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Hidden role of mutations in the evolutionary process

Alexandre de Aquino Soares * and Lucas Wardil
Departamento de Física, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG),

31270-901 Belo Horizonte, Minas Gerais, Brazil

Louis Bernard Klaczko
Departmento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp),

C. P. 6109, 13083-970 Campinas, São Paulo, Brazil

Ronald Dickman
Departamento de Física and National Institute of Science and Technology for Complex Systems, Instituto de Ciências Exatas (ICEx),

Universidade Federal de Minas Gerais (UFMG), C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil

(Received 1 February 2021; revised 5 October 2021; accepted 5 October 2021; published 25 October 2021)

Mutations not only alter allele frequencies in a genetic pool but may also determine the fate of an evolutionary
process. Here we study which allele fixes in a one-step, one-way model including the wild type and two adaptive
mutations. We study the effect of the four basic evolutionary mechanisms—genetic drift, natural selection,
mutation, and gene flow—on mutant fixation and its kinetics. Determining which allele is more likely to fix
is not simply a question of comparing fitnesses and mutation rates. For instance, if the allele of interest is less
fit than the other, then not only must it have a greater mutation rate, but also its mutation rate must exceed a
specific threshold for it to prevail. We find exact expressions for such conditions. Our conclusions are based on
the mathematical description of two extreme but important regimes, as well as on simulations.
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I. INTRODUCTION

The evolution of biological populations—the changing
frequencies of genetic types over time—is driven by four
principal forces: genetic drift, natural selection, mutation, and
gene flow [1]. Genetic drift corresponds to fluctuations in fre-
quencies with no preferred direction, as in unbiased diffusion.
Natural selection drives the composition toward the fittest
genotype. Mutation creates new types, guaranteeing genetic
diversity. Last, gene flow consists of the exchange of genetic
types between populations. In the standard view, mutations
introduce novelty but do not determine the direction of evo-
lution [2–4]. Once mutation has created new genetic types,
the latter compete in a race determined by fitness, that is, the
tendency to increase in frequency in subsequent generations,
reflecting fertility, viability, and other factors given the present
environment [5].

Nevertheless, mutation can have a more prominent role in
evolution. Yampolsky and Stoltzfus [6] proposed a model in
which one mutant is fitter while the other arises with a greater
likelihood and showed that the prevailing type can shift when
mutability (an overall factor multiplying all mutation rates) is
varied.

Interplay between mutation rates and fitnesses has been
studied via experiment and simulation, as well as analytically
[7–11]. As an example of mutation having a determing role,
we may cite the class of point mutations, called transitions
(mutations from purine to purine or pyrimidine to pyrimidine)
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which occur at a higher frequency than transversions (muta-
tions from a purine to a pyrimidine, or vice versa).

Stoltzfus and Norris [11] analyzed the hypothesis that tran-
sitions are overrepresented because they are less effective in
altering proteins. They show, however, that this effectiveness
is weak and thus the prevalence of transitions is not likely to
be explained as selection on proteins, favoring the hypothesis
that ratios between mutation rates (that is, mutation biases),
may direct evolution.

In the context of adaptive evolution (the process by which
fitness increases), Stolzfus et al. [7] found that transitions are
overrepresented among adaptive mutations. More specifically,
in Ref. [9] they studied the molecular basis of convergent
increases in the affinity of hemoglobin for oxygen in high-
altitude birds and identified causative substitutions for the
increased affinity. The dinucleotide consisting of a cytosine
followed by a guanine in the same strand (CpG), depending
on their frequent modification by methylation, is more prone
to mutation than other dinucleotides. They find that a dispro-
portionate number of causative amino acid replacements are
attributable to CpG, and because this dinucleotide is asso-
ciated with a higher mutation rate, their results suggest that
mutation bias influences the outcome of molecular adaptation.

Mutational dynamics is commonly analyzed using a
stochastic birth-and-death process with a finite population.
Because the population is finite, it will eventually become
homogeneous; homogeneity can be violated if one or more
mutations are possible. The probability of attaining a homoge-
neous state is called the fixation probability. Thus, if mutation
rates have an effect on the direction of evolution, then they
should affect fixation probabilities.
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There are many stochastic models that can be applied to
population genetics [12–27]. Here we analyze the Wright-
Fisher model in a population starting with the wild type and
evolving to one of two mutants. We study which mutation pre-
vails as the mutation rates are varied and show that mutation
rates, fitness, population size, and gene flux are all relevant
to this process. We investigate the kinetics of the process as
mutability is varied, focusing on two regimes, rare mutations
and frequent mutations, and find analytical expressions for
specific regimes, establishing thresholds for changes in preva-
lence.

Furthermore, if we suitably redefine the concept of preva-
lence in the presence of continuous migration, then the
competition between mutants (up to a certain value of the
rate of exchange of the population with an external wildtype
population) is weaker the greater the gene flow. We study
these phenomena using computer simulation and analytical
approximations that become exact in specified limits. Addi-
tionally, we analyze the time evolution of the composition
of the population before fixation and how it depends on the
evolutionary parameters. Interestingly, coexistence of the two
mutants (or clonal interference [28,29]) favors fixation of the
fittest type, whereas if both mutants are quasineutral, then the
higher mutation rate may dictate which type wins. The larger
the population, the stronger the effect of clonal interference.

This work is organized as follows: In Sec. II we define
the model. Then, in Sec. III, we demonstrate that all four
mechanisms may lead to distinct evolutionary steps. Follow-
ing this, we concentrate on the mechanisms of drift, selection,
and mutation, for which we have robust analytical and numer-
ical results. In the analytical study, we examine limits of the
probabilities of absorption of the mutants, and the conditions
for one mutant to prevail over the other in different regimes.
Numerical results complement the analysis and are used to
probe nonextreme regimes. Finally, in Sec. IV, we summarize
our main results, compare our work with the literature, and
offer perspectives.

II. THE MODEL

We study a generalization of the Wright-Fisher model [30].
Let Nt

W , Nt
A, and Nt

B be the numbers of individuals of type
W (the wild type), A, and B (the two mutants), respectively,
at generation t . We set Nt

W + Nt
A + Nt

B = N , the fixed popu-
lation size. The corresponding numbers at generation t + 1
are drawn from a multinomial distribution with probabilities
proportional to:

pt+1
W ∝ Nt

W (1 − rA − rB) + (
wANt

A + wBNt
B

)
f ,

pt+1
A ∝ (1 − f )wANt

A + Nt
W rA,

pt+1
B ∝ (1 − f )wBNt

B + Nt
W rB, (1)

which are normalized by their sum. The variables pt
W , pt

A,
and pt

B are the probabilities of the alleles W , A, and B at time
t to be sampled at the next generation. rA = r and rB = r/ρ
are the mutation rates for mutants A and B, r is the mutation
rate or mutability, and ρ is the mutation bias. wA and wB are
the fitnesses of types A and B, and f is the rate of exchange
of the population with an external wildtype population. Let us
fix wB � wA � wW ; the fitness of the wild type, wW , is set

rA = r rB =
r

ρ

wA ≤ wB

FIG. 1. Model for mutations of wildtype haploid individuals at
a single locus. The wild type W can mutate to types A or B. The
mutation rate to A (thicker line) is greater than to B, but the fitness
of B is higher, wW � wA � wB, in which wW , the fitness of the
wild type, is set to unity. The mutation bias, ρ > 1, is set so that
rA/rB = ρ.

to unity. Note that in this article we deal only with average
to high values of the fitnesses of the mutants. It is out of our
scope to study quasineutral mutations [31–33], which would
demand significant changes to our model. It is usual to recast
the fitness of the mutants as wi = 1 + si, where si is called
coefficient of selection, with si > 0, corresponding to adaptive
mutations. The actual probability of mutation is equal to r�t .
But, because the process is discrete with time interval equal to
unity, we sometimes refer to rA and rB as mutation rates.

The basic model is sketched in Fig. 1. The initial, homo-
geneous population has only wild types. In the presence of
one-way mutations and absence of gene flow ( f = 0), which
is the scenario we focus on, the population will certainly reach
a state in which all individuals are of type A or all are of
type B. Once an all-A or all-B state is attained, there are no
further mutations, and the population remains in this state,
i.e., the all-A and all-B states are absorbing. After the first
mutation takes place and before reaching an absorbing state,
the population can return, one or more times, to the initial
all-W state.

The fixation probability of an allele in a heterogeneous pop-
ulation is defined as the probability that the frequency of this
allele reaches unity. Because the all-W state may be revisited
repeatedly before one of the absorbing states is reached, we
make the following distinction between the fixation and the
absorption probabilities. The former is the probability to reach
a homogeneous state for the first time after the first mutation
takes place. We denote by πA

f , πB
f , and πW

f the fixation proba-
bilities of each type. The time it takes from the first mutation
until fixation is called the fixation time. Complementarily, we
define the absorption probability as the probability to reach
an absorbing state (all-A or all-B). We denote by πA

a , πB
a , and

πW
a the absorption probabilities of each type, with πW

a = 0
and πA

a + πB
a = 1. Table I lists the symbols used in this work.

We study this model via simulation, and obtain results
for all regimes of mutations, including rare and frequent
mutations. Subsequently, we model analytically the latter
two regimes, and investigate approximations based on these
results.
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TABLE I. Symbols for the evolutionary parameters and variables.

πW
f , πA

f , πB
f Fixation probability of types W , A, and B, respectively.

πW
a , πA

a , πB
a Absorption probability of types W , A, and B, respectively. πW

a = 0.

t f Fixation time.

N Population size.

Nt
W , Nt

A, Nt
B Size of subpopulations W , A, and B, respectively, at time t .

pt
W , pt

A, pt
B Probability of an individual to become type W , A, and B, respectively, at time t .

r Reference mutation rate. Also the mutability, a common factor that multiplies all mutation rates.

rA, rB Reference mutation rates from the wild type to types A and B, respectively. rA = r.

ρ Ratio of rA to rB, i.e., rB = rA/ρ.

θA, θB Mutation supply of types A and B, equal to N m r and N m r/ρ, respectively, in a wildtype population

wW , wA, wB Fitnesses of types W , A, and B, respectively.

sA, sB Selection coefficients of types A and B. wA = 1 + sA and wB = 1 + sB.

s Reference selection coefficient. sA = s.

ωA, ωB, ω Equal to e−2sA , e−2sB , and ωA/ωB = e2(sB−sA ), respectively

f Fraction of mutants that emigrate, and are replaced by wildtype individuals.

In simulations, each realization of the process begins with
N wildtype individuals. The generation at time t + 1 is formed
by sampling independently with replacement with probabil-
ities of sampling the types W , A, and B given by Eqs. (1)
(after normalization). The simulation ends when one of the
absorbing states (all-A or all-B) is attained. If a type has
infinite fitness, then it fixes the generation after it appears.
We calculate means and uncertainties over samples of 221

(�2 × 106) independent realizations. Population sizes varied
from a few individuals up to 109. The sampling algorithm
for the multinomial distribution corresponds to the command
“gsl_ran_multinomial” from the GNU Scientific Library [34].

Last, we can show that if we define the selection coefficient
of a single mutant allele of an n-ploid under additive fitness
and we fix the number of chromosomes, then the fixation
probability and fixation time are invariant with the ploidy [30].
Thus, our results remain valid for diploids and haploids if we
make the transformation 2N → N , s → 2s to go from diploid
to haploid organisms.

III. RESULTS AND DISCUSSION

This section is organized as follows. In Sec. III A we an-
alyze the absorption probability and in Sec. III B the fixation
probability and fixation times. Next, in Secs. III C and III D,
respectively, we develop analytical approximations for two
limiting regimes, rare and frequent mutations, and find the
conditions under which the least-fit mutant prevails. Finally,
in Sec. III E we extend the basic model to include more than
two mutants or a slightly deleterious mutation.

A. Absorption probability

Simulation results illustrating the effects of the mutation
rate and population size on the absorption probability, as well
as the effect of fitness and genetic flux on the steady-state
prevalence of the least-fit mutant are shown in Fig. 2. The
absorption probability of a type with higher mutation rate and
smaller fitness (in this case, type A) is typically close to unity
if the mutation rate is low but tends to zero as the mutation

rate attains higher values. The reason is that, at high mutation
rates, the two types can coexist and the advantage of the fitter
type may dominate evolution, depending on how close are the
fitnesses of the mutants. Interestingly, even if the fittest type B
has an infinite fitness value, the type A with greater mutation
rate and lower fitness still may have an absorption probability
close to unity for low mutation rates, as shown in Fig. 2(a).
On the other hand, type A no longer has an advantage if the
population size is large. In large populations, the number of
individuals of the fitter type B that appear due to mutation
is higher and, consequently, they take over the population
with higher probability, as shown in Fig. 2(b). Figure 2(c)
illustrates that increasing the fitness of A (increasing sA) in
the rare-mutation regime increases its absorption probability,
πA

a , as expected.
In the presence of migration, there is a continuous flux of

W types and hence no absorbing states. The dominant mutant
can be defined as the more populous one, more specifically,
the one that first reaches more than half of the total population
size. Figure 2(d) shows that the less-fit type is benefited by
an increase in the migration rate. The frequent gene flow
removal of mutants is compensated by the higher mutation
rate of type A.

To better understand the simulation results, let us develop
an analytical approximation for the fixation probabilities of
the mutants. This approximation can then be inserted in the
relation,

π i
a = π i

f

πA
f + πB

f

, (2)

where i ∈ {A, B}, to obtain the absorption probabilities.
Suppose that all mutations that may happen take place at a
single generation, an assumption that simplifies the analysis.
The probability of a set of subpopulations, (NW , NA, NB), in
the presence of mutation and drift in this same generation is

p(NW , NA, NB) = N!

NW !NA!NB!
(1 − r − r/ρ)NW rNA (r/ρ)NB .

(3)
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sA

sB
sB sA

sA

sB
sB sA

(a) (b)

(c) (d)

sB

sB

FIG. 2. Dependence of the prevalence of type A on the mutability r, the population size N , the fitness (in terms of the selection coefficient
sA) and the gene flow f . The disks and circles represent results from simulations. The solid disks (•) represent an infinite fitness for type
B and the empty circles ( ) represent a selection coefficient of B four times higher than type A. The continuous line (—) represents the
analytical approximation, Eq. (5). In panel (d), “relative frequency” means the frequency of A relative to both mutants in the stationary
state. The selection coefficients sA and sB are given by sA = wA − 1 and sB = wB − 1. Parameters are (a) N = 106, sA = 0.01, ρ = 1000;
(b) r = 1 × 10−6, sA = 0.01, ρ = 10; (c) N = 106, r = 1 × 10−12, ρ = 10; and (d) N = 100, ρ = 1.2, wA = 1.01, wB = 1.04.

When type B has an infinite fitness, type A will fix only
if type B does not arise, that is, NB = 0. In the presence of
selection only, the probability of fixation of NA individuals
in a population with N − NA wild individuals is given by the
classic result [30,35]

�A(NA) = 1 − e−2NAsA

1 − e−2NsA
= 1 − ω

NA
A

1 − ωN
A

, (4)

where wA = 1 + sA (sA is called the selection coefficient) and
ωA = e−2sA .

Thus, the probability of fixation of A can be approximated
as the product of the probability of a configuration (NW , NA, 0)
and the probability of fixation departing from that configura-
tion, summed over all configurations, that is,

πA
f =

N∑
NA=1

N!

NW !NA!
(1 − r − r/ρ)NW rNA

1 − ω
NA
A

1 − ωN
A

=
[
1 − (ρ+1)r

ρ

]N

ωN
A − 1

{[
1 − ρrωA

ρ(r − 1) + r

]N

−
[

r − ρ

ρ(r − 1) + r

]N}
. (5)

For a very small mutability r, the term with NA = 1 domi-
nates the sum, and the expression reduces to

πA
f = θA

1 − ωA

1 − ωN
A

,

where θA = Nr is the mutation supply of type A in a wildtype
population, and the second factor is the probability of a single
mutant A to fix. The restriction to r � 1/N indicates that the
absorption of type A is strongly affected by the mutants arising
in the first generations, that is, by the initial mutation supply.

Similarly, the probability of fixation of B is given by the
probability that at least one mutant B arises (NB > 0) and does
not depend on the presence of type A, that is,

πB
f =

N−1∑
NA=0

N−NA∑
NB=1

N!

NW !NA!NB!
(1 − r − r/ρ)NW rNA (r/ρ)NB

=
[

1 − (ρ + 1)r

ρ

]N{(
1

1 − r

)N[
ρ(r − 1)

ρ(r − 1) + r

]N

−
[

r − ρ

ρ(r − 1) + r

]N}
.

Again, for a very small mutability r, this formula simplifies to

πB
f = θB,

where θB = θA/ρ is the mutation supply of type B in a wild-
type population. Comparison with the small-r limit of the
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absorption probability of type A, shows that the mutation sup-
ply is a determinant factor. However, for type B, it is as if there
were a fixation probability term equal to unity multiplying the
mutation supply. In other words, the small-r approximation
shows that although type A has a small fixation probability,
this can be compensated by a greater mutation supply.

The expressions of the absorption probabilities are plotted
as solid lines in Figs. 2(a)–2(c). They work well in the low-
mutability regime, but at high mutability they overestimate
πA

a . This is explained by the more important role of recurrent
mutations at intermediate mutabilities, facilitating absorption
by B. Naturally, the higher the fitness of B, the stronger the
effect. For sufficiently high mutabilities, the continuous curve
coincides with the solid points: In this case essentially all
mutants appear at the first generation of the fixation process.

The assumption used to derive the analytical approxima-
tion sheds light on the mechanism driving absorption. For
example, the good agreement of the approximation for small r
indicates that the first generation of mutants is determinant for
the fixation success of type A. Considering mutational supply,
that is, the product of population size times total mutation
rate, we see that with a small mutation supply (Nr � 1) the
dynamics is well described as “one mutant at a time.” By
contrast, the disagreement between the approximation and
the simulation at high levels of mutation supply indicates the
crucial role of recurrent mutations, which occur only because
there are enough wild types that can mutate, even after the
first generation of mutants. The plateau observed in Fig. 2(b)
suggests that recurrent mutations have no role in the absorp-
tion process. However, at some point, for sufficiently large
population sizes, recurring mutations are responsible for the
abrupt decrease of πA

a .

B. Fixation probability and fixation times

The route to absorption is not always direct. Mutants can
arise and go extinct before they spread. The fixation proba-
bility of the wild type is a measure of the likelihood of the
mutations to disappear before they can fix. The fixation time
of type A or B is the number of generations between the
occurrence of the first mutation of that type and its fixation.
It is also possible to define the fixation time of the wild type
as the number of generations between the occurrence of the
first mutation, either A or B, and the fixation of W . Figure 3
shows the dependence of the fixation probability and fixation
times on the mutation rate.

At low mutation rates, the wild type fixes more than at
other mutabilities because of its numerical superiority over the
rare mutant. Although the fixation probability of the mutants
seems to be low for lower mutation rates, notice that, in the
end, no wild type remains. Because the fixation time of W
measures the time to return to the homogeneous state after it
was modified by a single mutant, one expects its fixation time
to be very small compared to the other mutants, as shown
in Fig. 3. Indeed, fixation of the wild type can be seen as
a renewal process [36] in which the population can return
to the all-W state after the first mutation. The probability
that the first mutation is of type A or type B is equal to
rA/(rB + rA) or rB/(rB + rA), respectively. Thus, in the rare
mutation regime, the fixation probability of the wild type is

t f

(a)

(b)

FIG. 3. Fixation probability of each type (a) and the fixation time
(b) as a function of mutability. The abrupt fall of the fixation time of
type A and its standard deviation is due to the finite sample size.
Parameters are N = 107, r = 1 × 10−9, sA = .01, sB = 0.056, and
ρ = 100.

given by

πW
f = ρ

ρ + 1

1 − (
1
ωA

)N−1

1 − (
1
ωA

)N + 1

ρ + 1

1 − (
1

ωB

)N−1

1 − (
1

ωB

)N .

Notice that if N is large, then πW
f ≈ 1, that is, most of the

time the mutations are lost and the population returns to the
homogenous wild state.

Figure 3 shows that in the regime of low mutation rates,
although type A fixes more often than B, type A takes more
time to fix. Interestingly, the fixation time for the mutant A is
reduced as mutability is increased, although competition from
B is also enhanced. The fixation time of mutant B shows a
peak at mutation rate close to the value at which the probabil-
ity of fixation of mutant A is higher than other variants. The
fixation time increases because there are more individuals of
type A to compete with. As mutability is further increased, the
number of both mutants increase, and fluctuations no longer
favor a greater competitivity of type A, so that the fixation time
of B decreases.

To have a better picture of the mechanisms of fixation of
each type, we analyze a population composed of only the wild
type and Ne initial mutants of the same type with effective
selection coefficient se, without any further mutation in the
evolutionary process. Then, we can ask what are the effective
values Ne and se that yield the same fixation probability and
fixation times as the full model. To calculate these effective
values, we need two equations. The first is Eq. (4); for the

044413-5



SOARES, WARDIL, KLACZKO, AND DICKMAN PHYSICAL REVIEW E 104, 044413 (2021)
N
e

s e

(a)

(b)

FIG. 4. Effective size and selection coefficients. The two graphs,
(a) and (b), must be read in pairs: For each r, the values of Ne and se

correspond to the solution of a system composed with the wild type
and Ne mutants of a single type that yields the same fixation prob-
ability and fixation time as the full model. The original data come
from simulation. Parameters are N = 107, sA = 0.01, sB = 0.056,
and ρ = 100.

second we can use the fixation time in the diffusive limit [37]
for our conditions (high α = 2Ns), given by,

τ =
∫ 1

q

[1 − e−2(1−q)Ns](1 − e−2qNs)

(1 − q)qs(1 − e−2Ns)
dq, (6)

where q is the initial frequency of the mutant type. For our
α = 105 the integrand between 0 and p is essentially null.
The initial number of mutants is then Nq. The numerical
results shown in Fig. 3 are used as input to Eqs. (4) and (6).
The resulting system of equations is solved using the integra-
tion algorithm QAGS (quadrature routine, adaptive integrand,
general function, singularities can be more readily integrated)
and the gls_multiroot_fsolver algorithm, both from the GNU
Scientific Library.

Figure 4 shows the effective subpopulation size of mutants
and the effective selection coefficient for both types of mu-
tants. The greater the effective number of mutants, the more
readily fixation occurs in the equivalent population. At small
mutabilities, the initial effective number of mutants is close
to the probability of having one mutation in the first step
of the full model, ρ/(ρ + 1) and 1/(ρ + 1) for types A and
B, respectively. This result corroborates the regime of “one
mutant at a time.” As the mutability value increases, the same
qualitative behavior found in Fig. 3 is observed, with a peak
of Ne near the r value associated with the peak in the fixation

N
A

N
B

N
A

N
B

N
A

N
B

N
A

N
B

(a) 1

2

3

4

(b)

(c)

(d)

FIG. 5. Typical simulated histories of population composition,
ending in absorption by A or B. The left panels [(a)–(d)] show
the evolution on the simplex NW + NA + NB = N , with the vertices
coresponding to single-species states and edges to two-species states.
The right panels (1–4) show the difference NA − NB, (regardless
the value of NW ) versus time. Histories ending in absorption by A
(B) are shown in blue (red). Rows correspond to mutabilities (from
top) r = 10−11, r = 10−7, r = 10−3, and r = .91. Parameters are
N = 106, sA = .01, sB = 0.02, and ρ = 10.

probability. In contrast to the large variation in the effective
size, the effective selection is roughly constant for type A
and has small variations for type B. In the diffusive limit,
the expected change of the number of mutants in one step
is proportional to the selection coefficient and the variance
of that change is inversely proportional to the size. Thus,
for type B, the variance decreases steadily with the increase
of mutability, while its mean step has a minimum close to
where competition has a maximum. So, at this mutability, type
B varies in small steps while the steps of type A vary in a
less-regular manner. This may be the reason for the relatively
higher competitiveness type B faces in the vicinity of this
mutability value.

The temporal evolution of the abundances of types A
and B, shown in Fig. 5, exhibits several interesting features.
At low mutation rates, there is no A-B coexistence at any
point in the evolution, but as we leave the rare-mutation
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regime, coexistence does occur. Interestingly, the evolution
in cases featuring fixation of type A is always monotonic,
whereas those in which type B fixes can be nonmonotonic.
The reason for nonmonotonicity in the latter case is sim-
ple: Since type B is fitter, it can recover after a delayed
emergence. If the mutation rate is high, then type B easily
dominates.

Finally, the evolution predicted by the approximation used
in the previous subsection, where its is supposed that all
mutations take place at once, is shown in the lowest row of
Fig. 5. The trajectories occur mostly at the segment AB (ex-
cept for the vertex all-W ) beginning around NA = Nρ/(1 + ρ)
and NB = N − NA, depending on the parameters, sometimes
shifted toward vertex all-A or all-B. For such parameters, the
fate of fixation is almost exclusively to B.

C. Rare mutations

In the regime in which mutations occur more slowly than
selection, fixation takes place before the next mutation ap-
pears. This is the “strong selection-weak mutation” (SSWM)
regime, as defined by Gillespie (1983) [38]. In this regime, the
analysis is greatly simplified and provides analytical support
for the simulations in the limit of low mutation supply.

To determine the absorption probabilities we note that, in
the SSWM regime, only one mutant coexists with the wild
type. Thus, the next equation furnishes the fixation probabili-
ties of both A and B, that is,

π i
f = 1 − ωi

1 − ωN
i

. (7)

The absorption probability of type i is then given by

π i
a = riπ

i
f

rAπA
f + rBπB

f

, (8)

which, after substitution, becomes

πA
a = 1

1 + 1
ρ

1−ωB

1−ωN
B

1−ωN
A

1−ωA

, (9)

where ωA = e−2sA and ωB = e−2sB .
To check this formula, the case ωA = ωB is helpful. In this

case there is no competitive advantage between the types and
the absorption probability should depend only on the relative
mutation rates. Indeed, Eq. (9) simplifies to

πA
a = ρ

1 + ρ
. (10)

In our initial problem, type A is less fit than type B,
but arises through mutation more often than type B, so that
fixation of A remains possible. To quantify the prevalence
of A over B, we determine the condition to have πA

a > 1/2.
Rearranging the terms in Eq. (9), we find

ρ >
1 − ωB

1 − ωN
B

1 − ωN
A

1 − ωA
. (11)

Since we are analyzing adaptive mutations, we have that
0 < ωB < ωA < 1. In the regime N → ∞, the condition sim-

sB sA

FIG. 6. Threshold for ρ above which type A prevails in the
regime of rare mutations from Eq. (11) for N = 10 (blue), N = 100
(yellow), and N = 1000 (green). The limit N → ∞, Eq. (12) (black,
dashed) and the approximation of Eq. (13) (red) are also shown.
Notice that the N → ∞ approximation fits the N = 1000 data well.
The greater the advantage of B over A or the larger the population
size, the larger the ratio ρ required for A to prevail.

plifies to

ρ � 1 − ωB

1 − ωA
. (12)

Because ωB < ωA, it follows that ρ must be always greater
than 1. For weak selection, esA ≈ wA = 1 + sA and wB =
esB ≈ 1 + sB, and Eq. (12) can be further simplified to

ρ � sB/sA. (13)

The condition in Eq. (11), or the simplification in Eq. (13),
shows that, if type A is to have an evolutionary advantage
over the fitter type, then the mutation rate to type A should
be higher than that to type B at least as much as determined
by Eq. (11). Notice that, the greater the fitness advantage of
B, the greater should be ρ, as shown in Fig. 6.

D. Frequent mutations

In the regime of frequent mutation, all mutations take place
nearly at once. Thus, the population is composed of types A
and B only and the equivalent of Eq. (4) (replacing wW , which
is equal to 1, by wB) is

πA
f = 1 − ωNA

1 − ωN
,

where ω = ωA/ωB. The probability of having NA mutants
in the first generation is given by the binomial distribution
B(N,

ρ

1+ρ
). Thus, the probability of absorption of A is

�A
a =

N∑
NA=1

B

(
N,

ρ

1 + ρ

)
1 − ωNA

1 − ωN

=
1 − (

ρ ω+1
ρ+1

)N

1 − ωN
. (14)

This equation also simplifies to Eq. (10) if sA = sB, which is
again a consistent result.

The condition for πA
a > 1/2 is

ρ >
T − 1

ω − T
, (15)
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FIG. 7. System with three adaptive mutants, with increasing fit-
ness and decreasing mutation rate. Parameters are N = 106, sA =
.01, sB = 0.02, sC = 0.04, and ρ = 10 from A to B and from B
to C.

where

T =
[

1

2
(ωN + 1)

]1/N

= ω

(
1 − log 2

N
+ 1

NωN
− log 2

N2wN
+ · · ·

)
.

For N � 1, because ω > 1, T is well approximated by the
leading terms,

T ≈ ω

(
1 − log 2

N

)
,

and Eq. (15) becomes

ρ > N
(ω − 1)

ω log 2
. (16)

Thus, the greater the size or the greater the selective advan-
tage of B over A (ω = e2(sB−sA )), the harder it is for type A to
prevail. It is still possible that type A prevail, but the mutation
rate to this type must be very high.

E. A further result

The results obtained in our model with two adaptive mu-
tants are also observed in systems that have three adaptive
mutants, as shown in Fig. 7. In this last model all three mutants
are generated by mutation from the W type. The selection
coefficients of types A, B, and C are sA = 0.01, sB = 0.02,
and sC = 0.04. Mutation rates are rA = r, rB = rA/ρ, and
rC = rB/ρ = rA/ρ2, with ρ = 10. Population size is N = 106.
Sampling of new individuals is performed according to

pt+1
W ∝ Nt

W (1 − rA − rB − rC ),

pt+1
A ∝ wANt

A + Nt
W rA,

pt+1
B ∝ wBNt

B + Nt
W rB,

pt+1
C ∝ wCNt

C + Nt
W rC,

The overall qualitative behavior persists: As we increase
the mutability, mutants with decreasing mutation rates and
increasing fitness prevail.

For small r, the most frequent mutant is absorbed more
often because the effectiveness of fixation itself, given that at
least one mutant already exists, is similar among the types.

So the mutation rate alone decides which type absorbs. As we
increase the mutation rate, we favor the coexistence of types A
and B while the mutation rate is too low for type C to appear.
Because type B is fitter than A, type B wins the competition in
this regime. Finally, with higher mutabilities, type C coexists
with the other types and wins the competition since it is the
fittest.

IV. CONCLUSIONS

The traditional understanding since the modern synthesis
of the role of mutations is that in the most typical cases,
the majority of the variability of a population, after some
rounds of mutation, is already available and the role of mu-
tations is merely to shift the frequency of preexisting variants
[2–4]. However, Yampolsky and Stoltzfus (2001) [6] showed
that, under competition between mutation rate and selection,
mutation bias can change the prevailing allele. We present
a thorough examination of the conditions for which bias in
mutation changes the prevailing type.

Our analysis employs a Wright-Fisher model starting with
a wildtype population which can mutate one-way to two other
mutants, A and B, with B fitter than A and the mutation rate
to A higher than that to B. We verify that a sufficiently strong
mutation bias can change the type that would prevail if selec-
tion were the only mechanism in operation. We observe this
under varying mutability, drift (created by fluctuation in small
populations), selective advantage and gene flow parameters.

Our results imply that the conditions under which the fate
of evolution changes are much broader than commonly ac-
knowledged. A focus on the effect of mutability shows that
distinct kinetics are possible, but that there are two basic
regimes: one with rare mutations and the other with frequent
mutations. In the rare regime, the less-fit type can prevail,
whereas in the frequent mutation regime this is nearly impos-
sible.

In addition, we show that increasing mutability may de-
termine the order which mutant among three. In addition,
we show that increasing mutability may determine the order
which mutant among three is more likely to prevail.

We expect that this work will underpin explanations for
the dynamics in more complex fitness landscapes, revealing
why one path prevails over others. This leads to questions
related to the predictability and repeatability of evolutionary
processes [39–44]. In future work we plan to investigate the
fate of evolution in simple, completely smooth fitness land-
scapes while varying population size, fitness, and mutability.
This should yield further insights to understanding the kinetics
and evolutionary fate in realistic and experimental landscapes
[45–51].
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