core repulsion at short distance is added, as in the
HCGEM4 and the SCGL6 potentials considered here. Since
cluster collapse is now prevented, clusters must necessar-
ily grow in size as more and more particles are added into
the system. Overall, such a state of affairs implies that the
high-density phase behavior of these interactions is very dif-
ferent from that of their bounded counterparts, featuring not
only clusters, but also stripes and bubbles in two dimensions
[29,30], as well as more complex phases in three [31,32].
Moreover, individual clusters now exhibit an internal structure
which depends on the packing behavior of the particles inside.
This is especially relevant in the case of the dimer crystal we
are mostly concerned with here, where all clusters consist of
just two particles, and the mutual orientation of the dimers is
a relevant degree of freedom of the system.

The optimal density for the occurrence of clusters with
average occupation number nc is obtained by solving Eq. (5)
for ρ. For a triangular lattice, this gives

ρnc =
√

3 k2
m

8π2
nc. (7)

This result is exact for the bounded, coreless, interactions, but,
for small nc and thus small ρ, it holds approximately even for
the potentials considered in the present work.

At sufficiently high temperature, nc is always determined
by Eq. (5) whatever the density ρ, so that as soon as ρ deviates
from ρnc , the average occupation number will depart from the
corresponding nc. However, this no longer holds at low tem-
peratures such that kBT � ε, and most notably at T = 0. In
this case, the thermal motion is unable to redistribute the parti-
cles among the lattice sites, and nc is bound to assume integer
values Nc. As a consequence, densities which are far from
the optimal values ρNc must be obtained by having crystals
with different Nc coexist with each other, thereby prompt-
ing a sequence or “cascade” of first-order phase transitions
as ρ is increased [33,34]. For densities which do not differ
much from ρNc , the system instead finds it more convenient
to adjust the lattice constant d and keep nc fixed at Nc, like
the elastic response of ordinary crystalline solids under mild
compression. Therefore, at low temperature ρ does not need to
coincide strictly with ρNc for a cluster crystal with Nc particles
per cluster to occur: rather, such a crystal remains stable in a
certain range of densities around ρNc . This applies in particular
to the dimer case Nc = 2 we are interested in.

B. Dimer-dimer interaction

The total potential energy U of the system is given by

U = 1

2

∑
i 	= j

φ(|xi − x j |), (8)

where xi, i = 1, . . . , N denotes the position of the particles, N
being the particle number, and φ is the particle-particle poten-
tial under consideration. Before studying the ground state of
an assembly of interacting dimers, it is instructive to consider
the case N = 4, i.e., the potential energy ψ of just two dimers.

Each dimer consists of two particles separated by a dis-
tance η. We indicate with r the vector connecting the centers
of mass of the dimers and with ηα the vector connecting
the two particles forming dimer α = 1, 2. By expanding the
interparticle potential φ around r in a power series of ηα to
the second-order or quadrupole contributions, one finds for
the interaction potential between the dimers

ψ (r, η1, η2) = 2φ(η) + 4φ(r) + 1
4 (η1 + η2)T · H · (η1 + η2)

+ 1
4 (η1 − η2)T · H · (η1 − η2) + · · · . (9)

Here the first-order dipole term vanishes, the dots denote
terms higher than the quadrupole, and H is the Hessian matrix
of φ(|r|) evaluated in r.

Since φ is spherically symmetric, H is diagonalized by
choosing the axes in such a way that one of them is aligned
with r. We then obtain

ψ (r, η1, η2) = 2φ(η) + 4φ(r) + η2

2

[
φ′′(r)(cos2γ1+cos2γ2)

+ φ′(r)

r
(sin2γ1+sin2γ2)

]
+ · · · , (10)

where, for α = 1, 2, γα is the angle between r and ηα , and φ′
and φ′′ are the first and second derivative of φ, respectively.
Since φ(r) is monotonically decreasing, we have clearly
φ′(r)/r < 0. Moreover, with r � d , the spacing of the trian-
gular lattice given by Eq. (6), one has φ′′(r) > 0 for both the
HCGEM4 and the SCGL6; see Figs. 1 and 2. Under these
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conditions, ψ is minimum when γ1 = γ2 = 90◦, i.e., when the
dimers are both perpendicular to r. This effective interaction
would lead to a trivial nematic orientational ground state of a
hypothetical 1D chain of dimers, with all dimers aligned per-
pendicular to the chain line. However, in the triangular lattice
at hand frustration arises, so the problem of determining the
most stable configuration is nontrivial.

In the following, we will not rely on a truncated multipolar
expansion such as that of Eq. (10) or its extension including
higher-order terms, but will instead carry out the minimization
directly on the full interaction, since we saw no clear compu-
tational advantage in expanded forms.

III. DETERMINATION OF THE GROUND STATE

To investigate the T = 0 equilibrium configuration of the
model, we need to determine the most stable arrangement of
an assembly of interacting dimers. Since there is no kinetic
contribution to the energy, this amounts to finding the con-
figuration which minimizes the potential energy U at fixed
ρ. To this end, we adopt different minimization methods for
the HCGEM4 and SCGL6 potentials, as described in the
following.

A. The HCGEM4 potential

For the HCGEM4 potential, the hard-core repulsion has
no effect on cluster formation until the interparticle distance
is exactly equal to the hard-core diameter δ, at which point
further approach between the particles is strictly forbidden.
Therefore, the dimer size η must coincide with δ for all
dimers. Leaving out the possibility of helical or other incom-
mensurately ordered phases, we will henceforth assume that
the system consists of a periodic arrangement of such dimers.
This is obtained by translating a supercell of area v containing
n dimers along the vectors of a two-dimensional (2D) lat-
tice. The resulting lattice is endowed with a 2n-particle basis.
While n = 1 is sufficient to describe a simple nematic crystal,
one has to allow for a suitably large n in order to account for
the possibility of more complex forms of orientational order.
Denoting the position of a generic particle of the system by xi,
we have

xi = R + rασ , (11)

where the vector R identifies the position of the lattice site,
and rασ is the basis vector which identifies the position of the
particle inside the supercell according to

rασ = uα + σ
ηα

2
. (12)

Here uα and ηα , α = 1, . . . , n are the vectors which determine
respectively the position of the center of mass and the orienta-
tion of the αth dimer, and σ = ±1 is the index identifying the
two particles in a dimer. We denote by A the (nondegenerate)
2 × 2 matrix formed by the two primitive vectors of the 2D
lattice. In these terms, Eq. (12) can be rewritten as

rασ = A· sα + σ
η

2

(
cos ϑα

sin ϑα

)
, (13)

where sα = A−1uα is a point of the square [ 0, 1) ⊗ [ 0, 1) and
ϑα is the angle between ηα and the x-axis, with 0 � ϑα < π .

By arranging the particles into dimers of length δ the effect
of the hard-core interaction between particles belonging to the
same dimer is taken into account from the outset. This is not
true in general when the particles belong to different dimers.
However, as observed in Sec. II A, δ is much smaller than
the lattice constant d intrinsic to the GEM4 potential. When
searching for the optimal configuration, the instances in which
the hard-core interaction between particles belonging to dif-
ferent dimers would come into play can then be safely ruled
out, as can be also verified a posteriori. As a consequence, in
the calculation of the dimer-dimer contribution to U one can
consider only the soft-core part of the interaction wGEM4(r).
The total potential energy is given by Eq. (8), where the
interparticle potential φ can be replaced by w ≡ wGEM4.

We introduce the microscopic density function ρ̂(x) de-
fined by

ρ̂(x) =
∑

R,α,σ

δ(2)(x − R − rασ ), (14)

where δ(2)(x) is the Dirac delta distribution in two dimensions.
For a system consisting of N particles, the potential energy U
can be expressed in terms of ρ̂ as

U = 1

2

∫
d2x d2x′ ρ̂(x)ρ̂(x′)w(|x − x′|) − 1

2
Nw(0). (15)

By taking the periodicity of ρ̂(x) into account, the integral
over x and x′ is conveniently expressed in Fourier space. This
gives an energy per particle

E ≡ U

N
= 1

4nv

∑
G

w̃(G)
∣∣∣∑

α,σ

e−iG·rασ

∣∣∣2
− 1

2
w(0), (16)

where w̃(G) is the 2D Fourier transform of w(r), G is the
modulus of the reciprocal vector G, and the G sum runs over
the reciprocal lattice G = B·m, m being a vector with integer
components, and B the 2 × 2 matrix related to the matrix A
of the direct lattice by B = 2π (AT)−1. The scalar product G ·
rασ in Eq. (16) can then be expressed as

G · rασ = 2π m · sα + σ
η

2
m · BT ·

(
cos ϑα

sin ϑα

)
. (17)

Without loss of generality, one of the primitive vectors of
the reciprocal lattice can be aligned along the y-axis, thereby
implying that one of the primitive vectors of the direct lattice
is aligned along the x-axis. Moreover, there is a constraint on
B due to the fact that the cell area v = 4π2/ det B is also fixed
by the relation v = 2n/ρ. Hence, for a given average density
ρ, we are left with just two independent elements of B, say b1

and b2:

B =
(

b1 0

b2
p

b1

)
, (18)

where we have set p = 4π2/v.
In the most general situation (see Sec. V), we minimize

the energy per particle (16) with respect to the n vectors sα ,
the n angles ϑα , and the matrix elements b1, b2, i.e., with
respect to the positions of the dimer centers inside the cell,
the dimer orientations, and the cell axes. We carry out the
minimization by an iterative algorithm similar to that adopted
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in Refs. [31,35] for the mean-field free-energy functional in
order to describe the mesophases of fluids [31] and fluid
mixtures [35]. The method is a refinement of the basic steepest
descent [36], whereby each variable is updated recursively
by moving “downhill” in the direction opposite to that of the
gradient of the function E to be minimized according to

ϑ l+1
α = ϑ l

α − λ
∂E

∂θα

∣∣∣∣
l

(19)

and the corresponding expressions for sα , b1, b2, until con-
vergence is obtained to a prescribed accuracy. In the above
equation, the index l refers to the iteration stage, and the
parameter λ gives the size of the downhill step. Compared to
the basic version of Eq. (19), the modifications introduced to
increase the convergence speed consist in determining the di-
rection of descent by conjugate gradients with preconditioning
rather than by the gradient alone, and in changing the stepsize
λ adaptively at each iteration instead of keeping it fixed. The
details of the method are provided in Appendix.

As an example of starting condition for the minimization,
we initialize the supercell as a rhombus with sides �e1 and
�e2, where � is a positive integer and e1, e2 are the primitive
vectors of the triangular lattice given by

e1 = d ex, (20)

e2 = d

2
ex +

√
3

2
d ey, (21)

where ex and ey are the coordinate unit vectors. The lattice
spacing

d = 2

(
√

3ρ)
1/2 (22)

is determined by setting nc =2 in Eq. (5). Clearly, if ρ coin-
cides exactly with the optimal value for dimer formation given
by Eq. (7) for nc = 2, then the lattice spacing coincides with
that of Eq. (6). However, as discussed in Sec. II A, a dimer
crystal is expected in a whole range of densities close to that
value. Since the supercell thus obtained contains �2 primitive
cells, each of which contains one dimer, we have n = �2

dimers per supercell. We initialize the n positions sα either by
putting the dimers at random positions inside the cell, or by
arranging them regularly on the sites of the lattice generated
by e1 and e2. In the former case, the components sα1, sα2 of sα

are random numbers in the interval [0,1), whereas in the latter
case they are given by

sα1 = j1 − 1

�
, sα2 = j2 − 1

�
, j1, j2 = 1, . . . , �, (23)

with the index α = j1 + ( j2 − 1)�. For the initial orientation
of the dimers specified by the angles ϑα , we tested both
random values, or some nematic state corresponding to the
same value of ϑα for all dimers, or by having ϑα increase by
a fixed amount when moving from one dimer to the adjacent
one. We performed minimizations on cells containing up to
n = 102 dimers, sufficient to allow us to detect rather complex
forms of orientational order, if present.

B. The SCGL6 potential

Unlike the HCGEM4, for the SCGL6 potential the smooth-
core character of the repulsion at short range implies that the
dimer size η is not determined from the beginning. Although
we expect that its equilibrium value will be near the inflection
point of φSCGL6 corresponding to the minimum of the repul-
sive force, η should nevertheless be considered as a degree of
freedom of the system which, in principle, is different for each
dimer. It would again be possible to split the interaction into
a regular and a singular contribution, but it is not possible to
take the latter into account a priori by just putting the dimer
particles at some fixed distance η from each other: Hence,
the minimization must involve the interaction φSCGL6 as a
whole, including its singular part whose Fourier transform is
not defined.

This makes the procedure described in Sec. III A unsuited
for the SCGL6 potential. In principle, the singularity could
be removed by introducing some small cutoff distance rc �R,
such that the value of φSCGL6 at rc is much larger than that
at the inflection point, and setting the potential identically
equal to φSCGL6(rc) for r < rc. However, in the interaction
this would introduce a further characteristic length rc besides
the natural length scale R, resulting in a painfully slowly
decaying tail of its Fourier transform. The latter should be
sampled at intervals much smaller than ∼2π/R, and over a
domain much larger than ∼2π/rc. Such a daunting scenario
is largely sufficient to make this strategy unviable, because
of the exceedingly large number of reciprocal lattice vectors
which should be included in the G-summation of Eq. (16).

Accordingly, we perform the minimization of the potential
energy per particle E in real space, using the same refined
steepest-descent algorithm adopted for the HCGEM4 interac-
tion. Moreover, since the dimer size is not known from the
beginning, we do not start from dimerized configurations, and
we minimize E with respect to the positions of all the 2n
particles inside the supercell.

We replace Eq. (11) by xi = R + rα , with R = A · m and
rα = A · sα , m being a vector with integer components and
sα ∈ [ 0, 1) ⊗ [ 0, 1) as in Sec. III A. Here the vector rα , α =
1, . . . , 2n, identifies the position of the particle itself inside
the supercell instead of the center of mass of the dimer, and
the matrix A is the same of Eq. (13). The energy per particle
is then

E = 1

4n

∑
α 	=α′

φ(rα−rα′ ) + 1

4n

∑
R 	=0

∑
α,α′

φ(R+rα−rα′ ), (24)

where we have separated the contribution of particles in the
same cell from those in neighboring ones.

We write matrix A as

A =
(

a1 a2

0 v/a1

)
, (25)

where the constraint v = 2n/ρ on the supercell area v leaves
only two independent elements as in Eq. (18). The steepest-
descent algorithm is then performed on Eq. (24) by iteratively
updating sα , a1, a2 until convergence is reached.

For the SCGL6 potential, we refer to the results of
Ref. [20]. In fact, that paper was mainly concerned with
the out-of-equilibrium dynamics of the SCGL6 model un-
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der external forces, but some investigation of its low-energy
properties was nevertheless carried out. To make contact with
those results, we adopt the same conditions considered there.
Specifically, the density is fixed at the value ρ2 = 1.02640 R−2

obtained from Eq. (5) for a triangular lattice such that the size
of its primitive cell v0 = √

3 d2/2 is determined by setting the
lattice constant d exactly at d = 1.5 R, close to d = 1.50516 R
as per Eq. (6) (which would yield the similar value ρ ′

2 =
1.01937 R−2).

For a given accuracy, the power-law decay of the SCGL6
potential requires a larger cutoff distance than for the ex-
ponentially decaying HCGEM4. Following Ref. [20] we
truncate the potential at the distance rc = 5R, applying the
standard linear shift that makes the truncated potential con-
tinuous and differentiable at rc. The R-summation in Eq. (24)
includes sufficiently many supercell translations to reach rc in
all directions.

We carry out the minimizations for up to 2n = 10 particles
per supercell. By randomly initializing the particle positions
inside the box, we cannot rule out the occasional occurrence
of configurations which do not correspond to a pure-dimer
phase but feature, for instance, also monomers and trimers.
Such configurations are systematically higher in energy than
the fully dimerized ones and are therefore disregarded.

IV. SIMULATIONS

In order to complement the minimization techniques de-
scribed above, and to extract some physical insights into the
low-temperature behavior of the HCGEM4 model, we resort
to stochastic simulation methods. On one hand, this method
allows us to further characterize the overall ground state of
the HCGEM4 potential, and, on the other hand, it provides
finite-temperature properties, which remain outside the scope
of the gradient minimization technique. In particular, we ex-
ploit the parallel tempering (PT) approach [37] to locate the
optimal dimer configuration at extremely low temperature.
We then give the latter as input to a code that performs a
Metropolis [38] Monte Carlo (MC) simulation in the canoni-
cal ensemble. These codes are available on GitHub [39] with
the related documentation. The PT procedure concurrently
runs many MC simulations at different fixed temperatures
Ti, with periodic attempts to exchange configurations across
simulations at adjacent temperatures. Specifically, following
the work by Kofke [40], we run nPT concurrent simulations,
with temperatures set as

Ti =
(

Tmax

Tmin

)1/nPT

Ti−1. (26)

For studying the low-temperature physics of this model, we
take Tmax = 2 × 10−5 ε/kB and Tmin = 1 × 10−9 ε/kB for the
maximum and minimum temperatures explored, and nPT =
272. In this way, the simulation with the lowest temperature
investigated should reach the minimum-energy equilibrium
configuration in a long but finite number of steps.

To better characterize the stability of the obtained ground-
state configuration, we run a subsequent MC simulation
at temperature T = 100 × Tmin = 10−7ε/kB. This value is a
trade-off between the target of the vanishing temperature limit
and the need for a significant acceptance of the MC moves.

The MC and PT codes are inherently parallel and
naturally leverage a simple MPI-parallelized approach on
high-performance multiprocessor computer systems. In both
approaches, we employ single-particle moves with respec-
tive amplitudes tuned to obtain satisfactory acceptance ratios
and cluster moves (rotations, rigid translations, and modifi-
cations of intracluster particle distances) as well. The results
presented in the following are obtained by placing the core-
softened particles in a rectangular box which contains M × M
dimer units, corresponding to N = 2M2 particles, initially
located in pairs at the sites of a triangular lattice. The aspect
ratio of the two box sides is chosen in order to accommodate
the triangular lattice or is allowed to vary, keeping the density
fixed, to allow the lattice structure to distort. Further details
about the simulation setup and the original codes with input
files are provided as an online GitHub repository [39].

In the simulations, we replace the hard core of the
HCGEM4 potential with a finite-amplitude step by defining
the interaction as ε exp[−(r/R)4] + K for r < δ, with K = 5ε,
with the advantage of allowing us to Fourier-transform this
regularized HCGEM4 potential. At the investigated temper-
atures this regularization does not affect the behavior of the
system, since the statistical weight of the configurations with
mutually overlapping particles can safely be taken as zero.

We execute all simulations at the density ρ2 =
1.13971 R−2 obtained from Eq. (7) with nc = 2 and
km = 5.09679 R−1. The latter was obtained by including
the step function in the evaluation of the Fourier transform
of the interaction, whereas the value km = 5.09618 R−1 of
the “pure” GEM4 potential reported in Sec. II A would give
ρ ′

2 = 1.13944 R−2. Clearly, ρ2 and ρ ′
2 are very close, and,

according to the discussion of Sec. II A, there is no reason to
discard either of them, as they both lie in the density interval
where dimers prevail in the ground state. Since ρ2 is the value
used in the simulations, gradient minimizations are carried
out at this same density for direct comparison.

V. RESULTS

A. The HCGEM4 model

As a preliminary investigation, we perform both MC simu-
lations and gradient minimizations by arranging the centers of
mass of the dimers at fixed positions, given by the sites of the
triangular lattice with spacing d = 1.42348 R obtained from
substituting the appropriate value of km in Eq. (6), or equiva-
lently of ρ2 in Eq. (22). Hence, only the orientational degrees
of freedom ϑα are taken into account. In the minimization,
the supercell parameters bi are then kept fixed at the values
b1 = 2π/d , b2 = −2π/(

√
3d ), and the positional parameters

sα are kept fixed at their initial values, Eq. (23).
At the end of the minimization, the configurations thus

obtained consist of alternating rows of parallel dimers in a
herringbone-like arrangement, such that the dimer orientation
is the same every other row, whereas dimers belonging to
adjacent rows have different orientations. Specifically, if along
a certain row the dimers are oriented at an angle γ with respect
to the row direction, the angle will be −γ for the adjacent
rows. We are then in the presence of antinematic order.
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FIG. 3. The six degenerate antinematic states of lowest energy
at T = 0 for a dimer crystal on a triangular lattice (black dots).
The interaction is HCGEM4, and the density is ρ = 1.13971 R−2.
The dimer length is magnified by a factor 10 relative to the actual
value δ = 0.05 R for ease of readability. The angles ϑ1, ϑ2 between
the directions of the dimers and the horizontal axis are specified in
each panel.

There are six symmetry-equivalent degenerate antinematic
states, as displayed in Fig. 3. In panels (a) and (b), the rows
of parallel dimers are aligned along the x-axis, i.e., with the
primitive vector e1; see Eq. (20). The equivalent minima of
panels (c) and (e) could be obtained from that of panel (a)
by a rigid rotation of 60◦ and −60◦, respectively, so that the
rows of parallel dimers are directed along e2 in panel (c) and
along e2 − e1 in panel (e). The same considerations apply for
the states of panels (d) and (f) starting from that of panel (b).
Moreover, panels (b), (d), and (f) can be obtained from panels
(a), (c), and (e) by swapping neighboring rows of parallel
dimers.

MC simulations can determine the dimer orientations
with an accuracy of ∼1◦. Within this accuracy, the angle
γ between a row of parallel dimers and the dimer direc-
tion is indistinguishable from γ = ±45◦. This would imply
that dimers belonging to adjacent rows are perpendicular
to each other, and form with the x-axis the angles ϑ1, ϑ2

given by (45◦,−45◦), (−45◦, 45◦), (−75◦, 15◦), (15◦,−75◦),
(−15◦, 75◦), (75◦,−15◦) for the configurations displayed in
Figs. 3(a)–3(f). The gradient minimization of the potential
energy brings out tiny differences from the above values.
Specifically, we find γ = ±44.984◦, so that dimers in adja-
cent rows are not strictly perpendicular, but form an angle
2γ = 89.968◦. Similarly, the angles ϑ1, ϑ2 between the dimer
orientations and the x-axis do not coincide exactly with those
listed above, but assume the values reported in each panel of

Fig. 3. The difference between the potential energy of the
configurations featuring perfectly perpendicular dimers and
those obtained by the gradient minimization amounts to a tiny
�E = 1.65×10−12 ε. We believe these tiny deviations to be
genuine, since the same values of ϑ1, ϑ2 were obtained from
different initial configurations in multiple minimization runs.
Moreover, we verified that the deviations from 45◦ increase
on increasing the dimer length δ. This leads us to surmise
that configurations corresponding to rigorously perpendicular
dimers would be obtained only in a hypothetical limit δ → 0
of purely quadrupolar dimer-dimer interactions.

The potential energy per particle at T = 0 predicted by
the gradient minimization agrees with that obtained from the
numerical simulations at Tmin = 1 × 10−9 ε/kB within seven
significant digits and amounts to E = 0.60195430 ε. Observe
that approximately 83% of the energy is accounted for by the
trivial intracluster contribution Eintra due to the interaction be-
tween particles within the same dimer, Eintra = wGEM4(δ)/2 �
0.5 ε. Moreover, its value is close to that obtained by arranging
on the same triangular lattice an assembly of pointlike dimers
interacting solely via the soft-core potential wGEM4 in the
absence of hard-core repulsion, Esoft = 0.59884959 ε. Hence,
in purely quantitative terms the effect of the finite dimer size
and of orientational order on the overall energy balance is
comparatively modest.

Despite the good agreement between gradient mini-
mizations and MC simulations in the description of the
perfect-lattice antinematic phase, simulations also provide
strong evidence that this phase does not represent the actual
ground state of the system. Indeed, releasing the positions of
the dimers leads to a lowering of E and to different particle
arrangements, whereby dimers are placed at positions slightly
deviating from those of a triangular lattice.

Figure 4 shows two examples of such arrangements:
Figs. 4(a) and 4(b) represent snapshots of the relaxed con-
figuration of two MC simulations with N = 968 and 1800
particles in the supercell, respectively. Evidently, these con-
figurations do not exhibit antinematic order but rather large
domains of mostly local nematic character with four vortex-
like topological defects (marked by red and blue crosses)
located at the boundary between different domains. Defects
carry a topological charge or winding number W ,

W = 1

2π

∑
i(γ )

(θi+1 − θi ) → 1

2π

∮
γ

dθ, (27)

where γ stands for any closed path surrounding one vortex,
the angles θi are the angles of the dimers along the path,
and these angles can be promoted to a smooth function θ

in the continuum limit. For the configurations in hand, we
consistently find W = ±1/2.

As the simulation box grows larger, the distance between
defects increases, thus enlarging the size of the partially or-
dered nematiclike regions, with no sign of approaching any
asymptotic limit—at least up to the largest systems accessible
to MC simulations. Meanwhile, for increasing box size the
energy per particle keeps decreasing steadily. This suggests
that, rather than being a feature intrinsic of the ground state,
defects are extrinsic effects due to finite size: they are bound
to become infinitely dilute in the thermodynamic limit.
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FIG. 4. Examples of sampled MC configurations, for the relaxed
states of dimers (represented as small green dashes) of particles
interacting via a HCGEM4 potential at T = 10−7 ε/kB. In these
simulations, the rectangular box aspect ratio is kept fixed to the value
compatible with the triangular lattice. (a) A configuration of 968
particles. (b) A configuration of 1800 particles. Red and blue crosses
mark the positions of the topological defects with charge W = ±1/2
induced by the periodic boundary conditions incompatible with the
actual nematic ground state.

Prompted by the evidence above, we proceed to execute
gradient minimizations of the potential energy by releasing
the constraint on the unit cell and the dimer positions, ac-
cording to the procedure described in Sec. III. As above, the
direction of the x-axis is identified by the lattice vector e1.

We find that the lattice undergoes a small distortion
from the triangular lattice: specifically, the angle between
the vectors e1, e2 of the primitive cell decreases from 60◦
to α0 = 59.835◦, and their length increases to |e1| = |e2| =
d ′ = d (2 sin α0/

√
3)−1/2 = 1.42467 R from the spacing d =

1.42348 R of the triangular lattice with equal density. With this
angular distortion, e1 and e2 generate a centered rectangular
lattice. The triangle formed by e1, e2, and e1 − e2 has then
two sides of length d ′ and one side of length |e1 − e2| = d ′′ =
d [

√
3 tan(α0/2)]1/2 = 1.42111R. A minimal hexagon formed

by the six sites surrounding any given lattice site has four sides
of length d ′ and two sides of length d ′′.

This small structural distortion has, however, a dramatic
effect on the dimer arrangement, which changes from an-
tinematic to nematic. The dimer direction forms an angle
ϑ = α0/2 = 29.917◦ with the x-axis, so that it lies midway
between e1 and e2, as illustrated in Fig. 5(a).

As illustrated in Figs. 5(b) and 5(c), symmetry generates
two equivalent degenerate nematic configurations, which are

0

5

y
/R

(a) α=59.835°, ϑ=29.917°
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(b) α=60.083°, ϑ=-29.917°

0 5 10
x/R

0

5

y
/R
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FIG. 5. Three orientations of the nematic ground state for a dimer
crystal at ρ = 1.13971 R−2. The dimer size is magnified by a factor
10 as in Fig. 3. In each panel, α is the angle between the primitive
vectors e1, e2, and ϑ is the angle between the direction of the dimers
and the horizontal axis. The insets give a qualitative representation of
the lattice vectors (not to scale). The arrows represent the primitive
vectors e1 and e2. The ticks mark the sides of equal length of the
isosceles triangles. The dashed symmetry axis marks the direction of
the nematic alignment.

obtained from that just described by rotating the lattice ei-
ther clockwise by α0 or counterclockwise by 90◦−α0/2 =
60.083◦. The one represented in Fig. 5(b) has |e1| = d ′, |e2| =
d ′′. The angle between e1 and e2 is 90◦ − α0/2, and the ne-
matic angle ϑ is −α0/2. The configuration of Fig. 5(c) has
|e1| = d ′′, |e2| = d ′. The angle between the two lattice vectors
is again 90◦ − α0/2, and the nematic angle is ϑ = 90◦.

We remark that, unlike what would happen for the trian-
gular lattice, the distorted lattice is not mapped into itself by
the above rotations. Hence, these degenerate configurations
differ from one another not only in the direction of the nematic
axis, but also in the positions of the lattice points, although
the deformation relative to the triangular lattice is too small
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FIG. 6. Two examples of metastable configurations represent-
ing local minima of the total energy U of a dimer crystal at ρ =
1.13971 R−2. In both cases, the dimer length is magnified by a factor
10 as in Fig. 3, and the unit cell is replicated several times in
order to illustrate the periodicity. The energy per particle amounts
to (a) E = 0.68577624 ε and (b) E = 0.75980667 ε, both well above
the nematic ground state.

to make this feature detectable on the scale of the figure.
A schematic representation of the primitive vectors of each
lattice is displayed as an inset in each panel.

The potential energy per particle of this nematic state
amounts to E = 0.60194784 ε. E is of course lower (by ap-
proximately 6.5 × 10−6 ε) than that of the antinematic state
described above. Once the supercell vectors are left free to
adjust, releasing also the constraint on the dimer positions
inside the cell does not yield any substantial change in the
lowest-energy configuration, compared to those obtained by
nailing the dimer centers of mass to the centered-rectangular
lattice sites according to Eq. (23). Specifically, the periodic
nematic state of Fig. 5 can be rigorously mapped into each
one of the unconstrained minima by combining a translation
and a rotation.

Other, more complex dimer arrangements do occur, such
as those displayed in Fig. 6. However, their energies are
systematically higher than that of the nematic configuration
characterized above, which then represents the bona fide
ground state of the system.

The energy of the nematic configuration of Fig. 5 is also
lower than that of the four-vortex configurations of the type
of Fig. 4 which, for the largest simulated size, lies at E =
0.60194795(5) ε. Figure 7 reports a comparison between the

FIG. 7. Simulated potential energy per particle E in ε units
(black dots) at T = 10−9 ε/kB as a function of the number of particles
N , in the presence of four vortices generated by the rectangular box
aspect ratio kept fixed to the value compatible with the triangular
lattice, as in Fig. 4. Error bars are smaller than the symbol size.
The energy of the nematic ground state (Fig. 5) obtained by gradient
minimization is shown as a blue dashed line.

optimum energy per particle obtained from gradient mini-
mization and the values obtained from MC simulations at T =
10−7 ε/kB as a function of the particle numbers N (equivalent
to the supercell size). Up to the largest simulated supercell
(N = 4232 particles, requiring a considerable computational
effort), it is evident that the energy per particle extracted from
MC simulations is still decreasing upon increasing N . The
apparent asymptotic trend of the black dots suggests that the
nematic energy found by the minimization method could be
reached in simulations only by releasing a constraint imposed
by the periodic boundary conditions in a fixed supercell. To
verify this hypothesis, we run an additional set of PT simu-
lations featuring the possibility to adjust the aspect ratio of
the box. Once the fixed-supercell constraint is released, PT
simulations reach one of the three nematic ground states of
Fig. 5, with the same potential energy per particle found via
gradient minimization, within statistical error.

Aiming to characterize the thermal stability and equilib-
rium properties of the nematic state, we pick the final PT
configuration at T = 10−9 ε/kB and adopt it as starting con-
figuration for the MC code at several temperatures. The MC
simulations carried out at T = 10−7ε/kB yield a potential
energy per particle equal to 0.6019478181(1) ε, which again
agrees with the ground-state energy obtained by means of gra-
dient minimization within seven significant digits. Moreover,
topological defects such as those displayed in Fig. 4 no longer
occur, and visual inspection of the simulation snapshots at
equilibrium is now fully consistent with the nematic ground
state.

As a further characterization of nematic ordering, consider
the structure factor

S(q) = 1

N

〈∑
j,l

eiq·(x j−xl )

〉
, (28)
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FIG. 8. S(qx, 0) (blue circles) and S(0, qy ) (gray diamonds), ob-
tained by T = 10−7ε/kB MC simulations for N = 800 particles in
the nematic state sketched in Fig. 5(c). Red line: N × f (qy ), Eq. (32)
(T = 0 theoretical prediction).

where angular brackets denote thermal average. Analogously,
we define

SCM(q) = 1

n

〈∑
α,α′

eiq·(uα−uα′ )

〉
(29)

for the dimer centers of mass.
For the nematic ground state, when only the lowest-energy

configuration is relevant, the structure factor is straightfor-
wardly obtained as

S(q) = S0(q) f (q), (30)

where we have set

S0(q) = 2SCM(q)|T =0 = 4

N

[ ∑
R

cos(q·R)

]2

(31)

and

f (q) = cos2
(q·η

2

)
. (32)

In the above expressions, S0(q) represents the structure factor
of N particles, arranged as a crystal of pointlike dimers at
the N/2 lattice sites R. The information on the actual size
and orientation of the dimers is instead conveyed by f (q)
via the vector η connecting the particles within the dimer. Its
direction is determined by the nematic orientation angle ϑ .
For the HCGEM4 model at hand, its size η coincides with
the hard-core diameter δ. This length δ is much smaller than
the lattice spacings so that the oscillation period of f (q) in
q space is much longer than that of S0(q). Hence, generally
speaking, the effect of f (q) is to introduce a slowly varying
amplitude modulation on the top of S0(q).

In the following we focus on the nematic state of Fig. 5(c),
with η aligned in the y direction: here f (q) is a slow function
of the qy component only.

Figure 8 reports the structure factor evaluated along the
qx and qy symmetry axes of the rectangular centered ar-
rangement of Fig. 5(c) by means of MC simulations carried

FIG. 9. Scaling of the first Bragg peak intensity S1 as a function
of N , where the data points are taken from simulations of S(qx, 0)
carried out in supercells compatible with the centered-rectangular
lattice, and α0 = 59.835◦ at temperatures T = 10−7 ε/kB (blue cir-
cles) and T = 10−3 ε/kB (red squares). The dashed lines are linear
fits of the simulated data. Green diamonds signify twice the intensity
of the corresponding Bragg peak SCM(8.8426 R−1, 0) in the structure
factor of the dimer centers of mass at T = 10−3 ε/kB, which is only
sensitive to phonon excitations, not to thermal fluctuations in the
dimers orientation.

out at the extremely small T = 10−7 ε/kB in a supercell
with M = 20 (800 particles). The zero-temperature S(q) of
Eqs. (30) and (31) yields Bragg peaks at integer multiples
of 4π/d ′′ = 8.8426 R−1 along qx and at integer multiples of
2π/[d ′ cos(α0/2)] = 5.0883 R−1 along qy, in excellent agree-
ment with simulation results. Along qx, perpendicularly to the
nematic direction, the f (q) of Eq. (32) is identically equal to
unity, and indeed the peaks exhibit constant height N , whereas
along qy the modulation due to f (q) intervenes. The agree-
ment of the peak heights with N × f (q) is also remarkable.
This agreement suggests that the long-range order of the exact
ground state extends to small nonzero temperature. However,
the reader is warned that this long-range order may be an
artifact of the finite simulation size, as discussed in Sec. VI.

Even in a crystalline state characterized by long-range or-
der, thermal fluctuations affect the scaling of the Bragg peak
heights with size. For example, Fig. 9 reports the strength S1

of the first Bragg peak of S(q), located at q = (8.8426 R−1, 0)
for the temperatures T = 10−7 and 10−3 ε/kB as a function
of the number of particles N . At both temperatures, S1 scales
linearly with N , as expected for finite-size crystals. However,
for T � 10−3ε/kB, the values of S1 are visibly smaller than
the corresponding values at T � 0, suggesting a significant
disorder. To distinguish between the disordering of the dimer
orientation and that of the phonon displacements of the dimer
centers of mass, Fig. 9 reports also the corresponding peak
intensity in SCM(q) [Eq. (29)] as a function of the simulations
size. The intermediate value indicates that at this temperature
both phonon displacements and dimer orientation disorder
contribute to the peak attenuation.

Above the ground state, for increasing temperature, a naive
inspection of the energy scales in this model allows us to
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FIG. 10. The temperature dependence of the average energy per
particle E , obtained by means of MC simulations in a supercell con-
taining N = 800 particles. For T > T× � 2.25 × 10−5ε/kB (marked
by a red arrow), the energy corresponding to the triangular lat-
tice (blue circles) turns lower than that of the centered-rectangular
nematic state (orange squares), which prevails instead at low temper-
ature. Error bars are smaller than the symbol size. The black dashed
line marks the energy of the nematic ground state.

foresee (1) a nematic centered-rectangular state, followed by
(2) a triangular dimer crystal with randomly fluctuating dimer
orientations, which eventually melts into (3) a fluid state with
no crystalline correlations.

To explore the thermal disordering of the nematic state,
Fig. 10 shows the average energy per particle as a function
of temperature up to T � 2.25 × 10−5 ε/kB (marked by the
red arrow in the picture), comparing MC simulations car-
ried out with periodic boundaries compatible either with the
triangular lattice, or with the centered rectangular lattice ob-
tained from the T = 0 minimizations. It is apparent that at
low temperature the nematic centered rectangular geometry
is more stable, while, starting from approximately T = T× �
2.25 × 10−5 ε/kB the orientationally disordered triangular ge-
ometry prevails. Note that T× likely overestimates the actual
temperature above which the nematic order is destabilized
because the fixed cell geometry of the MC simulations does
not allow for the actual self-consistent T -dependent lattice
readjustment as the nematic order softens up.

This softening should also appear in the correlations be-
tween the orientations of the dimers, a feature to which S(q)
is not especially sensitive. To better characterize the thermal
melting of the dimer-dimer correlations we evaluate the orien-
tational correlation function

〈σασα′ 〉 = 〈cos[2(θα − θα′ )]〉, (33)

following Ref. [41]. In the evaluation of this correlation func-
tion, we focus on the two crystalline directions, namely, along
the x axis, indicated by 〈σασα′ 〉x, and along the “oblique” e2

lattice direction, indicated by 〈σασα′ 〉o. We report distances in
units of lattice spacings |e1| = d ′′ and |e2| = d ′, respectively.

We explore the temperature range between T = 10−7 ε/kB

and T = 10−3 ε/kB where the nematic ordering of the dimers
gives way to a orientationally disordered state. Figure 11

FIG. 11. The dimer-dimer angular correlation function 〈σασα′ 〉x ,
as obtained in simulations carried out at temperatures T =
10−7, 10−5, 10−3 ε/kB. The correlation function is expressed as a
function of the dimer-dimer x separation |α − α′| expressed in units
of the lattice spacing d ′′. Error bars are smaller than the symbol size.
Inset: zoom on the T = 10−3 ε/kB data points.

reports the simulation results for 〈σασα′ 〉x. Results for 〈σασα′ 〉o

are statistically compatible. At very low temperature (T =
10−7 ε/kB), 〈σασα′ 〉x and 〈σασα′ 〉o exhibit long-range correla-
tions marked by their finite value even for the largest distances
achievable, namely, half the simulation box side.

On increasing the temperature, as exemplified, e.g., by the
T = 10−5 ε/kB data in Fig. 11, the system partially maintains
a degree of ordering of the dimers, marked by the finite (al-
beit lower) value of 〈σασα′ 〉 at large distance. This condition
represents a crystalline state with a long-range nematic order
reduced but not destroyed by fluctuations. At even higher tem-
peratures (exemplified by T = 10−3 ε/kB in Fig. 11), 〈σασα′ 〉x

is characterized instead by a rapid short-range decay of the
correlations, corresponding to randomly disordered dimers.
As evidenced in the inset of Fig. 11, at the highest reported
temperature, 〈σασα′ 〉x does not precisely vanish at large dis-
tance, but shows values in the order of 0.001. Note, however,
that the simulations at all temperature are carried out in the su-
percell compatible with the centered rectangular lattice, which
favors the dimer alignment along y, and consequent positive
〈σασα′ 〉x correlations.

Even with their limited size, the simulations results help us
to place an upper bound T× to the temperature where dimer
long-range orientational order is lost, and we can safely state
that this bound is much lower than the transition temperature
for the formation of a cluster solid. The latter can be estimated
from the locus of divergence of the fluid structure factor in a
mean-field approximation [22]—the so-called λ-line. For the
regularized (K = 5) HCGEM4 potential at the density ρ2 =
1.13971 R−2 considered here, this gives Tλ � 0.13 ε/kB, in
semi-quantitative agreement with some additional simulations
that we performed to this purpose, which locate the fluid-solid
transition at T � 0.11 ε/kB. Hence, nematic ordering occurs
at a temperature several orders of magnitude lower than that
at which the dimer crystal forms.
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B. The SCGL6 model

We identify the ground state of the SCGL6 interaction via
gradient minimization of the potential energy per particle E
along the lines sketched in Sec. III B. The initial nondimer-
ized configurations with particles located at random positions
inside the supercell evolve spontaneously to a dimerized state.
For all initial starting points the lowest-energy configuration
consists of just dimers, with neither isolated particles, nor
clusters with Nc > 2. While this is far from surprising given
that the value of ρ was chosen so as to favor dimer formation,
it is nevertheless reassuring that such a behavior is recov-
ered without enforcing it a priori. The dimers arrange into
a nematic state with the same qualitative features as those
of the ground state of the HCGEM4 potential described in
Sec. V A and represented in Fig. 5: the centers of mass of the
dimers are located at the sites of a centered rectangular lattice,
resulting in the same kind of distortion as that discussed in
Sec. III B for the SCGL6 potential. The equilateral triangles
deform into isosceles ones with with two long sides of length
d ′ > d forming an angle α0, and a short side of length d ′′ < d
orthogonal to the nematic axis. Even though each dimer is free
to adopt its own optimal size, at equilibrium all dimers sizes η

turn out identical.
Although the qualitative properties of the ground state

are the same as those sketched in Fig. 5 for the HCGEM4
model, the structural parameters of the SCGL6 differ signif-
icantly. Specifically, the SCGL6 model has d ′ = 1.54072 R,
d ′′ = 1.42690 R, α0 = 55.170◦, 90◦ − α0 = 62.415◦, η =
0.31754 R. Clearly, compared to the HCGEM4 model, the
SCGL6 model exhibits much bigger dimers, thus determin-
ing a more sizable coupling between the orientation and the
lattice, which induces a larger amount of distortion relative to
the triangular lattice.

The energy per particle of the nematic state just described
amounts to E = 1.10824438 ε. This state can be compared
to the configuration reported in Fig. 5(a) of Ref. [20], which
displays a portion of a state similar to that of Fig. 4, char-
acterized by vortices induced by fixed boundary conditions
incompatible with the centered-rectangular lattice that the
model seeks to reach. The internal energy per particle of that
state was E = 1.108486 ε, slightly higher than the energy
obtained here for the perfect nematic state: The difference
is due to the energy cost (Fig. 7) of the same kind of vortex
structure illustrated for the HCGEM4 model in Fig. 4.

VI. DISCUSSION AND CONCLUSION

In this paper we characterize the ground state of two
similar 2D models for particles repelling each other through
core-softened two-body potential-energy profiles. We focus
on their dimerized phase, where the effective dimer-dimer
repulsion favors a triangular lattice. The residual orientation-
dependent dimer-dimer interactions favor an alignment of
dimer pairs perpendicular to their joining direction. In the
triangular lattice, this optimal alignment cannot be real-
ized at all bonds. A nematic ground state resolves the
frustration by coupling the dimer orientation to a crystalline-
lattice anisotropy: The triangular lattice slightly deforms to a
centered-rectangular lattice, characterized by a small shrink-

age of the lattice spacing in the direction perpendicular to
the nematic order. The resulting rows of more-closely spaced
dimers fulfill the intra-row interaction perfectly; at the same
time, the extra spacing between dimers of adjacent rows re-
duces the energy cost of the suboptimal interrow mutual align-
ment; see Fig. 5. Our findings agree qualitatively with those
obtained in Refs. [14,15] for the ground state of the 2D square-
shoulder fluid, where it was also pointed out that longer
cluster size implies an higher degree of distortion of the lattice
compared to the triangular case, again in agreement with our
comparison between the HCGEM4 and SCGL6 potentials.

At finite temperature, this long-range ordered 2D ground
state is challenged by thermal fluctuations. In the infinite-
size limit, following Mermin’s theorem [42], at any nonzero
temperature one should expect no crystalline order. There-
fore, strictly speaking, the long-range crystalline and nematic
ground state cannot survive finite T , where the 2D system
finds itself in a uniform (albeit strongly correlated) thermody-
namic state. However, as the practical existence and stability
of finite-temperature 2D crystals such as graphene suggests,
the thermodynamic limit may not be appropriate to describe
finite macroscopic systems [43]. In a macroscopically large
but finite sample, the boundary conditions are most likely
sufficient to stabilize an ordered crystalline phase, where the
question about the effect of the thermal fluctuations on the
dimer-dimer correlation functions is interesting.

According to our simulations, at low temperature T < T×,
these models at large but finite size should exhibit the same
nematic long-range order that characterizes their ground state.
The nematic vector is expected to be reduced by thermal
fluctuations, and likewise the crystalline anisotropy is also
expected to decrease. Depending on the system size and
boundaries, this ordered state is challenged by the formation
of vortex and antivortex pairs such as those depicted in Fig. 4,
leading to a Berezinskii-Kosterlitz-Thouless state [44,45],
characterized by a power-law decay of the orientational
correlation function 〈σασα′ 〉 at large distance. At higher tem-
perature T � T× this quasiordered state should leave space to
an orientationally disordered state. Due to the dimers rotating
randomly, the distorted centered rectangular lattice becomes
unstable, so that the structure reverts back to the triangular lat-
tice. Precisely due to this orientation-lattice coupling however,
it is unclear whether the transition between the quasiordered
state and the orientationally disordered one could still be clas-
sified as Berezinskii-Kosterlitz-Thouless [44,45] or its nature
could be qualitatively different. The answer to this question
involving correlation decays over extremely large scales is not
accessible to our current simulation setup.

Core-softened interactions have been successfully em-
ployed to reproduce the nontriangular phases observed
experimentally in colloidal particles at the air-water interface
in the presence of microgels [4] or amphiphiles [5]. It then
comes natural to ask whether there is any chance to observe
in an experiment also the nematic orientational state predicted
in this work. The experiments presented in Refs. [4,5] do
correspond to the regime kBT/ε � 1. However, in order to
explore the nematic state the temperatures would have to be
several orders of magnitudes below the melting temperature of
the dimer crystal, and this could be practically complicated in
realistic setups. It is also true that the extra-small temperature
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estimation T× � 10−5 ε/kB for the HCGEM4 model is associ-
ated to the weak orientational coupling of the dimers, in turn
the result of their small size. We predict that if smaller shell to
core ratios, and thus wider dimers, were considered, as in the
SCGL6 model, the nematic state could extend to significantly
higher temperature, possibly bringing it within experimental
reach.

A feature peculiar to the present model is that the
anisotropy leading to a nematic order arises due to the spon-
taneous aggregation of particles, whose original interaction
is isotropic. A similar nematic order is favored also in the
different scenario where anisotropy is present from the very
beginning, e.g., for repulsive potentials which are not spher-
ically symmetric, but exhibit an additional dependence on
the particle orientation appropriate to model the interaction
between elliptical or rod-shaped objects. A nematic phase
is indeed the well-established favored configuration of suffi-
ciently dense and elongated rods [46,47].

Other interesting aspects, partly addressed for the square-
shoulder case [14–17] but worth investigating in smooth soft-
shell potentials, include (1) the quantitative dependence of
the lattice properties on the dimer size, (2) the frustration
of the dimer-dimer interaction and the resulting ground state
in three dimensions, and (3) the determination, in both two
and three dimensions, of the mutual arrangement of the larger
clusters that occur in the phase diagram at higher density.

The coupling between orientational order and lattice dis-
tortion is an especially interesting aspect of the systems
considered here. Exploring its effects on the isotropic-nematic
transition by a detailed investigation of the system at finite
temperature looks like an intriguing future development of
this study.
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APPENDIX: DETAILS OF THE
MINIMIZATION ALGORITHM

We perform the minimization of the potential energy per
particle E of Eq. (16) by means of a preconditioned conjugate
algorithm with adaptive stepsize. The variables ϑα , sα j , b j ,
α = 1, . . . , n, j = 1, 2, are determined recursively via the
expressions

ϑ l+1
α = ϑ l

α − λl ζ̄ l
α , (A1)

sl+1
α j = sl

α j − μl ξ̄ l
α j, (A2)

bl+1
j = bl

j − νl χ̄ l
j , (A3)

where the index l refers to the iteration stage, λl , μl , νl give
the size of the minimization steps, and ζ̄ l

α , ξ̄ l
α j , χ̄ l

j give the di-
rections of descent. In the simple steepest descent of Eq. (19),
these coincide with the gradients of E with respect to the
above variables. In the present algorithm, they are determined
as follows: we first introduce preconditioning by replacing the
gradients with the quantities

ζ l
α = ∂E

∂ϑα

(
∂2E

∂ϑ2
α

)−1∣∣∣∣
l

, (A4)

ξ l
α j = ∂E

∂sα j

(
∂2E

∂s2
α j

)−1∣∣∣∣
l

, (A5)

χ l
j = ∂E

∂b j

(
∂2E

∂b2
j

)−1∣∣∣∣
l

, (A6)

and then obtain the conjugate directions ζ̄ l
α , ξ̄ l

α j , χ̄ l
j by the

recurrence relations

ζ̄ l
α = ζ l

α + γl ζ̄ l−1
α , (A7)

γl =
∑

α

(
ζ l
α − ζ l−1

α

)∑
α

(
ζ l−1
α

)2 , (A8)

ξ̄ l
α j = ξ l

α j + τl ξ̄ l−1
α j , (A9)

τl =
∑

α, j

(
ξ l
α j − ξ l−1

α j

)
∑

α, j

(
ξ l−1
α j

)2 , (A10)

χ̄ l
j = χ l

j + ωl χ̄ l−1
j , (A11)

ωl =
∑

j

(
χ l

j − χ l−1
j

)
∑

j

(
χ l−1

j

)2 . (A12)

In order to improve the robustness of the algorithm, every
N = 100 iterations (typically), the nonconjugate directions
ζ l
α , ξ l

α j , χ
l
j are used in Eqs. (A1)–(A3) instead of the conjugate

ones. We verify convergence by means of the quantity �

defined as

� = 1

n

∑
α

∣∣∣∣∂E∗

∂ϑα

∣∣∣∣ + 1

2n

∑
α, j

∣∣∣∣ ∂E∗

∂sα j

∣∣∣∣ +
∑

j

∣∣∣∣∂E∗

∂b∗
j

∣∣∣∣, (A13)

where the asterisks refer to reduced quantities E∗ ≡ E/ε,
b∗ ≡ bR. Iteration was stopped when � became smaller than
10−12.

Special attention must be paid to the choice of the stepsize
parameters λl , μl , νl , since they crucially affect the efficiency
of the minimization. We employ two different prescriptions
for this purpose. In both of them, we restrict E along the line
determined at fixed ϑ l

α , s l
α j , bl

j , ζ̄ l
α , ξ̄ l

α j , χ̄ l
j by Eqs. (A1)–(A3)

and regard it as a function of λ, μ, ν by setting

fl (λ,μ, ν) = E
(
ϑ l

α − λ ζ̄ l
α , s l

α j − μ ξ̄ l
α j, bl

j − ν χ̄ l
j

)
. (A14)

According to the first prescription, the parameters λl , μl ,
νl are determined by minimizing fl (λ,μ, ν) with respect to
each of its variables, while keeping the other two fixed. The
minimization is performed by Brent’s method [36]. In the sec-
ond prescription, we regard again fl (λ,μ, ν) as a function of
a single variable at fixed values of the other two, and set off to
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minimize it by solving the equations ∂ fl/∂λ=0, ∂ fl/∂μ=0,
∂ fl/∂ν =0 via the Raphson-Newton method [36]. However,
instead of iterating the procedure until convergence, we stop
at the first Raphson-Newton step by setting

λl = −∂ fl

∂λ

(
∂2 fl

∂λ2

)−1
∣∣∣∣∣
λ,μ,ν=0

, (A15)

μl = −∂ fl

∂μ

(
∂2 fl

∂μ2

)−1
∣∣∣∣∣
λ,μ,ν=0

, (A16)

νl = −∂ fl

∂ν

(
∂2 fl

∂ν2

)−1
∣∣∣∣∣
λ,μ,ν=0

. (A17)

The derivatives of fl with respect to λ, μ, ν are given by

∂ fl

∂λ
= −

∑
β

∂E

∂ϑβ

∣∣∣∣
l

ζ̄ l
β , (A18)

∂2 fl

∂λ2
=

∑
β,γ

∂2E

∂ϑβ∂ϑγ

∣∣∣∣
l

ζ̄ l
β ζ̄ l

γ , (A19)

∂ fl

∂μ
= −

∑
β, j

∂E

∂sβ j

∣∣∣∣
l

ξ̄ l
β j, (A20)

∂2 fl

∂μ2
=

∑
β,γ ,i, j

∂2E

∂sβi∂sγ j

∣∣∣∣
l

ξ̄ l
βiξ̄

l
γ j, (A21)

∂ fl

∂ν
= −

∑
j

∂E

∂b j

∣∣∣∣
l

χ̄ l
j , (A22)

∂2 fl

∂ν2
=

∑
i, j

∂2E

∂bi∂b j

∣∣∣∣
l

χ̄ l
i χ̄ l

j . (A23)

For the minimization with respect to ϑα and sα j , we
find it best to determine λl and μl starting with Brent’s
method, and switching to Raphson-Newton when conver-
gence had been nearly achieved to polish up the result. For
the parameter νl needed in the minimization with respect to
b j , Raphson-Newton is employed throughout. When using
Raphson-Newton, one has to take into account that, since the
potential energy is not a globally convex function of ϑα , sα j ,
b j , it may occur that at some iteration stage Eqs. (A15)–(A23)
lead to a negative value of λl , μl , or νl . In that case, the actual
stepsize parameter is reset at some fixed positive value.

Moreover, while ϑα and sα j are restricted to the intervals
[0, π ) and [0,1) respectively, this requirement is not neces-

sarily enforced by Eqs. (A1) and (A2). Since E is a periodic
function of both variables, ϑα and sα j are mapped back into
the above intervals whenever necessary.

Equations (A4)–(A6) and (A18)–(A23) require the first and
second derivatives of E with respect to ϑα , sα j , b j , whose
expressions we provide below. To this end, we rewrite Eq. (16)

E = 1

4nv

∑
G

w̃(G)F ({rασ }, G) − 1

2
w(0), (A24)

where we have set

F ({rασ }, G) =
∣∣∣∑

ασ

e−iG·rασ

∣∣∣2
. (A25)

Using Eq. (18), one obtains the square modulus of the
reciprocal-lattice vector G = B · m,

G2 = m2
1b2

1 +
(

m1b2 + m2
p

b1

)2
, (A26)

where m1 and m2 are integers. Similarly, by performing the
matrix product in Eq. (17) we obtain

G·rασ = 2π m·sα +
[

m1(b1 cos ϑα + b2 sin ϑα )

+ m2
p

b1
sin ϑα

]
η

2
σ. (A27)

The dependence of E on ϑα and sα occurs uniquely through
the Bragg diffraction factor F ({rα}, G), so one has

∂E

∂ϑβ

= 1

4nv

∑
G

w̃(G)
∂F ({rασ }, G)

∂ϑβ

, (A28)

∂E

∂sβi
= 1

4nv

∑
G

w̃(G)
∂F ({rασ }, G)

∂sβi
. (A29)

The quantities bi that identify the reciprocal lattice accord-
ing to Eq. (18), on the other hand, appear via G both in w̃(G)
and in F ({rα}, G). Hence

∂E

∂bi
= 1

4nv

∑
G

[∂w̃(G)

∂bi
F ({rα}, G) + w̃(G)

∂F ({rασ }, G)

∂bi

]
.

(A30)
The second derivatives ∂2E/(∂ϑβ∂ϑγ ), ∂2E/(∂sβi∂sγ j ),

∂2E/(∂bi∂b j ) are immediately obtained from Eqs. (A28)–
(A30) by further differentiation. The derivatives of F ({rα}, G)
needed in the above expressions are determined via Eq. (A25).
By omitting the explicit dependence of F on the variables rα ,
G for the sake of brevity, we obtain

∂F

∂ϑβ

= 2
∂ G·rβ1

∂ϑβ

∑
α,σ,σ ′

σ ′sin[ G · (rασ −rβσ ′ ) ], (A31)

∂2F

∂ϑβ∂ϑγ

= 2 δβγ

∂2 G · rβ1

∂ϑ2
β

∑
α,σ,σ ′

σ ′ sin[G · (rασ − rβσ ′ )] + 2
∂ G · rβ1

∂ϑβ

∂ G · rγ1

∂ϑγ

×
{∑

σ,σ ′
σσ ′ cos[G · (rβσ − rγ σ ′ )] − δβγ

∑
α,σ,σ ′

cos[G · (rασ − rβσ ′ )]

}
, (A32)
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∂F

∂sβi
= 4πmi

∑
α,σ,σ ′

sin[ G·(rασ −rβσ ′ ) ], (A33)

∂2F

∂sβi∂sγ j
= 8π2mimj

{∑
σ,σ ′

cos[G · (rβσ − rγ σ ′ )] − δβγ

∑
α,σ,σ ′

cos[G · (rασ − rβσ ′ )]

}
, (A34)

∂F

∂bi
= 2

∑
α,β,σ,σ ′

∂G · rασ

∂bi
sin[G · (rβσ ′ − rασ )], (A35)

∂2F

∂bi∂b j
= 2

∑
α,β,σ,σ ′

{
∂G · rασ

∂bi

(
∂G · rβσ ′

∂b j
− ∂G · rασ

∂b j

)
cos[G · (rβσ ′ − rασ )] + ∂2G · rασ

∂bi∂b j
sin[(G · (rβσ ′ − rασ )]

}
. (A36)

The derivatives of G · rβσ with respect to ϑβ and bi which
appear in Eqs. (A31), (A32), (A35), and (A36) are obtained
straightforwardly from Eq. (A27), and the derivatives of w̃(G)
with respect to bi in Eq. (A30) are obtained via the chain
rule ∂w̃(G)/∂bi = (dw̃(G)/dG2)(dG2/dbi ), with G2 given
by Eq. (A26).

The same conjugate gradient algorithm described in
Eqs. (A1)–(A23) was used to minimize the real-space expres-
sion of E of Eq. (24) with respect to sα j and a j , α = 1, . . . , 2n,
j = 1, 2. In this case we omit to report the explicit expression
of the first and second derivatives of E , since they are straight-
forward.
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