
PHYSICAL REVIEW E 104, 044415 (2021)

Continuous rate modeling of bacterial stochastic size dynamics
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Bacterial division is an inherently stochastic process with effects on fluctuations of protein concentration and
phenotype variability. Current modeling tools for the stochastic short-term cell-size dynamics are scarce and
mainly phenomenological. Here we present a general theoretical approach based on the Chapman-Kolmogorov
equation incorporating continuous growth and division events as jump processes. This approach allows us to
include different division strategies, noisy growth, and noisy cell splitting. Considering bacteria synchronized
from their last division, we predict oscillations in both the central moments of the size distribution and its
autocorrelation function. These oscillations, barely discussed in past studies, can arise as a consequence of the
discrete time displacement invariance of the system with a period of one doubling time, and they do not disappear
when including stochasticity on either division times or size heterogeneity on the starting population but only
after inclusion of noise in either growth rate or septum position. This result illustrates the usefulness of having
a solid mathematical description that explicitly incorporates the inherent stochasticity in various biological
processes, both to understand the process in detail and to evaluate the effect of various sources of variability
when creating simplified descriptions.

DOI: 10.1103/PhysRevE.104.044415

I. INTRODUCTION

Recent experiments involving time-lapse microscopy [1],
single-cell tracking [2,3], and gene tagging [4] have revealed
that stochasticity in cell-size and division events can play an
important role in the random fluctuations of biomolecular con-
centrations [5–9]. This, in turn, has important consequences
for phenotype variability and cell heterogeneity in clonal pop-
ulations [10].

An existing method for describing bacterial size control is
based on discrete stochastic maps (DSMs) [11,12]. This is a
phenomenological approach that defines the division strategy
as a map that takes cell size at birth sb to a targeted cell size
at division sd through a deterministic function sd = f (sb) plus
stochastic fluctuations that have to be fitted from experiments.
DSMs, however, are unable to reproduce cell-size transient
dynamics at arbitrary infinitesimal time intervals without fur-
ther extensions.

A well-known way to solve the continuous dynamics of
the distributions describing stochastic processes is based on
the Chapman-Kolgomorov equation (CK) [13]. CK solutions
correspond to the distributions of all possible stochastic hy-
brid trajectories at a given time. Among the processes that can
be modeled by CK, continuous size growth and division can
be included as a jump process with a continuous rate of divi-
sion. These models are also known as continuous rate models
(CRM) [11]. With this type of models, Wang and colleagues
[14] proposed a power-law function to explain observations
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in Escherichia coli bacteria, and Osella et al. [15] suggested
that a convoluted function of size and cycle progression is
required. We [16] then proposed a deconvoluted version by
introducing division as a multistep process where the occur-
rence rate of the steps is a function of the size. Recently, some
efforts have estimated analytical expression for stationary dis-
tributions [17]. Despite these attempts, a complete formalism
capturing the stochastic phenomena related to the dynamics of
bacterial division was still lacking.

In our previous work [16], we used the theory of CRMs
to unify the known division strategies based on DSMs and
describe the dynamics of simple gene architectures [5]. We
have also presented some preliminary results on simula-
tion techniques based on this framework [18] and basic
solutions for some simple ideal examples [19,20]. Here
we present the formal, detailed solution for the stochastic
size dynamics modeled by the CK equation trying to be
as realistic as possible, using both simulations and numeri-
cal methods but presenting analytical expressions whenever
possible.

To simplify the problem, we consider the dynamics of cells
synchronized from their last division. This can easily be done
a posteriori on experimental data. However, to approach a
realistic description we included some effects and sources of
noise that had not been incorporated before, such as variability
on the starting size or division timing. For this last effect, we
use the basic idea of Refs. [19,20], but considering that the
jumps are triggered after the occurrence of a certain number
of division steps. Although these steps can be associated to
the accumulation of FtsZ or other precursor proteins [21,22],
the model does not depend on the biochemical details of the
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molecules. We also explain how to integrate into the CK
equation some other more complex sources of noise such as
the noise in splitting position (similarly to the reported in
Refs. [17,23]) or cell-to-cell variability in the growth rate (al-
ready mentioned in Refs. [24,25]). We end with a discussion
of how this approach could be coupled with current simu-
lations of gene expression to obtain more accurate protein
dynamics.

II. MODEL DESCRIPTION

In this section, we present the Chapmann-Kolmogorov
equation describing the dynamics of the size distribution for
growing and dividing bacteria. In our framework, we consider
an ever-growing cell population. After each division only one
of the descendants of each cell is tracked so that the num-
ber of bacteria in the observed population remains constant.
This corresponds to experimental setups such as those using
Mother Machine microfluidics [3,14]. Other works have de-
scribed the dynamics of this distribution including effects such
as the increasing cell number in a microcolony or mother-
daughter correlations [20,26–28].

A. The population balance equation

Consider the distribution p(s; t ) of sizes s at a given time t .
For a population with constant number, p(s; t ) can be normal-
ized: ∫

p(s; t )ds = 1. (1)

To describe how this distribution evolves, let us start by con-
sidering an individual cell’s growth in size s described by

ds = g(s; t )dt, s(0) = s0, (2)

where g(s; t ) is the size change per unit time and s0 is the
initial cell size. For now, let us consider the deterministic
process assuming that all cells have the same s0. Some stud-
ies [20,29,30] have considered g(s; t ) as a constant (linear
growth), whereas we will focus on an exponential growth
(g(s; t ) = μs) with μ being a constant usually called the
growth rate.

Since (2) defines a deterministic process, the change in the
size distribution p(s|s0; t ) conditioned by the initial size s0 can
be obtained by solving

∂

∂t
p(s|s0; t ) = − ∂

∂s
[g(s; t )p(s|s0; t )]. (3)

Expression (3) is known as the forward Chapman-
Kolmogorov equation (CKE) in its differential version [13],
and its solution for this deterministic process is given by

p(s|s0; t ) = δ[s − sdet (t )], (4)

where sdet (t ) = s0eμt is the solution of Eq. (2) and δ(s) is the
Dirac delta distribution.

Considering division as a jump process, during splitting the
cell size s′ jumps to s at time t with a given rate W (s|s′; t ).

Under this assumption, Eq. (3) can be written as

∂

∂t
p(s|s0; t ) = − ∂

∂s
[g(s, t )p(s|s0; t )]

+
∫

ds′[W (s|s′; t )p(s|s0; t )

−W (s′|s; t )p(s|s0; t )]. (5)

The case of perfect symmetric splitting (s′ = 2s) corre-
sponds to the selection rule:

W (s|s′; t ) = 2δ(2s − s′)h(s, s′). (6)

Some studies have explored the particular case where
h(s, s′) = h(s′) = kd s′, i.e., the splitting rate depending only
on the size just before the division, with kd being a constant
and discarding the dependence on the size after the division
[17,19,20]. This assumption results in:

∂ p

∂t
(s; t ) = −∂ (g(s)p(s; t ))

∂s
− (kd s)p(s; t ) + 2(k2s)p(2s; t ),

(7)
which is also known as the population balance equation for a
fixed population number [20,31–35]. Theoretical methods like
moment closure have been used in past articles to solve (7) and
some useful limits have been already studied [15,17,20]. In the
following sections we will show a method that we developed
to solve this equation.

B. The Chapman-Kolmogorov equation including
division events

Some instabilities observed when solving (7) using the
moment closure approximation [20] can be traced to the
nonlocality of the operator (6). To overcome these nonlo-
calities, we propose to reparametrize the size distribution
considering an additional variable: the number of divisions
n ∈ {0, 1, 2, · · · } [19]. In this case, the probability distribution
is now p(s, n; t ) with transition rates satisfying:

W (s, n|s′, n′; t ) = 2δ(2s − s′)δn,n′+1h(s, s′), (8)

with δi, j , the Kronecker delta.
This means that after division not only is the size halved

but the number of divisions n is increased by one unit. In the
particular case where h(s, s′) = kd s′, the associated CKE is as
follows:

∂

∂t
p(s, n|x0; t )

= − ∂

∂s
[g(s)p(s, n|x0; t )]︸ ︷︷ ︸

Drift by growth

+ [2(kd 2s)p(2s, n − 1|x0; t ) − (kd s)p(s, n|x0; t )]︸ ︷︷ ︸
Jumps by divisions

, (9)

where x0 = (s0, n0).
The inclusion of the new variable n breaks the nonlocality

of the operator W (s|s′, t ) that makes (5) hard to solve. Instead,
W (s, n|s′, n − 1, t ) performs jumps between independent sub-
spaces which can be merged together later using marginal
sums.
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Using this new variable n, exponential growth, and s(0) =
s0, Eq. (9) has closed solutions of the form

p(s, n; t ) = δ[s − s(n, t )]Pn(t ), (10)

where Pn(t ) is the probability of having divided n times at
time t . We will present its associated equation later. s(n, t )
corresponds to the bacterial size after n divisions at a time t .

To explain how to solve for this s(n, t ), let us consider the
size s(1, t ) at time t after one division. If t1 is the time when
division occurs, the size after that division was s(1, t1) = s0eμt1

2
so, then the size any time t > t1 is as follows:

s(1, t ) = s0eμt1

2
eμ(t−t1 ). (11)

For a sequence of division times 0 < t1 < t2 < ... < tn−1 <

tn < t , s(n, t ) satisfies:

s(n, t ) = s0

[
n∏

i=1

eμ(ti−ti−1 )

2

]
eμ(t−tn )

= s0

2n
exp

[
μ

n∑
i=1

(ti − ti−1) + μ(t − tn)

]

= s0

2n
eμ(t−t0 ) = s0eμt

2n
, (12)

where we have used t0 = 0 and the telescopic property of the
sum.

Using this result and Eq. (10), Eq. (9) can be separated into
the system of equations:

p(s; t ) =
∞∑

n=0

p(s, n; t ) =
∞∑

n=0

δ

(
s − s0eμt

2n

)
Pn(t )

dP0

dt
= −kd s0eμt P0

...

dPn

dt
= −kd s0eμt

2n
Pn + kd s0eμt

2n−1
Pn−1

... (13)

defining the dynamics of every Pn(t ).

C. The division strategy

In most phenomenological approaches to bacterial division
[11,12,36], it is described by the relationship between the
added cell size and the cell size at birth. This relationship
is known as the division strategy [11,16] and in this section,
we will explore how to obtain the division strategy from the
solution of (13).

Focusing on the jump process between the state n − 1 to
n (one division), we can change the space n ∈ 0, 1, 2, · · · to
n ∈ {0, 1} and truncate (13) to:

dP0

dt
= −h(s)P0

dP1

dt
= h(s)P0, (14)

where a general size-dependent splitting rate function h(s)
can be used. This system can be integrated under the initial
conditions P0(0) = 1 and P1(0) = 0. Thus, the probability
P1(t )—or to simplify notation, P(t )—that the cell divides in
the time interval (0, t ) evolves according to

P(t ) = 1 − exp

{
−

∫ t

0
h[s(t ′)]dt ′

}
. (15)

In the particular case where h(s) is proportional to the
size, h(s) = kd s, and assuming exponential growth as well,
the integration on time can be done using the implicit formula

h[s(t )] = kd s(t ) = kd s0eμt . (16)

Once P(t ) is obtained, the probability density function ρ(t )
for the time of division can be obtained as

ρ(t ) = dP(t )

dt
. (17)

A transformation of variables allows us to get the distribution
of sizes at division ρ(sd ):

ρ(sd ) = ρ[t (sd )]
dt

dsd
, (18)

where, if we assume exponential growth t (sd ) = 1
μ

ln( sd
s0

),

then dt
dsd

= 1
μsd

. Using this ρ(sd ) one can calculate the mean
size at division by integrating:

〈sd〉 =
∫ ∞

sb

sdρ(sd )dsd . (19)

Hence, we can calculate the mean added size per cell cycle
〈�〉 = 〈sd〉 − sb as a function of the size at birth sb. This
relationship defines the division strategy.

D. Multistep division for a single division

More generally, division does not have to correspond to a
single jump process. Instead, division can occur once bacteria
have reached some goal number of steps M. If the occurrence
rate of these steps is proportional to the cell size s by a
constant kd , then the probability Pm(t ) of performing m < M
steps at time t can be modeled according to:

dP0

dt
= −kd s(t )P0

...

dPm

dt
= kd s(t )Pm−1 − kd s(t )Pm

...

dPM

dt
= kd s(t )PM−1, (20)

where PM is the probability of reaching the target steps M or,
equivalently, the probability of a division event to occur. Once
the division event happens, the process is reset to zero steps
and size is halved.

Using this PM (t ) and growth as described by (4) and fol-
lowing (18), the probability density ρ(sd |sb) of size at division
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sd given the size at birth sb in a cell cycle satisfies [16]:

ρ(sd |sb) =
(

kd

μ

)M (sd − sb)(M−1)

(M − 1)!
exp

[
−kd

μ
(sd − sb)

]
.

(21)
Defining the added size before division as � = sd − sb, we
observe that 〈�〉 = 〈sd〉 − sb is independent of the size at birth
sb and depends on the growth rate μ, the target steps M and
the step occurrence rate kd :

〈�〉 = M
μ

kd
. (22)

The master equation (20) can be generalized to consider
multiple division events in a similar way to Eq. (13). We will
present this generalization in the following section.

E. Solution of the CKE including multiple divisions

Using a similar procedure as (13) but now with the ad-
ditional variable m, the probability of the cell size being s,
having performed m division steps and n divisions at time t ,
can be written as:

p(s, n, m; t ) = δ[s − s(n, t )]Pm,n. (23)

The cell size s(n, t ) follows Eq. (12). The probability
Pm,n(t ) of a cell having performed m division steps and n
division events at time t can be obtained through the master
equation system

dP0,0

dt
= −kd s0eμt P0,0

dP1,0

dt
= kd s0eμt P0,0 − kd s0eμt P1,0

...

dPm,n

dt
= s0eμt

2n
Pm−1,n − s0eμt

2n
Pm,n

...

dPM−1,n

dt
= kd

s0eμt

2n
PM−2,n − kd

s0eμt

2n
PM−1,n

dP0,n+1

dt
= kd

s0eμt

2n
PM−1,n − kd

s0eμt

2n+1
P0,n+1

... , (24)

where we include the selection rule defining the divisions as
jumps between states (M − 1, n − 1) to (0, n) and the division
steps as jumps between states (m, n) to (m + 1, n). These
jumps happen at rate h = kd s(n, t ) with s(n, t ) following
Eq. (12).

The solution to (24) can be obtained by different
methods. Analytically [19], one can start from the initial
conditions

Pm,n(t = 0) = δn,0δm,0. (25)

Hence, Pm,n(t ) can be obtained knowing Pm−1,n(t ) with m ∈
1, . . . , M − 1, and P0,n(t ) can be estimated from PM−1,n−1(t ).

Both using the closed recurrence expression:

Pm,n(t ) = kd s0

2n
exp

[
−kd s0

μ2n
eμt

] ∫ t

0
Kn(t ′)Pm−1,n(t ′)dt ′

P0,n(t ) = kd s0

2n−1
exp

[
−kd s0

μ2n
eμt

] ∫ t

0
Kn(t ′)PM=1,n−1(t ′)dt ′

with

Kn(τ ) = exp

[
μτ + kd s0

μ2n
eμτ

]

P0,0(t ) = exp

[
−kd s0

μ
(eμt − 1)

]
. (26)

Explicit resulting expressions have length increasing with
m becoming intractable in practice. To solve (24), we
recommend the use of well-behaved numerical methods im-
plemented in past studies [18] that are going to be presented
in the next section.

III. NUMERICAL ESTIMATION OF SIZE DYNAMICS

A. The finite-state projection algorithm

In general, in Eq. (24) the number of possible division steps
m ∈ {0, 1, . . . , M − 1} is finite but the number of possible
divisions n ∈ {0, 1, · · · } is infinite. This thwarts the complete
solution of (24) using methods like Matrix exponential. As we
explained before [19], this infinite set can be projected into
a finite set using the well-known finite state projection algo-
rithm [37]. Using this approach, the number of equations in
(24) are truncated up to a maximum N of divisions, allowing
common methods for solving these finite systems to be used to
determine size dynamics during infinitesimal periods of time.

From Pm,n(t ), the size distribution ρ(s|s0) given the starting
size s0, and the mean size 〈s〉 and variance var(s) = 〈s2〉 −
〈s〉2 can be obtained from the equations:

ρ(s|s0) =
N∑

n=0

δ

(
s − s0

eμt

2n

)
Pn

〈s〉 =
N∑

n=0

s0
eμt

2n
Pn

var(s) =
N∑

n=0

[(
s0

eμt

2n

)2

− 〈s〉2

]
Pn, (27)

with Pn = ∑M
m=0 Pm,n.

The computation of these moments was done assuming
that all cells began at an initial size s(0) = s0, that is, ρ(s0) =
δ[s0 − s(0)]. However, if a general density function ρ(s0) for
the initial sizes is considered, then the size distribution ρ(s) is
a convolution of solutions of (27):

ρ(s) =
∫

ρ(s|s0)ρ(s0)ds0. (28)

Until now, we have obtained expressions for the size distri-
bution ρ(s; t ) at an arbitrary time t . In some cases, it might be
of interest to simulate single-cell trajectories. To do that, we
have to develop an algorithm to obtain the division times as
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random variables distributed following Eq. (17). This proce-
dure is explored in the following section.

IV. STOCHASTIC SIMULATION OF SIZE DYNAMICS

Consider the single-step process described by (14). While
Eqs. (14) were written for modeling the division as a single-
step process, in general these equations are also valid for the
occurrence of a division step. Setting explicitly the propensity
h = kd s, the equations describing the occurrence of a division
step are now:

dP0

dt
= −kd s0 eμt P0

dP1

dt
= kd s0eμt P0. (29)

If P0(0) = 1 and P1(0) = 0, then P1(t ), or simply P(t ), has the
explicit solution:

P(t ) = 1 − exp

[
−

∫ t

0
kd s(t ′)dt ′

]

= 1 − exp

[
−s0

kd

μ
(eμt − 1)

]
, (30)

while the associated probability density function is as follows:

ρ(t ) = dP(t )

dt
= s0

kd

μ
exp

[
μt − s0

kd

μ
(eμt − 1)

]
. (31)

The main idea behind the stochastic simulation algorithm
is to generate random time events τs distributed as (31). Fol-
lowing Gillespie’s method [38], we generate a random number
r uniformly distributed in the interval (0,1) and from the
cumulative function (30), τs is obtained by matching P(t ) and
r and solving for t :

τs = 1

μ
ln

[
1 − μ

s0kd
ln(r)

]
, (32)

where we take advantage of the fact that 1 − r is distributed
as r. This τs is the time to the occurrence of the next division
step.

V. INCLUDING ADDITIONAL ASPECTS OF
CELL DIVISION

Two assumptions behind (12) are that after each division
the cell size is halved perfectly and that the growth rate is
a constant equal for all cells. However, this is not the case in
actual cell splitting. Two notable sources of stochastic fluctua-
tions are variations in both partitioning of volume and cellular
components among daughter cells [23,39] and random fluc-
tuations in the cell growth rate [40,41]. In this section we
will explore how to include these sources of noise as well as
other important properties of bacterial division such as divi-
sion strategies different form the adder, and we explore the
size convergence to reach homeostasis, an important property
found experimentally [14].

A. Nonsymmetric splitting

Stochastic fluctuations in the septum position are observed
experimentally. For some growth conditions this noise can be
as high as 5% [24,42–44].

Considering again the size at time t after one division, if the
division occurred at time t1 < t and if the size is not perfectly
halved but multiplied by a random variable b1 (also known as
the division ratio) centered on 0.5, then the size at time t is
now

s(1, t ) = s0eμ(t1−t0 )b1eμ(t−t1 ). (33)

If the sequence of division ratios {b1, b2, · · · , bn} is known,
then the size at time t after n divisions is given by

s(n, t ) = s0eμt
n∏

k=1

bk . (34)

Numerically, bk can be approximated by a beta distributed
variable centered on 0.5 with a variance fitted from experi-
ments [24].

B. Cell-to-cell variability in growth rate

Another important stochastic variable is the cell-to-cell
variability in growth rates [25,41]. This variability can be as
high as 10% [3]. We assume that after a division, a new growth
rate μk is chosen randomly from a distribution centered on
〈μ〉 and cell grows during that cycle with rate μk . This ig-
nores possible mother-daughter correlation in growth rates,
which could be important [24,45], as well as fluctuations in
the growth rate of a single cell within one generation. These
considerations are not taken into account for simplicity.

With symmetric splitting, the size at time t after n divisions
is now:

s(n, t ) = s0

2n

[
n−1∏
k=0

exp[μk (tk+1 − tk )]

]
exp[μn(t − tn)]. (35)

Numerically, we modeled these μk as a gamma distributed
variable centered on the mean growth rate 〈μ〉, with the ex-
perimentally observed variance and no correlation with past
cycles.

C. A general CKE including additional sources of noise

A general CKE assuming exponential growth and a growth
rate distribution ρ(μ) can be modeled by [17]:

∂ p(s; t )

∂t
= −

∫ [
∂

∂s
(μsp(s; t ))

]
ρ(μ)dμ

+
∫

h(s, s′)p(s′; t )ds′ − h(s)p(s; t ). (36)

The division rate h(s, s′) is in general dependent on hidden
variables (like the number of division steps). So its depen-
dence with the size could not be easy to parametrize. Some
studies have estimated this rate, at least, numerically for some
cases [46–48], others include explicitly the division steps [17].
In the case of single-step division, this rate can be written as
h(s, s′) = kd s′ρ(s, s′) with

∫
ρ(s, s′)ds′ = ρ(s), where ρ(s) is

the distribution of size at birth. Nonsymmetric division can
also be considered within ρ(s, s′). h(s) in the last term is
obtained from h(s) = ∫

h(s′|s)ds′. We do not yet have a closed
solution to (36), but some useful limits have been already
estimated [17].
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D. Encompassing different division strategies

Depending on the mapping sd = f (sb), or as described tra-
ditionally, on the relationship between added size � = sd − sb

and sb, three basic division strategies have been defined for
exponentially growing bacteria: the timer, adder, and sizer
strategies [36]. They can be distinguished by differences in
the slope of � vs sb: For the timer this slope is +1, whereas
it is −1 for the sizer and 0 for the adder. The adder strategy,
observed for instance in E. coli and Bacillus subtilis [3], is
considered the most common strategy in bacteria. In some
bacterial populations, however, division strategies with inter-
mediate slopes for � vs sb have also been observed [16,36].
This has led to the definition of the timerlike strategy for
slopes between 0 and 1, and of the sizerlike strategy for slopes
between −1 and 0.

These deviations from the adder can be obtained from our
framework if the step rate (h) is not proportional to the size
but to a power (λ) of the size [16]. That is,

h = kd sλ. (37)

A multistep process similar to that described by (24) can also
be proposed in this case. If division is triggered by the occur-
rence of M steps happening at rate (37), then the distribution
of size at division sd given the size at birth sb is [16]:

ρ(sd |sb) =
(

kd sλ−1
d

μ

)
exp

[
− kd

μλ
(sλ

d − sλ
b )

]

×
[ kd

μλ
(sλ

d − sλ
b )

]M−1

(M − 1)!
. (38)

The timer strategy is obtained if λ → 0, the sizer strategy
is obtained if λ → ∞, and the adder is obtained when λ = 1.

Considering the nonlinear step rate given by Eq. (37) and
using a similar method to (31), the general stochastic time is
given by:

τs(λ) = 1

λμ
ln

[
1 − λμ

kd sλ
0

ln(r)

]
. (39)

E. Mean cell size at birth

The main variables defining the mean cell size are the
growth rate μ, the number of division steps M, and the divi-
sion steps occurrence rate kd . If an adder strategy is considered
(λ = 1), then the mean added size 〈�〉 follows the relationship
(22).

Given the uncertainties about the nature of kd , the inference
of its actual value is not straightforward. For the adder, this kd

can be inferred from the mean added size using (22) and by
observing that this 〈�〉 is independent on the size at birth sb.
In other division strategies (λ �= 1), 〈�〉 is now a function of
sb. Now, the typical size as explained in past studies [16,20],
sb, is the size at birth that is perfectly doubled by the division
strategy:

sb = sb : 〈sd〉(sb) = 2sb. (40)

In general, sb, is dependent on kd , μ, and λ and is one of the
variables that can be measured most easily if we assume that
this sb is actually the mean size at birth in a steadily growing

cell population. Other variables such as kd can be estimated
from this sb using (40) and root-finding algorithms.

F. Discrete translation invariance

To illustrate the dynamics of the probability of having
divided n times at time t , we present in Fig. 1 time trends
of some Pn(t )s for different λs and Ms with initial condition
Pn,m(0) = δn,0δm,0.

A numerical analysis of the behavior in Fig. 1 allows us to
find that, in the limit of t → ∞, the distribution of Pns satisfies

lim
n→∞ ‖Pn(t ) − Pn+1(t + τ )‖ = 0, (41)

with τ = ln(2)
μ

being the doubling time.
This limit, whose convergence was estimated numerically

in Appendix A, implies asymptotic invariance of the system
(explicitly of Pn) under translation on, simultaneously, n →
n + 1 and t → t + τ . Since sbeμt

2n also satisfies this invariance,
we expect ρ(s|t, sb) to show periodic properties in the limit
t → ∞. This periodicity was already discussed in some theo-
retical papers [49–51].

VI. ILLUSTRATING EXAMPLES

To explore the effects of the above-mentioned additional
sources of noise on the periodical properties of bacterial divi-
sion, we used our formalism to test three different scenarios
for size dynamics:

(i) The size dynamics considering only stochastic division
times following (31). This can be done solving (26).

(ii) The size dynamics considering a distribution of initial
sizes at t = 0. This can be obtained numerically by convolu-
tion of the initial size (28).

(iii) The size dynamics considering two additional sources
of noise: noise in splitting and noise in growth rate. This can
be explored using stochastic simulations.

Figure 2(a) shows the first case where the mean size dy-
namics are obtained from a simulation of 5000 cells, all of
them with the same starting size and beginning with zero
division steps or equivalently, starting from their most recent
division. We assumed that they have the same growth rate
and are split perfectly evenly. The simulation was done us-
ing stochastic times (32) and numerical estimation was done
by solving the master equation (24). Both approaches show
perfect adjustment to each other.

Ten examples of individual cell trajectories were plotted
in the background to show how variable the distributions are.
The dynamics of this variability, quantified by the coefficient
of variation C2

v (s) = var(s)
〈s〉2 , is also shown in Fig. 2(e). As our

main observation, we highlight the oscillations in both 〈s〉 and
C2

v (s) with period equal to τ = ln(2)
μ

, the doubling time. The

oscillations in the C2
v (s) present their peaks just when bacteria

are dividing on average and their valleys when bacteria are
growing. The dynamics of the size distribution can be seen in
Supplemental video 1 [52].

Figure 2(b) illustrates the second case, where the mean
dynamics corresponds to cells with an initial distribution with
finite noise [C2

v (s, t = 0) = 0.02]. This distribution was as-
sumed to be a gamma distribution since it is well defined
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(a)

(d) (e) (f)

(b) (c)

FIG. 1. Time dynamics of the first Pn for different division strategies and division steps (M) with ρ(sb) = δ(sb − sb).

from its mean size and the C2
v (s). Simulations, on the other

hand, were modified by using random initial sizes and nu-
merical estimation was done by performing the convolution
(28) and approximating the integral by a numerical Riemann
sum. Dynamics on cell-size variability are also presented in
Fig. 2(f). Oscillations were again found in both the mean and
the variance but with less amplitude than in the first case. The
dynamics of this distribution appear in Supplemental video 2
[52].

Figure 2(c) presents the third scenario with the assumption
that bacteria do not split perfectly in half but according to a
beta distributed independent stochastic variable centered on
0.5 and with a given noise C2

v = 0.002. Growth rate could
be considered stochastic as well with variability set to C2

v =
0.02. The dynamics of the mean size [Fig. 1(c)] and its C2

v

[Fig. 1(h)] are presented. We plotted trajectories for ten in-
dividual cells in the background of Fig. 2(c) to give a sense
of the distribution. Since these noises are not considered in

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 2. Dynamics of the moments of the cell-size distribution. (a) Mean cell size 〈s〉 with some single-cell trajectories in gray and (e) its
noise C2

v (s) as a function of time considering only stochastic division timing. (b) Mean cell size with some single-cell trajectories in gray and (f)
its noise as a function of time considering both stochastic division timing and an initial size distribution with finite variance. (c) Mean cell size
with some single-cell trajectories in gray and (g) its noise as a function of time considering stochastic division and noise in cell-to-cell growth
rate and septal position. (d) Mean added size � vs the size at birth sb and (h) the fluctuations C2

v (�) vs sb for different division strategies.
Timerlike (λ = 0.5), adder (λ = 1) and sizerlike (λ = 2). Simulations (dots) and numerical estimations (lines) are shown. M = 10 division
steps were considered in all cases.
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Eq. (24), the same numerical approach is not feasible. The
distribution dynamics can be seen in Supplementary video 3
[52].

We also explore the division strategy using both sim-
ulations and numerical estimations. Data from stochastic
simulations can be obtained using the stochastic division
times (39) and exponential growth (4) while the trends in
added size and its variability can be obtained from the dis-
tribution of size at division (38), both being dependent on the
exponent λ. In Fig. 2(d). we present the mean added size � as
a function of the mean size at birth sb for three different values
of λ. These values were chosen to represent three of the most
important division strategies: timerlike (0 < λ < 1, where we
choose λ = 0.5) with its characteristic positive slope on �

vs sb, adder (λ = 1) with no correlation between � and sb

and sizerlike (1 < λ < ∞, where we choose λ = 2) with a
negative slope in � vs sb. Fluctuations over the trends are also
shown in Fig. 2(h). where it can be seen that sizerlike shows
positive correlation in C2

v (�) vs sb, adder strategy shows no-
correlation and timerlike shows a negative correlation.

To better understand the properties of the robust oscilla-
tions on the dynamics of the central moments presented in
Fig. 2(a) and Fig. 2(b), we studied the autocorrelation function
of the size. This autocorrelation γ (t ′) is defined through the
formula:

γ (t ′) = lim
T →∞

1

T

×
∫ T

0

〈{[s(t ) − 〈s(t )〉][s(t + t ′) − 〈s(t + t ′)〉]}〉
σ (t )σ (t + t ′)

dt,

(42)

with σ (t ) being the standard deviation of the size at time t and
〈x〉 is the mean value of the random variable x

In Fig. 3(a) we show how the autocorrelation dynamics
change as a function of time. We present four different cases:
first, a single division step [19]. This autocorrelation decays
exponentially to zero. By increasing the division steps, for
instance to 10 steps, oscillations appear around a decaying
trend. For a division that is almost deterministic, for instance
50 steps, these oscillations have higher amplitude around
zero. When noise on both growth rate and septum position
is considered, these oscillations are damped in the same way
found in size dynamics, converging to zero. This asymptotic
decorrelation lets the distribution reach a stationary distribu-
tion with fixed moments which is presented in Fig. 3(b) for
M = 10 and the noises explained above.

VII. DISCUSSION

In this article we summarize and extend previous results
to construct a theoretical framework based on the Chapman-
Kolmogorov equation to model the stochastic dynamics of the
cell size for a population of growing cells. While we limited
ourselves to a population of constant number, such as what
you have in a turbidostat or mother-machine experiment, the
approach can be extended to cover a growing population.
Unfortunately, this exponential growth in the number of cells
imposes practical constrains on the type of stochastic simula-
tions we used for the more realistic cases.

(a)

(b)

FIG. 3. (a) Cell-size autocorrelation γ (t ′) for different time peri-
ods t ′ for four different division conditions: one division step (dashed
blue line), 10 division steps (dotted orange line), 50 division steps
(green dash-dotted line), and 50 division steps including noise in
growth rate and septum position (red continuous line). (b) Simulation
of stationary state of the histogram of bacterial size with all the noise
sources considered in Fig. 2(c).

Our framework can be used for obtaining the size distribu-
tion dynamics, as well as the distribution of division times,
and it allows for the inclusion of sources of noise such as
variations in division volumes and cell-to-cell growth rate
differences [24]. Most importantly, the different splitting rates
that result in the various division strategies found in E. coli:
Timerlike, adder, and sizerlike [11,36] can be incorporated
quite naturally.

As an example of our framework’s use, we consider cells
starting from their last division. We predict oscillations in
both the mean size 〈s〉 and noise C2

v (s), shown in Fig. 2.
What is noteworthy is that these oscillations are robust to
some sources of noise but not others. When only stochas-
ticity on division times is considered, these oscillations are
maintained over an arbitrary long period of time. They lose
amplitude when an initial size distribution is considered,
and rapid damping occurs if other sources of noise like the
cell-to-cell growth rate variability and septum position are
added.

The robustness of the oscillations can be understood as
result of the asymptotic periodic properties of the probability
Pn of having n divisions at time n. These probabilities are
invariant under the simultaneous transformation n → n + 1
and t → t + τ . The way to damp these oscillations is breaking
that symmetry. The inclusion of these additional sources of
noise is a simple way to do that but other way is to consider
cases with different symmetries for instance other forms of
division and growth rates. See, for instance, the damped oscil-
lations in bacteria that grow linearly having either constant or
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size-dependent splitting rate, using similar approach to
Ref. [20] but including division steps, with no additional
sources of noise in Appendix B.

The properties found in size dynamics can be also obtained
using the classical discrete stochastic maps approach [11,12].
A clear correspondence between DSM and our model can be
found when the adder strategy is considered. In this case, the
stochastic map between size at birth sb and size at division is

sd = sb + � + ε, (43)

with ε being an independent random variable with zero mean
and a distribution fitted from experiments. If exponential
growth is considered, then the cell-cycle duration τd , as ran-
dom variable, can be obtained from (43):

τd = 1

μ
ln

[
1 + �

sb

(
1 + ε

�

)]
, (44)

where, using (22), some analogy to (32) can be found. Using
these times with parameters fitted from the data, similar oscil-
lations in both size trends and autocorrelation can be obtained.

The main difference with DSMs is found where deviations
from the adder are considered. Using the CRMs, the fluctua-
tions (ε) in the division strategy (43) will depend on the size
at birth, unlike in the DSM where these fluctuations are not
related to any other variable. Some preliminary observations
on the dependence of the fluctuations on added size with the
size at birth in sizerlike division in E. coli have been reported
[16,53] but further experiments are needed.

To better understand how each kind of noise affects the
size-distribution dynamics, we studied the dynamics of cen-
tral moments in some extreme cases (see Appendix C). We
observe that growth rate noise results in a similar mean
size while the noise in splitting position can make the mean
smaller than in the noiseless case. Experimentally, the ob-
served noises are so small that we could not discriminate
between these effects. To observe how these noises affect the
damping of the autocorrelation function, we measured the
peak of the Fourier transform of this function while varying
the noise. We found that using this measure of the damping,
the effects of both noises are equivalent (see Appendix C).

Including cell-size stochasticity in models of gene expres-
sion can be an important tool to understand the origin of
the fluctuations in molecule concentration. Some efforts have
already been done to understand these effects in simple regu-
latory networks [54–57] but our formalism can expand this to
more complex gene regulatory architectures.

As we learn more about the changes in division strate-
gies that occur when environmental conditions change, our
framework should facilitate the theoretical modeling of such
processes, allowing their description as simple changes of the
splitting rate functions. This in turn should guide the search
for the specific biochemical mechanisms, as well as allowing
the construction of ever more realistic computational models.

ACKNOWLEDGMENTS

C.V.-G. Acknowledges Colombian Ministry of ICT
(MinTIC), Data Sanbox Initiative. C.N. Acknowledges COL-
CIENCIAS convocatoria 647 para doctorados nacionales for
the financial support.

FIG. 4. Distance between the probabilities Pn(t ) and Pn−1(t − τ )
for two different division steps (red dots: M = 1) (green squares:
M = 10).

APPENDIX A: THE ASYMPTOTIC PERIODICITY OF
THE SYSTEM

To check the property (41), we calculate numerically the
distance between the probabilities Pn(t ) and Pn−1(t − τ ) with
τ being the doubling time τ = ln(2)

μ
, using the expression:

‖Pn(t ) − Pn−1(t − τ )‖ =
∫

|Pn(t ) − Pn−1(t − τ )|dt, (A1)

the results are presented in Fig. 4 where we can check how
this distance decays asymptotically to zero as n increases.

APPENDIX B: SIZE DYNAMICS FOR DIFFERENT
GROWTH CONDITIONS AND DIVISION RATES

Past studies suggested that the periodicity under transla-
tions in τ and n is an exclusive property of exponential growth
[49]. Thus, if other growth conditions are considered, then
the symmetry under time translations is broken and robust
oscillations are not expected.

We simulated the size dynamics of different possible
growth and division rates in a similar way to past studies [20].
Thus, we define the growth law as (2), where exponential
growth is defined as g(s, t ) = μs and the linear growth is
given by g(s, t ) = μ with μ being a constant. On the other
hand, the division rate is defined by the function h as (6). In
Fig. 5, we compare two division rates for linear growth, one
of these is h = kd and the other is h = kd s with k a constant.
These rates define the occurrence of a given division step. In
Fig. 5 we considered M = 10 steps to trigger the division.

In Fig. 5(a) we present the dynamics of the mean cell
size 〈s〉 as a function of time with some single trajectories
presented in the background (gray lines). In Fig. 5(c) we
present its noise C2

v (s) as a function of time for linear growth
g = μ and constant division rate h = k. Figure 5(b) 〈s〉 vs t
and Fig. 5(d) C2

v (s) vs t both for a linear growth g = μ and
a division rate proportional to the cell size h = kd s. Perfectly
symmetric splitting and fixed growth rate are considered.
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(a)

(c) (d)

(b)

FIG. 5. Mean cell-size 〈s〉 and its noise C2
v (s) as a function of

time for different growth and splitting rates similarly to [20]. (a) 〈s〉
vs t and (c) C2

v (s) vs t both for a linear growth g = μ and constant
division rate h = k. (b) 〈s〉 vs t and (d) C2

v (s) vs t both for linear
growth g = μ and a division rate proportional to the cell-size h =
kd s. τ = 1mu. In both cases, 10 division steps and 5000 cells were
considered.

APPENDIX C: THE EFFECT OF NOISE IN SPLITTING
AND NOISE IN THE GROWTH RATE

In the main text, we showed how two kinds of noise: The
cell-to-cell variability in growth rate and stochastic variability
in division ratio can damp the oscillations in both the central
moments and the autocorrelation function.

To explain better the effect of each kind of noise in the
division process, in Fig. 6(a), we present the dynamics of the
mean (blue) and an example of a single-cell size-trajectory

(a)

(c)

(b)

FIG. 6. (a) Size dynamics for the mean (blue) and a single tra-
jectory (gray) with relatively high noise in growth rate. (b) Size
dynamics for the mean (blue) and a single trajectory (gray) with
relatively high noise in splitting position. (c) Effect of the noise in
both the growth rate and the splitting position measured as the height
of the peak of the Fourier transform of the autocorrelation function.

with a relatively high noise [C2
v (μ) = 0.75] in the growth

rate μ. As explained in the main text, during division, we
select a growth rate for the next cycle as a random variable
distributed following the gamma distribution with mean 〈μ〉
and the above mentioned variability C2

v (μ). The division rate
kd is selected proportional to the given μ such as the mean
added size before division is fixed. Bacteria are perfectly
halved during division. In order to reduce the noise in division
timing, we choose M = 50 division steps making the division
almost deterministic in time. As observed in Fig. 2, the mean
size also goes to ≈1.416 μ

Mkd
as t → ∞.

To study the noise in splitting position, we used a similar
approach. In Fig. 6(b), we present the dynamics of the mean
(blue) and an example of a single-cell size-trajectory with
a relatively high noise [C2

v (b) = 0.25] in the splitting ratio
b. As explained in the main text, during division we select
the splitting ratio as a random variable distributed following
a beta distribution with mean 0.5 and the above mentioned
C2

v (b). The size of the new cell after division is the size of the
mother size times this splitting ratio. Both the division rate kd

and the growth rate μ are fixed for all the cells such that the
mean added size before division is fixed and M = 50 division
steps were considered. Unlike what is observed in Fig. 2, the
mean size is altered reaching a steady-state value smaller than
when considering only noise in growth rate. This can be due
to the possibility of having very small bacteria, and since they
take more time to reach the target division steps, these small
bacteria are over-represented in the sampled population. A
similar effect was also reported previously [20].

To understand better the effect of each kind of noise on the
damping, we study the Fourier Transform of the autocorrela-
tion function. As result of the oscillations, we expect a peak in
the main harmonic corresponding to a period of one doubling
time τ = ln(2)

μ
. As result of the damping, when increasing the

noise in each variable, we expect that peak to become smaller.
In Fig. 6(c), we present the height of this peak when changing
the noise in each variable.

To explain the limits in each case, we observe that, in
the way we modeled each random variable, there are some
higher limits on the possible noise. For instance, in the noise
in splitting, the widest possible distribution is the uniform
distribution in the interval (0,1) which has a C2

v (b) = 1/3.
So, in the Fig. 6(c) we present this C2

v (b) along the interval
(10−5, 1/3) in logarithmic scale trying to present variations
relative to this maximum possible C2

v (b). Regarding the noise
in growth rate, in order to have a distribution parametizable
with the mean and the variance, we selected the gamma distri-
bution for this variable. In the same sense, the widest kind of
gamma distribution with a given mean 〈μ〉 is the exponential
distribution having C2

v (μ) = 1. We therefore present the peak
height with the noise in growth rate relative to the noise of the
exponential distribution.

When we compare the effect of each kind of noise in the
peak of the Fourier transform of the autocorrelation function,
we observe that both noises affect it in similar way when we
compare them relatively to the highest achievable noise. So
the conclusion of this approach is that both noises damp the
oscillations in a similar way but they can alter the size distri-
bution modifying the central moments dynamics differently.
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