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Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains,
characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of
preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been
revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of
the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum
theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass
transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short
transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic
length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with
coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed
by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered
membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the
smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the
larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered
and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in
the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like
shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost
equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental
data on lateral distribution of transmembrane peptide tLAT.
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I. INTRODUCTION

Plasma membranes of mammalian cells are laterally in-
homogeneous [1,2]. Lipids and membrane proteins form
domains of 10–200 nm in size [1–4]. If enriched in sphin-
gomyelin and cholesterol, such domains are referred to as
rafts [5]. Rafts provide compartmentalization of the plasma
membrane as, along with a specific lipid composition, they
accumulate some membrane proteins and expel the others
[1,6,7]. Cells treated with mild nonionic detergent at low
temperature (e.g., 4°C) followed by ultracentrifugation yield
a low-density fraction enriched in sphingomyelin, choles-
terol and some membrane proteins [8–10]. This relatively
detergent-resistant fraction is considered to correspond to rafts
of intact plasma membranes [8–10]. The detergent extraction
provides an “operational” definition of raft-associated pro-
teins. The driving forces responsible for the distribution of
membrane proteins towards rafts or towards the surrounding
membrane are the focus of intensive studies [6,7,11].

The small size of cellular rafts substantially complicates
their study in vivo. However, in model lipid membranes the
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composition of which resembles the lipid composition of the
outer leaflets of plasma membranes, micron-sized domains
can be formed in the course of the phase separation induced
by a temperature decrease [12–15]. Albeit with some reser-
vations, such domains are used as models of cellular rafts.
In model membranes the decrease of temperature leads to
the phase separation resulting in the formation of coexisting
liquid-ordered (Lo) and liquid-disordered (Ld) phases; the raft-
like domains are liquid-ordered [12,15,16]. The Lo phase is
enriched in saturated lipids and cholesterol [12,14]. With very
rare exceptions, the domains of the Lo phase are bilayer, i.e., if
there is a monolayer ordered domain in one membrane leaflet,
then there will be a monolayer ordered domain in the opposite
leaflet at the same position [13,15–17]. The Lo bilayer is
thicker than the Ld membrane by about 0.5–1 nm [1,18–20].
Elastic moduli of the Lo phase are higher than those of the
Ld phase [21,22]. If the phases were homogeneous up to the
boundary, a step in the bilayer thickness would exist. Along
the step, the hydrophobic membrane interior would contact
with a polar medium, either water or polar lipid heads. It is
assumed that elastic deformations arise at the Lo/Ld phase
boundary to smooth the bilayer thickness step [23–25]. The
energy of the elastic deformations related to the unit length of
the interphase boundary is considered as a substantial contri-
bution to the interphase line tension [23–25]. The line tension
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plays an important role in the formation of Lo domains.
The kinetics of the phase separation is strongly regulated by
the value of the line tension [26–29]. The free energy of the
two-dimensional nucleus of the new Lo phase formed in the
initially homogeneous membrane can be written as [26,29]
W = 2πRγ + πR2�μ, where R is the Lo domain (nucleus)
radius, γ is the line tension at the Lo/Ld phase boundary,
and �μ < 0 is the difference of chemical potentials of the
membrane components inside and outside the Lo domain.
Such a dependence of the free energy on the domain radius
means that the nucleus formation is an activation process,
the height of the energy barrier of which is given by W ∗ =
–πγ 2/�μ = πγ 2/|�μ|. Thus, high line tension hinders the
initial stage of the phase separation, as it increases the energy
barrier of the nucleus formation, and deeper quenching (lower
temperature) is needed to demix the homogeneous membrane.
However, at the latest stage of the phase separation (so-called
Ostwald ripening [26,28,29]) the distribution of the lipid ma-
terial between the domains of the newly formed Lo phase is
driven by the line tension. The Laplace pressure inside of
the domain of radius R is P ∼ γ /R, and thus at constant γ ,
small domains have higher Laplace pressure as compared to
large domains. This leads to lipid flow from smaller domains
towards larger ones, and the average domain radius in the
ensemble increases with the time t as 〈R〉 ∼ (γ t )1/3 [29].
Besides, after the phase separation, the line tension favors the
fusion of small domains into larger ones, as in this process
the total length of the interphase boundary decreases. Thus,
although the line tension hinders the initial stage of Lo/Ld

phase separation, it accelerates the late stages and yields larger
domains in the final equilibrium state of the membrane.

The difference in physicochemical characteristics is con-
sidered to be an important determinant of protein sorting
between Lo and Ld phases [6,7,11]. Proteins can prefer a
particular lipid environment; moreover, it might be crucial
for proper protein functioning [30–32]. The study of mech-
anisms of the protein lateral sorting can be focused on two
possible purposes. The first one is to adjust the membrane
phase properties in order to provide the desired distribution
coefficient of the particular protein between the phases. In an
alternative approach, the purpose is to formulate criteria that
must be met by a protein for optimal distribution between the
coexisting phases of a given composition and characteristics.
In the series of works [6,7,11,33,34], it was demonstrated
that the distribution of transmembrane proteins between the
Lo/Ld phases is determined: (1) by the length, Lp, of the
transmembrane domain (TMD) (longer TMDs prefer the Lo

phase); (2) by the volume of amino acids comprising the
TMD (less bulky TMDs prefer the Lo phase); and (3) by the
posttranslational modification (palmitoylation/miristoylation
shifts the distribution towards the Lo phase). The first criterion
was formulated already in early works on the role of rafts
in the lateral sorting of membrane proteins in the form of
the concept of a hydrophobic matching. According to this
concept, the lateral distribution of transmembrane proteins
between membrane phases is driven by the tendency to match
the length of TMDs, Lp, with the hydrophobic thickness, 2h,
of the lipid bilayer. If the perfect matching is impossible,
then the protein prefers the bilayer, the hydrophobic thickness
of which has a minimal mismatch with the protein’s TMD.

Thus, proteins having longer TMDs should prefer the thicker
Lo phase, while proteins with relatively short TMD should
distribute into the thinner Ld phase.

In the framework of the concept of the hydrophobic match-
ing, the energy gain or penalty of the distribution of the protein
to a certain phase is determined by the energy of elastic
deformations of the membrane arising unavoidably in the case
of nonperfect matching. If the length of a cylindrically shaped
TMD exactly coincides with the hydrophobic thickness of the
lipid bilayer (Lp = 2h), no deformations arise, and the elastic
energy is zero. In the case when the length of TMD and the
hydrophobic thickness of lipid bilayer do not match exactly,
the absence of deformations would lead to the contact of
either the hydrophobic TMD with water or polar lipid heads
(Lp > 2h) or the hydrophobic membrane interior with water
or polar juxtamembrane regions of the protein (Lp < 2h). This
unfavorable contact of the polar and hydrophobic media can
be diminished at the expense of membrane deformations in
the vicinity of the protein. Moreover, from theoretical estima-
tions, it follows that elastic deformations should completely
compensate for the hydrophobic mismatch, i.e., it is energeti-
cally favorable to deform the membrane to nullify the area of
contact of the hydrophobic and polar media [23]. The charac-
teristic length of the deformation decay is several nanometers
[35–37]. The overlap of the deformations induced by different
membrane inclusions (e.g., transmembrane proteins) may lead
to their effective lateral interaction, mediated by the mem-
brane [35–37]. Thus, in addition to driving transmembrane
proteins to a certain membrane phase, hydrophobic mismatch
may influence their lateral aggregation or clustering. Such
deformation-mediated interactions between membrane inclu-
sions were studied in numerous theoretical works [38–42].

The energy penalty in the case of the hydrophobic mis-
match was shown to be large enough to induce the local
formation of the Lo phase around relatively long TMDs even
in the case of the absence of conditions for the global Lo/Ld

phase separation in the membrane [43,44]. Such a local phase
separation induced by an inhomogeneity (e.g., TMD) is re-
ferred to as wetting. This means that at certain conditions
it is energetically favorable to form a small patch of the
otherwise unstable Lo phase to facilitate compensation of the
hydrophobic mismatch between the lipid bilayer and a long
enough TMD. Thus, in addition to driving the lateral distribu-
tion of transmembrane proteins between coexisting membrane
phases, the hydrophobic mismatch may induce the local for-
mation of the appropriate phase around the transmembrane
protein.

However, strictly speaking, the hydrophobic matching
model provides obvious and physically transparent results
only when the TMD is cylindrical and its length is smaller
than or equal to the hydrophobic thickness of the bilayer,
Lp � 2h. Indeed, in the case of the equality between the length
and thickness (Lp = 2h), the optimal orientation of the protein
is parallel to the membrane normal, and no elastic deforma-
tions arise around the cylindrical TMD [Fig. 1(a)]. When
the TMD length is smaller than the hydrophobic thickness
of the bilayer (Lp < 2h), the membrane in the vicinity of
the protein has to compress; however, due to the symmetry,
the compression deformation is isotropic, and the protein is
still oriented along the membrane normal [Fig. 1(b)]. When
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FIG. 1. Possible ways of the compensation for the hydrophobic
mismatch between the length of the TMD (shown as a red rectangle)
and hydrophobic thickness of the lipid bilayer (shown in a light
gray). A cross section by the plane perpendicular to the membrane
surface and passing through the axis of revolution of cylindrical
TMD is schematically presented. (a) In the case of Lp = 2h there is
no mismatch; the TMD perfectly fits the bilayer, and no membrane
deformations arise. (b) If Lp < 2h, the membrane has to compress
around the TMD; the arising deformation is radially symmetric
(isotropic). (c) If Lp > 2h, the TMD may stand vertically and induce
radially symmetric (isotropic) stretching of the membrane. (d) An-
other possible way to compensate for the hydrophobic mismatch in
the case of Lp > 2h is to tilt the TMD with respect to the membrane
plane, thereby breaking the rotational symmetry of the system.

the length of the TMD exceeds the hydrophobic thickness
of the bilayer (Lp > 2h), the protein can stand along the
membrane normal and isotropically stretch the membrane in
its vicinity [Fig. 1(c)]. Alternatively, the protein can break
the symmetry and tilt with respect to the membrane normal
to completely hide its TMD in the hydrophobic core of the
bilayer [Fig. 1(d)]. This should obviously occur when the
TMD length substantially exceeds the hydrophobic thickness
of the lipid bilayer. Indeed, according to Hooke’s law, the
energy of isotropic stretching of the membrane induced by the
vertical TMD is proportional to the square of the hydrophobic
mismatch, i.e., to (Lp–2h)2, while the elastic energy induced
by the tilted TMD should grow linearly in Lp. Thus, in the case
of a relatively long TMD the prediction of the hydrophobic
matching model is not straightforward. The situation is even
more complex, as the elastic moduli of the Lo bilayer are
higher than those of the Ld membrane [21,22], and formally
a smaller deformation induced by a long TMD in the thicker
Lo bilayer may nevertheless cost a larger amount of energy
as compared to the thinner but softer Ld membrane. Besides,
the effective shape of a typical TMD is generally expected to
deviate from the cylindrical towards an hourglass-like one, as
charged and/or aromatic amino acid residues responsible for a
proper TMD positioning with respect to polar or hydrophobic

boundaries of the membrane [45–47] are relatively bulky. The
noncylindrical shape of the TMD should give rise to elastic
deformations even in the case of the perfect matching between
the TMD length and hydrophobic thickness of the bilayer.
Thus, the energy landscape of protein configurations requires
a detailed investigation.

In the present work, we utilize the theory of elasticity of
lipid membranes to obtain optimal configurations of cylin-
drically, hourglass-like and barrel-like shaped TMDs in lipid
bilayers characterized by different hydrophobic thicknesses
and elastic moduli. Cases of both isotropic and anisotropic
deformations were considered. We show that the landscape
of optimal configurations of transmembrane proteins in the
membrane with coexisting Lo and Ld phases is characterized
by several characteristic lengths of TMDs. In the optimal
configuration, relatively short TMDs stand perpendicular to
the membrane plane and induce radially symmetric (isotropic)
deformations. When the first characteristic length, L1, is ex-
ceeded, the isotropic optimal orientation of the proteins in
the Ld bilayer switches to the tilted one, i.e., the configura-
tion illustrated in Fig. 1(c) switches to the configuration of
Fig. 1(d). The TMDs, the length of which exceeds the second
characteristic length L2, are driven from the Ld bilayer to the
Lo phase, as the associated elastic energy becomes higher in
the Ld membrane as compared to the Lo phase due to the larger
hydrophobic thickness of the Lo bilayer. The third character-
istic length, L3, corresponds to the switching of the isotropic
orientation of the protein in the Lo bilayer to the tilted one.
Finally, when the fourth characteristic length, L4, is exceeded,
the energy of the protein-induced elastic deformations in the
Lo phase becomes higher than the energy of the deformations
the protein would induce in the Ld bilayer. This leads to a
quite counterintuitive prediction: proteins with long enough
TMDs should prefer to accumulate in the thinner (but softer)
Ld membrane rather than in the thicker (but more rigid) Lo

bilayer. Such a pattern is modulated by the degree of the
deviation of the TMD shape from the cylindrical one and the
value of the spontaneous curvature of lipid monolayers.

II. MODELS AND METHODS

We describe elastic deformations of the membrane within
the framework of the continuum theory of elasticity originally
developed by Hamm and Kozlov [48]. The approximation of
the continuous medium is justified since the characteristic
lengths of membrane deformations are substantially larger
than the lateral size of lipid molecules. We introduce a
Cartesian coordinate system Oxyz in such a way that the
intermonolayer surface of the flat unperturbed membrane co-
incides with the Oxy plane (Fig. 2). For definiteness, the
membrane plane is assumed to be horizontal; the lipid mono-
layer lying in the half-space z > 0 is referred to as upper,
while the opposing monolayer is lower. The functions, vari-
ables and parameters related to the upper monolayer are
denoted by index u, to the bottom by index l . The center of
the transmembrane domain (peptide) is placed at the point
x = y = z = 0 (Fig. 2). The TMD is assumed to be tilted in
the Oxz plane. The orientation of the TMD is characterized
by the lateral shift, l , of its upper edge center in the direction
of the Ox axis (Fig. 2). The tilted TMD reorients its adjacent
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FIG. 2. Illustration of parameters defining configurations of the
membrane with the incorporated vertical (a) or tilted (b) transmem-
brane domain. The cross section of the system by the plane passing
through the axis of revolution of the TMD is schematically shown.
See text for details.

lipids; the tilt is also followed by displacements of the neutral
surfaces of the upper and lower monolayers (Fig. 2).

An average orientation of lipid hydrophobic chains is de-
scribed by a vector field of unit vectors called directors, n.
This field is defined at the neutral surface, which lies inside
the monolayer at the region of the junction of polar heads and
hydrophobic chains of lipid molecules [49]. The shape of the
neutral surface is characterized by the field of its unit normal
vectors, N, and by the z-coordinate of the surface, H (x, y),
in the introduced Cartesian coordinate system (Fig. 2). All
deformations are deemed small, and their energy is consid-
ered in the quadratic order. We account for the following
deformations of the lipid monolayer: (1) bending, the energy
(per unit area of the neutral surface) of which is given by
B
2 [div(n) + J0]2 − B

2 J2
0 ; B, J0 are the bending modulus and

spontaneous curvature of the monolayer, respectively; (2) tilt,
the energy surface density of which is given by Kt

2 t2, where
Kt is the tilt modulus and t = n/(nN)–N ≈ n–N is the tilt
vector; (3) lateral stretching, the energy surface density of
which is given by Ka

2 α2, where Ka is the modulus of the
lateral stretching and a = (a–a0)/a0 is the relative change
of the area per lipid molecule, a, with respect to the initial
area, and a0, at the neutral surface; (4) lateral tension of
the monolayer, the energy surface density of which is given
by σ

2 [grad(H )]2, where σ is the monolayer lateral tension;
(5) Gaussian curvature, the energy surface density of which
is given by KGK , where KG, K are the Gaussian curvature
modulus and Gaussian curvature, respectively; and (6) twist,
the surface energy density of which is given by Krot

2 [rot(n)]2,
where Krot is the twist modulus; for unidimensional or axially
symmetric configurations, as well as for the case of t � 0, this
contribution is absent [50].

The ground state of the membrane is considered flat. The
deformation energy of the lipid monolayer can be written as
[35,38,41,51]

W =
∫

dS

{
B

2
[div(n) + J0]2− B

2
J2

0 + Kt

2
t2+ σ

2
[grad(H )]2

+Ka

2
α2 + KGK + Krot

2
[rot(n)]2

}
, (1)

where the integration is carried out over the neutral sur-
face of the monolayer. The deviations of all deformation
fields from the state of the flat membrane are considered
small. The director field, in particular, is expressed as nu,l =
[nx(x, y), ny(x, y),∓1]T , where “–” corresponds to the upper,
and “+” to the lower monolayer; T is the transposition.

We also assume that the lipid monolayer is locally vol-
umetrically incompressible, i.e., that each element of the
monolayer preserves its original volume upon deformations.
This assumption is justified by large values of the bulk mod-
ulus of lipid membranes (∼1010 J/m3 ≈ 3 × 103kBT/nm3

[52]; here kBT ≈ 4.14 × 10–21 J). The local incompressibil-
ity imposes restrictions on possible deformations. Within the
required accuracy, one can write for the upper and lower
monolayers, respectively [35,38,41,48,51]:

Hu − M = h − h2

2
div(nu) − hαu,

M − Hl = h − h2

2
div(nl ) − hαl , (2)

where M(x, y) is the z-coordinate of the monolayer interface
(Fig. 2). Within the required accuracy, the unit normal vectors
to the neutral surfaces of the upper and lower monolayers
can be written as Nu,l = (±∂Hu,l/∂x, ± ∂Hu,l/∂y, ∓ 1)T =
±grad(Hu,l ), where the upper signs correspond to the upper
and the lower to the lower monolayer. Thus, the tilt vec-
tor can be expressed as tu,l = nu,l − Nu,l = nu,l ∓ grad(Hu,l ).
We express αu,l from Eqs. (2), substitute it into the elastic
energy functional, Eq. (1), along with the expression for the
tilt vector, and obtain

W =
∫

dSu

{
B

2
[div(nu) + J0]2 − B

2
J2

0

+ Kt

2
[nu − grad(Hu)]2 + σ

2
[grad (Hu)]2

+ Ka

2h2

[
h − h2

2
div(nu) + M − Hu

]2

+ KGKu + Krot

2
[rot(nu)]2

}

+
∫

dSl

{
B

2
[div(nl ) + J0]2 − B

2
J2

0

+ Kt

2
[nl + grad(Hl )]

2 + σ

2
[grad (Hl )]

2

+ Ka

2h2

[
h − h2

2
div(nl ) − M + Hl

]2

+ KGKl + Krot

2
[rot(nl )]

2

}
. (3)

The energy functional Eq. (3) should be supplemented by
specific boundary conditions in the vicinity of the membrane
inclusion (the TMD incorporated into the membrane), as well
as by general conditions at infinity (far from the inclusion):

nu,l (∞) = (0, 0,∓1),

M(∞) = 0,

Hu(∞) = h,

Hl (∞) = −h. (4)
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FIG. 3. Schematic representation of hourglass-like (a) and
barrel-like (b) shaped TMDs. The cross section of the system by
the plane passing through the axis of revolution of the TMDs is
schematically shown.

For vertically inserted cylindrical TMDs, the following
specific boundary conditions are used:

nu(r = r0) = 0,

nl (r = r0) = 0, (5)

Hu(r = r0) − Hl (r = r0) = Lp,

where nu and nl are the corresponding directors of the upper
and lower monolayers at the peptide boundary, r is the radial
coordinate in the polar coordinate system, the center of which
is located at the center of the TMD edge, r0 is the peptide
radius, and Lp is the length of the TMD. It should be noted
that vertically inserted cylindrical TMDs do not deform the
membrane if their hydrophobic length coincides with the hy-
drophobic thickness of the lipid bilayer, Lp = 2h.

To analyze the influence of spontaneous curvatures of
Lo and Ld phase monolayers, we also consider the cases
of hourglass-like [Fig. 3(a)] and barrel-like [Fig. 3(b)] (i.e.,
noncylindrical) shapes of the TMDs. For simplicity, only sym-
metric with respect to the membrane midplane shapes of the
TMDs are considered.

Let us denote normal and tangential components of the
boundary director as nn and nt , respectively. Then the condi-
tions at the boundary of the hourglass-like or barrel-like TMD
with the vertical axis of revolution (directed along Oz axis)
can be written as

nu,l
n (r = r0) = nn0,

nu,l
t (r = r0) = 0, (6)

Hu(r = r0) − Hl (r = r0) = Lp;

nn0 < 0 corresponds to the hourglass-like TMD, while nn0 >

0 corresponds to barrel-like TMD.
In the case of a tilted TMD, the boundary conditions are

modified. It should be taken into account that when the TMD
is tilted, the boundary conditions are set at different points
(x, y) for the upper and lower monolayers. For the upper
monolayer, the boundary conditions are set on a circle of
radius r0 and center coordinates (l, H0) (boundary �u), and
for the lower monolayer on a circle of radius r0 and cen-
ter coordinates (–l, –H0) (boundary �l ) [see Fig. 2(b)]. We
denote the radius-vector of the points of either boundary as

r = (x, y)T . Upon tilting of the TMD, the tilt vector value
�n is added to the boundary director, n0(r), of the symmetric
configuration with the vertical axis of revolution; the resulting
boundary director in the tilted configuration becomes equal to
n0(r) + �n [Fig. 2(b)]. For TMD rotating in the membrane
clockwise in the Oxz plane, the components of the tilt vector
in the upper monolayer can be written as

�nux = − 2l

Lp
, �nuy = 0, (7)

where l is the x-coordinate of the center of the upper edge of
the TMD [Fig. 2(b)]. In the case of the tilted TMD, the third
boundary condition in Eqs. (5) and (6) changes similarly with
the substitution:

Hu(r) = H0 + r�nu, (8)

which implies that the neutral surface of the lipid monolayer
“follows” the boundary of the TMD upper edge when it is
tilted; H0 is the z-coordinate of the center of the upper edge
of the TMD. To summarize, the boundary conditions can be
written as

�nux(�u) = − 2l

Lp
, �nuy(�u) = 0,

�nlx(�l ) = 2l

Lp
, �nly(�l ) = 0,

Hu(�u) = Haverage +
√

L2
p − (2l )2

2
+ �ru�nu, (9)

−Hl (�l ) = −Haverage +
√

L2
p − (2l )2

2
+ �rl�nl ,

�nu =
(

− 2l

Lp
, 0

)
, �nl =

(
2l

Lp
, 0

)
.

Here �r = r–r0, where r is the radius vector of the point at
the circle �, r0 is the radius vector of the center of the circle �.
The value of Haverage is introduced for convenience; the energy
is minimized over this variable.

From the energy functional Eq. (3) it follows that within the
required accuracy the energy contribution of the monolayer
spontaneous curvature J0 can be expressed explicitly as

Wspont =
∫

dS{BJ0div(n)} = −BJ0

∮
(n · a)d�, (10)

where the last integration is performed over the TMD bound-
ary contour � at the monolayer neutral surface; a is the outer
unit normal vector to the contour. From this expression, it
follows that for cylindrically shaped TMDs the elastic en-
ergy is independent on the monolayer spontaneous curvature,
as in this case n � a at the boundary contour, and thus
(n�a) � 0. For hourglass-like or barrel-like shapes of TMDs
with a fixed normal component of the boundary director, the
corresponding contribution is a nonzero constant proportional
to the monolayer spontaneous curvature but independent on
the tilt angle of the TMD.

As the configuration of the tilted TMD lacks the rota-
tional symmetry, the minimization of the energy functional
Eq. (3) under the boundary conditions Eq. (4), (9) was car-
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ried out numerically for a discrete set of fixed orientations
of the TMD. This allowed us to obtain the dependences of
the elastic energy of the membrane on l . We used the finite
element method with an adaptive mesh, similar to works
[35,38,41,51]. Briefly, the plane Oxy was divided into el-
ementary triangles. In each triangle, the deformation fields
were approximated by polynomials of the first degree in co-
ordinates. Thus, smooth deformations were replaced by their
first-order interpolants, set on the nodes of the computational
mesh. Further, we integrated the energy surface density in
Eq. (3) over the area of each elementary triangle and took the
sum over all triangular regions (i.e., over the whole neutral
surface) of the lipid monolayer. This yielded the approximate
elastic energy of the monolayer as a function of unknown
values of deformation fields at mesh nodes. The total elastic
energy of the membrane Wtotal was obtained as a sum of
the elastic energies of its constituent monolayers. To get the
numerical value of the total elastic energy, the function Wtotal

was minimized over the values of deformation fields at mesh
nodes, except for those set by the boundary conditions Eq. (4),
(9). The boundary conditions at r = ∞ were actually set at a
rectangle, the sides of which were at least 25 nm far from the
TMD. The distance of 25 nm substantially exceeds the charac-
teristic lengths of decay of membrane deformations, which are
typically about several nanometers [35–37]. To improve the
accuracy of the approximate energy calculation, we used in-
homogeneous meshes: the surface density of nodes increased
in the TMD vicinity. The upper and lower boundaries of the
TMD were represented in a piecewise linear approximation.
The neutral surfaces of lipid monolayers around the TMD
were subdivided into five regions. Each region was specified
by the inequality ri–1 � d� ri, where d is the distance to the
boundary of the TMD; ri–1, ri are constants defining the inner
and outer boundaries of the regions, respectively, for i = 1, 2,
3, 4, 5. The numerical values of ri were r0 = 0, r1 = 1 nm,
r2 = 1.5 nm, r3 = 4 nm, r4 = 11 nm, r5 = ∞. We restricted
the maximum area of an elementary triangle of the computa-
tional mesh by 0.5γ (in nm2), and divided the regions defined
above into elementary triangles of the area not exceeding γϑi,
where θ1 = 0.01, θ2 = 0.02, θ3 = 0.04, θ4 = 0.05, θ5 = 0.5.
This algorithm allowed obtaining the numerical value of Wtotal

for each numerical value of γ set manually. We explicitly
checked that the effect of the finiteness of the mesh size,
γ , was insignificant. In several configurations of the TMD,
we calculated Wtotal on five gradually decreasing meshes and
extrapolated the results obtained to zero size of the mesh,
γ → 0, using second-order polynomial approximation. The
following values of γ were used: 0.62, 0.85, 1.05, 1.25, 1.5.
We obtained that the relative magnitude of the error of the
Wtotal determination on the meshes γ = 1.5 and γ → 0 was
about 1.5% or less (Fig. 4). Thus, it appeared permissible
to use the most coarse computational mesh γ = 1.5 without
extrapolation to an infinitely fine mesh.

To obtain numerical results, we utilized the elastic
parameters of the Ld lipid monolayer, which are
similar to those of dioleoylphosphatidylcholine (DOPC):
B = 10 kBT [53], Kt = 40 mN/m ≈ 10kBT/nm2 [48],
Ka = 133 mN/m ≈ 32kBT/nm2 [53], h = 1.5 nm [53],
σ = 0.1 mN/m ≈ 0.025 kBT/nm2, KG = –B/2 = –5kBT

FIG. 4. The difference of elastic energies Wtotal calculated on the
meshes of size γ = 1.5 and γ → 0 is relatively small. (a)–(c) The
case of the TMD of the length Lp = 3.2 nm, radius r0 = 0.65 nm
incorporated into the Ld bilayer; (d)–(f) the case of the TMD of
the length Lp = 5.0 nm, radius r0 = 0.65 nm incorporated into the
Ld bilayer. (a), (d) The dependences of Wtotal calculated on meshes
of size γ = 1.5 (red curves) and γ → 0 (blue curves) on the lateral
shift of the TMD upper edge center l . (b), (e) The differences of the
red and blue curves of panels (a) and (d), respectively. (c), (f) The
relative differences of the red and blue curves of panels (a) and (d),
respectively.

[54], and Krot = B/2 = 5 kBT [35,41]. For the monolayer
of the Lo phase we used the following parameters:
Kt = 40 mN/m ≈ 10 kBT/nm2 [48], σ = 0.1 mN/m ≈
0.025 kBT/nm2, and hydrophobic thickness ho = 1.8 nm
[55,56]. The bending modulus of Lo monolayers has been
estimated to be two to five times higher than the bending
modulus of Ld monolayers [21]. The modulus of the lateral
stretching of the Lo phase is not actually known; it is only
expected to be several times higher than that of the Ld phase
[53]. Thus, in order to analyze the energy landscape of TMD
configurations in the Lo phase, we used several sets of the
elastic parameters: (1) “regular” Lo monolayer (denoted by
index r): Br = 5B = 50 kBT , Kr

a = 5Ka = 160 kBT/nm2;
(2) “soft-bending” Lo monolayer (denoted by index
b): Bb = 2B = 20 kBT , Kb

a = 5Ka = 160 kBT/nm2; (3)
“soft bending and stretching” Lo monolayer (denoted by
index a): Ba = 2B = 20 kBT , Ka

a = Ka = 32 kBT/nm2;
(4) “very soft” Lo monolayer (denoted by index e):
Be = B = 10 kBT , Ka

e = Ka = 32 kBT/nm2; and (5) “firm”
Lo monolayer (denoted by index f ): B f = 5B = 50 kBT ,
K f

a = 10Ka = 320 kBT/nm2. The Gaussian and twist moduli
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FIG. 5. The characteristic lengths of the cylindrical TMD controlling its tilt and lateral distribution between Ld and Lo phases. (a) The
dependences of membrane elastic energy on the lateral shift of the TMD upper edge center for different TMD lengths (indicated near each
curve, in nanometers). Red curves correspond to the TMD in the Ld bilayer, green curves in the regular Lo bilayer. Each curve has a global
minimum W0 at the optimal shift l0; the minima are indicated by circles. (b) The shape of the membrane with the incorporated cylindrical
TMD of length Lp = 5.25 nm tilted by l = 1.9 nm in the Ld bilayer (top) and regular Lo bilayer (bottom). (c) The dependence of the membrane
elastic energy in configurations of optimally tilted cylindrical TMDs, W0, on the TMD length, Lp, in the Ld bilayer (solid red curve), and regular
Lo bilayer (solid green curve). The curves intersect at two characteristic lengths L2, L4. Dashed curves illustrate the analogous dependences for
the fixed zero tilt of the TMD (l = 0). Wide pink and light green stripes indicate the membrane phase of the lowest energy. (d) The dependence
of the optimal lateral shift of the TMD upper edge center on the TMD length. The dotted horizontal line corresponds to l0 = 0.1 nm, which is
arbitrarily chosen to represent a minimal substantial tilt. The intersections of the dotted line with the dependences l0(Lp) yield the characteristic
lengths of the TMD tilting: L1 ≈ 4nm, L2 ≈ 4.6 nm in Ld and Lo bilayers, respectively.

of the Lo monolayer are obtained as Ki
G = –Bi/2, Ki

rot = Bi/2,
for i = r, b, a, e, f . For the spontaneous curvatures of Lo and
Ld monolayers we utilized either zero values (Jr

0 = Js
0 = 0)

or the values estimated from the molecular dynamics data
[57]: Jr

0 = + 0.1 nm–1, Js
0 = –0.15 nm–1. In order to analyze

possible effects of the TMD diameter, we considered two
cases: r0 = 0.65 nm (approximately corresponding to the ra-
dius of α-helix) and r0 = 1 nm. The TMD lengths were Lp =
{3.0, 3.2, 3.3, 3.4, 3.6, 3.8, 4.0, 4.25, 4.5, 4.75, 5.0,

5.25, 5.5, 5.75, 6.0}nm for cylindrical TMDs, and Lp =
{2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00,

5.25, 5.50}nm for hourglass-like and barrel-like shaped
TMDs. The length Lp = 3.0 nm = 2h fits the hydrophobic
thickness of the Ld bilayer; the TMD length Lp = 3.6 nm =
2ho fits the hydrophobic thickness of the Lo bilayer.

III. RESULTS

A. Characteristic lengths of TMDs

First, we consider cylindrical TMDs of the radius r0 =
0.65 nm, incorporated into the Ld bilayer or regular Lo bilayer.
For each length Lp of the TMD, we sequentially fixed the shift
l of the TMD upper edge center, starting from l = 0 with the
step of 0.1 nm, and obtained the elastic energy W of each
configuration. The dependence W(l) is shown in Fig. 5(a) for
several values of Lp (indicated near each curve).

Typical shapes of the membrane with the incorporated and
tilted TMD are presented in Fig. 5(b), for Ld (top) and regular
Lo (bottom) bilayers, respectively; the particular configuration
of l = 1.9 nm for the TMD of the length Lp = 5.25 nm is
illustrated. Each curve W(l) in Fig. 5(a) has a global minimum
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W0 at some value of l = l0. We obtain the dependences of the
optimal energies on the TMD length, W0(Lp); the dependences
are illustrated in Fig. 5(c). The optimal values l0 for each Lp

are shown in Fig. 5(d). From the plots it follows that relatively
short cylindrical TMDs of lengths in the range of 3 to 3.4 nm
prefer to stand vertically (l0 = 0) in the Ld phase, as the
elastic energy of the membrane in this configuration is min-
imal [Fig. 5(c), the leftmost part of the red curve]. When Lp

exceeds L2 ≈ 3.4 nm, it becomes energetically favorable for
the cylindrical TMD to distribute into the Lo phase since the
hydrophobic mismatch between the TMD and the Lo bilayer
becomes smaller than that between the TMD and Ld bilayer.
However, as Lp increases, the energy of the TMD-induced
deformations grows more steeply in the Lo phase as compared
to the Ld phase, because the elastic moduli of the Lo bilayer
are higher. At Lp = L4 ≈ 5 nm it again becomes energetically
favorable for the cylindrical TMD to distribute into the Ld

phase: although the TMD has a larger hydrophobic mismatch
with the Ld bilayer, its compensation at the expense of the
tilt [Fig. 5(d)] requires smaller energy since the Ld bilayer is
substantially softer as compared to the Lo membrane.

The tilt degree of TMD is a function of its length. The
TMD tilts substantially when its length exceeds the bilayer
hydrophobic thickness by about 1 nm: L1 ≈ 2h + 1 nm =
4 nm for Ld bilayer, L3 ≈ 2ho + 1 nm = 4.6 nm for the Lo

bilayer [Fig. 5(d)]. Note that the characteristic lengths L2, L4

of the TMD transition between the phases are not directly
related to the lengths L1 and L3 [Fig. 5(d)]. Dashed curves in
Fig. 5(c) illustrate the dependences of the elastic energy of the
membrane on the TMD length, W(Lp), for the fixed zero tilt of
the cylindrical TMD (l = 0). Qualitatively, the dependences
are similar to those obtained for the optimized tilt, W0(Lp):
there are also two characteristic lengths of the TMD lengths at
which the energies of the deformations induced by the TMD
in Ld and Lo bilayers coincide. However, quantitatively, the
characteristic length Lq

4 ≈ 5.6 nm, the exceedance of which
drives the TMD preferential distribution to the Ld phase at the
zero tilt, is larger than L4 ≈ 5 nm [Fig. 5(c)].

Note that at characteristic lengths L2, L4 the energies of
deformations induced by the TMD in the Ld and regular Lo

phases are equal. This means that TMDs of such lengths
should be equally distributed between the phases. However,
the deviation of the TMD length from the characteristic one
should lead to exponentially growing asymmetry of the TMD
distribution between the phases, in accordance with the Boltz-
mann relation.

B. Dependence of characteristic lengths on TMD diameter

To analyze possible dependences of TMD characteristic
lengths on its diameter, we considered the case of the cylin-
drical TMD of the radius r0 = 1 nm. The dependence of the
elastic energy of Ld and regular Lo membranes optimized with
respect to the TMD tilt on TMD length, W0(Lp), is shown
in Fig. 6(a) for r0 = 1 nm. Qualitatively, the dependences are
quite similar to those in the case of r0 = 0.65 nm [compare
with Fig. 5(a)].

When the length of the cylindrical TMD matches the
hydrophobic thickness of the bilayer, the elastic energy is
zero (Lp = 2h = 3 nm for Ld and Lp = 2ho = 3.6 nm for Lo

FIG. 6. Characteristic lengths of the cylindrical TMD weakly
depend on its diameter. (a) The dependence of the membrane elastic
energy in the configurations of optimally tilted TMDs W0 on the
TMD length Lp in the Ld bilayer (black curve) and regular Lo bi-
layer (gray curve). The curves intersect at two characteristic lengths
L2 ≈ 3 nm and L4 ≈ 5.1 nm. Dashed curves illustrate analogous de-
pendences for the zero tilt (l = 0); they intersect at Lq

4 ≈ 5.5 nm.
Wide dark gray and light gray stripes indicate the membrane phase
of the lowest energy. (b) The dependence of the optimal lateral shift
of the TMD upper edge center on the TMD length. The dotted hori-
zontal line corresponds to l0 = 0.1 nm, which is arbitrarily chosen to
represent the minimal substantial tilt. The intersections of the dotted
line with the dependences l0(Lp) yield characteristic lengths of the
TMD tilting: L1 ≈ 4 nm, L3 ≈ 4.5 nm in Ld and regular Lo bilayers,
respectively.

bilayers, respectively). However, due to the larger TMD ra-
dius, the elastic energy grows more rapidly both in Ld and
Lo membranes in the case of r0 = 1 nm as compared to the
case of r0 = 0.65 nm. Nevertheless, the characteristic lengths
of the TMD appear to depend on the TMD radius very weakly.
In the case of r0 = 1 nm, the characteristic lengths L1 and L2

are the same, while L3 and L4 changed only by about 0.1 nm,
as compared to the case of r0 = 0.65 nm: L1 ≈ 3.3nm, L2 ≈
4 nm, L3 ≈ 4.5 nm vs 4.6 nm, L4 ≈ 5.1 nm vs 5 nm (Fig. 6).
Almost equal lengths L1 and L3 mean that the characteristic
length of the TMD controlling its tilt is mainly determined
by the elastic properties of the membrane, while the detailed
geometry of the TMD cross section is of less importance.
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C. Dependence of characteristic lengths on elastic
parameters of Lo phase

The elastic moduli of the Lo phase are not exactly known;
moreover, they can vary depending on the particular compo-
sition of the membrane [21,22]. We analyzed the dependence
of the TMD characteristic lengths on the rigidity of the Lo

bilayer. The softest Lo bilayer considered (denoted by index
e) has the same elastic moduli as the Ld membrane; the only
difference is the larger hydrophobic thickness of the bilayer.
The most rigid Lo phase (denoted by index f ) is characterized
by the five times higher bending modulus (as well as by the
higher Gaussian and twist moduli, as they are directly related
to the bending modulus in our model) and 10 times higher
modulus of the lateral stretching. Additionally, three cases of
the Lo bilayer of intermediate rigidity were considered; they
are denoted by indices a, b, and r, from softer to more rigid,
respectively. Optimized with respect to the TMD tilt, the de-
pendences of the elastic energy of Lo membranes at different
rigidities on the TMD length, W0(Lp), are shown in Fig. 7(a).
The analogous dependence for the Ld bilayer is shown for
comparison [red curve, Fig. 7(a)]. From the plot it follows that
the characteristic length Lp = L2 at which the elastic energies
induced by cylindrical TMD in Ld and Lo membranes coincide
and the condition 2h < Lp < 2ho is fulfilled, changes only by
about 0.1 nm as the Lo phase rigidity varies from the softest e
to the most rigid f . However, the TMD characteristic length
Lp = L4 strongly depends on the Lo membrane rigidity: for the
most rigid bilayer f L4 ≈ 4.9 nm, and L4 gradually increases
as the Lo phase becomes softer (L f

4 < Lr
4 < Lb

4 < La
4 ); finally,

for the softest membrane e the elastic energies induced by the
TMD in Ld and Lo bilayers never coincide [see orange and red
curves in Fig. 7(a)].

The dependences W0(Lp) are very close to each other
for the “firm” and “regular” Lo membrane; besides, L f

4 ≈
Lr

4 [compare blue and green curves in Fig. 7(a)]. These
membranes have equal bending moduli, B f = Br = 5B (per
monolayer), and two times different moduli of the lateral
stretching, K f

a = 2Kr
a = 10Ka. However, the dependences

W0(Lp) for the “regular” and “soft-bending” cases differ sub-
stantially (in particular, Lr

4 is less than Lb
4 by about 0.5 nm),

although these Lo bilayers have equal moduli of the lateral
stretching (Kr

a = Kb
a = 5Ka) and 2.5 times different moduli

of bending (Br = 2.5Bb = 5B) [compare green and dark blue
curves, Fig. 7(a)]. This allows concluding that the energy of
elastic deformations induced by the TMD mostly depends on
the bending modulus of the membrane, while the dependence
on the modulus of the lateral stretching is minor. Indeed, the
further decrease of the lateral stretching modulus by five times
(i.e., transition from the “soft-bending” to “soft bending and
stretching” cases) shifts the characteristic length L4 by 0.25
nm only [compare dark blue and magenta curves in Fig. 7(a)].

The dependences of the optimal lateral shift of the TMD
upper edge l0 on Lp are shown in Fig. 7(b) for Lo bilayers of
various rigidities. The characteristic length of the TMD tilting
in the Lo bilayer L3 depends on the bilayer rigidity: the softer
the bilayer, the larger L3, i.e., L f

3 < Lr
3 < Lb

3 < La
3 < Le

3 [Fig.
7(b)]. However, the dependence is quite weak: L3 values for
all considered cases of Lo phase rigidities fall into a relatively
narrow range of 4.5–4.8 nm [compare blue and orange curves

FIG. 7. Characteristic lengths of the cylindrical TMD, L3 and L4,
strongly depend on the Lo bilayer rigidity. (a) The dependences of
the membrane elastic energy in configurations of optimally tilted
TMDs W0 on the TMD length Lp in Lo bilayers of different rigidities:
“firm” (blue curve), “regular” (green curve), “soft-bending” (dark
blue curve), “soft bending and stretching” (magenta curve), and
“very soft” (orange curve). The analogous dependence for the Ld

bilayer (red curve) is shown for comparison. (b) The dependence of
the optimal lateral shift of the TMD upper edge center on the TMD
length. The dotted horizontal line corresponds to l0 = 0.1 nm, which
is arbitrarily chosen to represent the minimal substantial tilt. The
intersections of the dotted line with dependences l0(Lp) yield char-
acteristic lengths of the TMD tilting in the Ld bilayer (L1 ≈ 4 nm),
and Lo bilayers of various rigidities (L f

3 ≈ 4.5 nm, Lr
3 ≈ 4.6 nm,

Lb
3 ≈ 4.6 nm, La

3 ≈ 4.7 nm, Le
3 ≈ 4.8 nm).

in Fig. 7(b)]. This allows concluding that the characteristic
length of the TMD tilting is mainly determined by the hy-
drophobic thickness of the bilayer, while the elastic rigidity of
the membrane has a minor effect.

D. Hourglass-like and barrel-like TMD

The dependences of W0(Lp) for the slightly hourglass-
like (the normal component of the boundary director nn =
–0.1) and barrel-like (nn = + 0.1) shaped TMD are shown
in Figs. 8(a) and 8(b). The analogous dependences for the
substantially noncylindrical TMD (nn = ± 0.5) are shown in
Figs. 8(c) and 8(d). In the case of the noncylindrically shaped
TMD, the membrane elastic energy depends on the sponta-
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FIG. 8. Characteristic lengths of the hourglass-like (a), (c) and
barrel-like (b), (d) TMD controlling its lateral distribution between
Ld and Lo phases in the case when the deviation of the TMD shape
from the cylinder is relatively small, nn = ±0.1 (a), (b) or large,
nn = ±0.5 (c), (d). The dependence of the membrane elastic energy
in the configurations of optimally tilted TMDs, W0, on the TMD
length, Lp, in the Ld bilayer (red solid curves) and regular Lo bilayer
(green solid curves). Intersections of the curves determine two char-
acteristic lengths L2, L4. Wide pink and light green stripes indicate
the membrane phase of the lowest energy. Dashed curves illustrate
analogous dependences for zero spontaneous curvatures of Lo and Ld

phase monolayers (Jr
0 = Js

0 = 0). The nonzero spontaneous curva-
ture of the monolayer leads to the vertical shift (green and red vertical
arrows) of the dashed curves by the constants, which are determined
by Eq. (10).

neous curvature of its constituent monolayers [see Eq. (10)].
The corresponding contribution is constant and independent
of the TMD length and tilt angle. The constant is proportional
to the spontaneous curvature and bending modulus, and thus it
is substantially different in Lo and Ld phases. The dependences
W0(Lp) for the case of zero spontaneous curvatures of the
membrane monolayers (i.e., J0

r = Js
0 = 0) are shown in Fig. 8

as dashed curves. As the spontaneous curvatures of Lo and Ld

monolayers have opposite signs, the dependences W0(Lp) shift
in opposite directions for Lo and Ld phases if the spontaneous
curvatures (Jr

0 = + 0.1 nm–1, Js
0 = –0.15 nm–1) are taken into

account. In particular, for the hourglass-like shaped TMD, the
curves W0(Lp) for Ld and Lo phases shift downwards [red ver-
tical arrows in Figs. 8(a) and 8(c)] and upwards [green vertical
arrows in Figs. 8(a) and 8(c)], respectively. The hourglass-like
TMD induces a positive curvature in each monolayer, i.e.,
favors locally convex shape of the monolayer surface. How-
ever, macroscopically, the membrane is flat, i.e., it has zero
geometric curvature. Thus, in the Lo phase monolayer, which
has the positive spontaneous curvature, the introduction of the

positively curved hourglass-like TMD leads to the increase of
the deviation of the positive spontaneous curvature from zero
geometric curvature. This leads to the increase of the elastic
energy of the Lo membrane, resulting in the upward shift of
the curve W0(Lp) [green curves in Figs. 8(a) and 8(c)]. On
the other hand, in the Ld phase monolayer, the spontaneous
curvature is negative, and the introduction of the positively
curved hourglass-like TMD leads to the local decrease of the
deviation of the negative spontaneous curvature from the zero
geometric one. This leads to the decrease of the elastic energy
of the Ld membrane, resulting in the downward shift of the
curve W0(Lp) [red curves in Figs. 8(a) and 8(c)].

For the cylindrically shaped TMD, the elastic energy in-
duced by the peptide of the length L2 < Lp < L4 is lower in
the Lo phase as compared to the Ld phase [Fig. 5(c)]. This is
also the case for slightly noncylindrical TMD (nn = ± 0.1)
and zero spontaneous curvatures of the phases (Jr

0 = Js
0 = 0)

[Fig. 8(a), dashed curves]. In the case of the slightly
hourglass-like TMD (nn = –0.1) and spontaneous curvatures
of Lo and Ld phase monolayers having opposite signs (Jr

0 =
+ 0.1 nm–1, Js

0 = –0.15 nm–1) the dependencies W0(Lp) shift
upwards for the Lo phase and downwards for the Ld phase
[Fig. 8(a)]. Because of this, in the range L2 < Lp < L4, the de-
pendencies W0(Lp) for Lo and Ld phases approach each other
and may even almost coincide [Fig. 8(a)]. In this case, the dis-
tribution coefficient of the peptide between the phases should
be close to one in the wide range of the peptide lengths, e.g.,
from Lp = 4 nm to Lp = 4.75 nm for parameters of Fig. 8(a).
For strongly noncylindrical hourglass-like TMD (nn = –0.5)
the curves W0(Lp) for Lo and Ld phases do not intersect
[Fig. 8(c)]. The introduction of the nonzero spontaneous cur-
vatures of the phases leads to an even larger distance between
the curves W0(Lp); in this case, the Ld phase is strongly prefer-
able in the whole range of peptide lengths [Fig. 8(c)].

For the barrel-like TMD, the introduction of the spon-
taneous curvatures of the phases (Jr

0 = + 0.1 nm–1, Js
0 =

–0.15 nm–1) leads to the shift of the dependences W0(Lp) for
Ld and Lo phases upwards [red vertical arrows in Figs. 8(b)
and 8(d)] and downwards [green vertical arrows in Figs. 8(b)
and 8(d)], respectively. The barrel-like TMD induces negative
curvature in each monolayer, i.e., favors locally concave shape
of the monolayer surface. Thus, in the Lo phase monolayer,
which has the positive spontaneous curvature, the introduction
of the negatively curved barrel-like TMD leads to the local
decrease of the deviation of the positive spontaneous curvature
from zero geometric curvature. This leads to the decrease
of the elastic energy of the Lo membrane, resulting in the
downward shift of the curve W0(Lp) [green curves in Figs. 8(b)
and 8(d)].

On the contrary, in the Ld phase monolayer, the spon-
taneous curvature is negative, and the introduction of the
negatively curved barrel-like TMD leads to the local increase
of the deviation of the negative spontaneous curvature from
the zero geometric one. This leads to the increase of the elastic
energy of the Ld membrane, resulting in the upward shift of
the curve W0(Lp) [red curves in Figs. 8(b) and 8(d)]. For the
strongly noncylindrical barrel-like TMD (nn = + 0.5), the
curves W0(Lp) built for the case of Jr

0 = Js
0 = 0 do not inter-

sect [dashed curves in Fig. 8(d)]. Upon the introduction of the
spontaneous curvature (Jr

0 = + 0.1 nm–1, Js
0 = –0.15 nm–1),
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the curves W0(Lp) approach each other, which may lead to
the intersection or coincidence of the curves in a finite range
of the TMD lengths, e.g., from Lp = 3.8 nm to Lp = 4.3 nm
for parameters of Fig. 8(d). In this range, the distribution
coefficient of the peptide between the phases should be close
to one.

IV. DISCUSSION

The hydrophobic mismatch is considered to be one of the
major driving forces that control the lateral distribution of
transmembrane proteins between coexisting Ld and Lo phases
[6]. The long enough TMD is thought to induce deformations
of the adjacent Ld bilayer; the amplitude (and the energy) of
the deformations can be decreased upon the TMD distribution
into a thicker bilayer of the Lo phase. The hydrophobic mis-
match can be compensated by either stretching the membrane
in the vicinity of the TMD or by tilting the TMD with respect
to the normal to the membrane plane [58–61]. Modeling the
TMD tilt in the framework of continuum theories of elas-
ticity is challenging as the symmetry of the membrane with
the incorporated and tilted TMD is low; this prevents the
analytical minimization of the elastic energy functional. For
similar low-symmetry systems, even approximate analytical
solutions of the optimization problem are coupled with the
use of a nontrivial mathematic apparatus [42]. The interaction
of tilted peptides mediated by membrane elastic deformations
has been considered in a number of works [40,41]. However,
in these works, the tilt angle of the peptides with respect to the
membrane plane was fixed by the application of an external
torque. The models were developed for transmonolayer rather
than transmembrane peptides; so no hydrophobic mismatch
could arise in the considered systems [40,41].

In the present work, we utilized the continuum theory of
elasticity of lipid membranes to develop a model that allowed
consideration of the TMD tilt as a possible mechanism of
compensation of the hydrophobic mismatch with lipid bilay-
ers of various thicknesses and elastic rigidity. We obtained
that it becomes favorable to tilt the cylindrical TMD if its
length exceeds the bilayer hydrophobic thickness by about
0.5 nm, although the considerable tilting is manifested for the
exceedance of about 1 nm [Figs. 5(d), 6(b), 7(b)]. This value
appeared to be rather universal: it varied but slightly for the
TMD of different diameters (1.3 and 2 nm), for bilayers of
different hydrophobic thicknesses (3 nm and 3.6 nm), which
are characterized by an order of magnitude varying elastic
moduli (the bending modulus from 10 to 50 kBT ; the modulus
of lateral stretching from 133 to 1330 mN/m).

In a series of works, the tilt of transmembrane peptides
of various lengths incorporated into lipid bilayers of different
thicknesses has been investigated by means of molecular dy-
namics (MD) [58,62,63]. The optimal tilt angle is determined
from the umbrella sampling procedure. The results of our
calculations are in qualitative agreement with the results of
molecular dynamics. Generally, longer peptides exhibit larger
tilt angles in the bilayer of fixed hydrophobic thickness. The
range of angles that can be thermally accessed around the op-
timal tilt angle is quite wide (of the order of 20°) both in MD
[58] and in our model. Indeed, for long enough peptides (e.g.,
Lp = 4–5 nm) the dependences W(l) near the minima l0 are al-

most flat [Fig. 5(a)], and the exceedance of the minimal value
W (l0) by ∼1 kBT determines the range of l corresponding to
the tilt angles (2l/Lp) of the order of 20°. The characteristic
scale of the energy of the peptide tilting obtained by means of
MD is similar to that of our model. For example, MD predicts
that the tilting of the peptide, the hydrophobic length of which
is about 0.4 nm shorter than the hydrophobic thickness of the
lipid bilayer, by 40° should require about 10 kBT [58]. In our
model, similar tilting requires about 12 kBT [Fig. 5(a)].

However, the optimal tilt angles predicted by MD are
somewhat larger than those following from the continuum
modeling [58,62,63]. This difference is attributed to the en-
tropic contribution to the free energy that favors increasing
tilt angles as this allows a larger number of the peptide states.
This part of the energy is shown to decrease rapidly when
the tilt angle varies from 0 to about 10°. Further, the energy
monotonously decreases although slower; the total decrease
reaches about 7 kBT in the range of angles 0–40° [58]. It
is the entropic contribution that makes favorable the tilt of
peptides that are even shorter than the hydrophobic thickness
of the bilayer [58]. Such a counterintuitive effect cannot be
described in the framework of our continuum model. How-
ever, the results of the works [58,62,63] can be distorted to
some extent by the probable interaction of tilted peptides with
the boundaries of the simulation box. The modeled membrane
consists of 72 [58,62] or 100 [63] lipid molecules that cor-
responds to the linear size of the square box of about 5 to
6 nm only. In our recent work [41], we have demonstrated
that the membrane-mediated interaction between two tilted
transmonolayer peptides is still appreciable at separations of
about 10 nm; the interaction of the transmembrane peptides
should be even stronger.

In general, the methods that determine the peptide tilt
angle on shorter timescales (such as MD [58,62] or those
based on fluorescence spectroscopy [59]) yield larger opti-
mal tilt angles than the methods based on longer timescale
techniques (such as 2H nuclear magnetic resonance (NMR)
[60]). The underestimation of the tilt angles is attributed to
partial motional averaging on longer observation timescales.
Such smaller tilt angles are in better correspondence with our
results, most probably, as our continuum model operates with
elastic parameters of the membrane that are usually measured
on relatively long timescales of seconds or minutes [53,64]. At
the same time, NMR-based experiments report complete com-
pensation of the hydrophobic mismatch only at the expense
of the peptide tilt [60]. The works utilizing short-timescale
techniques observe adaptation (stretching or compression, i.e.,
deformation) of lipid molecules contacting with the peptide.
Our model predicts the dependence of the optimal tilt angles
on the elastic moduli of the membrane [Fig. 7(b)], and thus
agrees better with the results obtained from short-timescale
approaches [54,55] in this aspect.

The characteristic length L2, at which the energies of elastic
deformations induced by the TMD in Ld and Lo bilayers
coincide, depends, although rather slightly, on the elastic pa-
rameters of the Lo phase [Fig. 7(a)]. The coincidence of the
energies implies that the distribution coefficient of the TMD
between the phases should be close to 1. The distribution
coefficient between Lo and Ld phases of 1.1 has been obtained
for the TMD of the single-pass transmembrane protein, tLAT,
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in giant plasma membrane vesicles (GPMVs) [6]. The trunca-
tion of the hydrophobic part of the TMD by six amino acids
(i.e., by about 0.9 nm) results in the distribution coefficient
of 0.6. Assuming that the lateral distribution of tLAT obeys
the Boltzmann relation, we obtain that the energy difference
for wild-type tLAT in Lo and Ld phases should be about
ln(1.1/0.6) ≈ 0.6 kBT lower than for truncated tLAT. In our
model, the cylindrical TMD of the length Lp = L2 ≈ 3.4 nm
should equally distribute between the Ld and Lo phases, i.e.,
manifest the distribution coefficient of about 1 [Fig. 5(c)]. The
truncation of such a TMD by 0.9 nm results in Lp = 2.5 nm.
Extrapolation of the quadratic approximations of the elastic
energies [dashed lines in Fig. 5(c)] to Lp = 2.5 nm yields the
energy difference of 17 kBT between Lo and Ld phases for
the cylindrical TMD, which is much greater than the value
of 0.6 kBT predicted from distribution coefficients determined
experimentally [6]. However, plasma membranes, as well as
GPMVs, consist of about 100 different types of lipids. In
such a multicomponent system, the hydrophobic mismatch
between the TMD and the membrane can be compensated
directly by deformations of the lipid bilayer. Alternatively, the
TMD can recruit lipid molecules of appropriate hydrophobic
length, thereby forming a ring of boundary lipids [65] or
inducing a local phase transition, e.g., by wetting mechanism
[43,44]. In this case, the lateral distribution of the TMD be-
tween Ld and Lo phases should be mainly determined (or, at
least, modulated) by the preferences of its boundary lipids
to the particular phase of the membrane, rather than by the
TMD itself. The dependence of the distribution coefficient of
the TMD surrounded by boundary lipids on the TMD length
should be qualitatively the same: the longer the TMD, the
larger the distribution coefficient towards the Lo phase. How-
ever, quantitatively, the layer of boundary lipids is expected to
substantially suppress this dependence. We hypothesize that
such suppression may result in a very weak dependence of the
distribution coefficient of LAT and its mutants on the TMD
length as observed experimentally [6]. This hypothesis is in
agreement with the observation that in model giant unilamel-
lar vesicles consisting of three major lipid components of the
plasma membrane tLAT is excluded from the Lo phase [66].

Another possible way to explain the experimentally ob-
served weak change of the Lo/Ld distribution coefficient of
tLAT upon its truncation is to admit that the actual effective
shape of tLAT is not a cylinder. According to our calculations,
in the case of a slightly hourglass-like shape of the TMD, its
distribution coefficient between Lo and Ld phases may be close
to one in a wide range of TMD lengths; this effect is illustrated
in Fig. 8(a). However, to achieve a quantitative agreement,
such an explanation requires an additional assumption that
the effective “deformational” length of the wild-type (untrun-
cated) tLAT is quite large [about 4.75 nm for parameters of
Fig. 8(a)], i.e., larger than the actual length determined from
its helical secondary structure [6]. A similar conclusion that
the effective “deformational” length of the peptide should be
larger than its actual length was made in the work [67]. In
this work, the free energy change upon transfer of gramicidin
A (gA) dimer from thin dilauroylphosphatidylcholine (DLPC)
to thicker dimiristoylphosphatidylcholine (DMPC) bilayer has
been calculated using MD. The actual “crystallographic”
length of gA dimer approximately fits the hydrophobic thick-

ness of DLPC bilayer. Thus, the transfer to the thicker DMPC
bilayer was expected to give rise to an increase of the elastic
energy due to the hydrophobic mismatch. However, the cal-
culated energy decreased by about 3.8 kBT in the course of
the DLPC → DMPC transfer of gA dimer [67]. To achieve
a quantitative agreement with the MD data, it appeared nec-
essary to assume that the effective “deformational” length
of the gA dimer is larger than its “crystallographic” length
by about 0.4 nm (i.e., by ∼20%) [67]. However, although
the results and conclusions of the work [67] help a lot to
justify the assumption of the large effective “deformational”
length of the wild-type tLAT, which is necessary to explain
the weak change of the Lo/Ld distribution coefficient of tLAT
upon its truncation, we cannot exclude an alternative expla-
nation of the MD data of this work. Indeed, it is implicitly
assumed that the length of the gA dimer is the only parameter
that determines the induced deformations in the membrane.
However, the shape of the gA dimer is not strictly a cylin-
der, but rather an hourglass-like due to three relatively bulky
tryptophan residues at C-terminal of each gA monomer, as
visualized by means of MD in the works [45,46]. Thus, the
membrane elastic energy induced by gA dimer is determined
by both its length and the deviation of the dimer shape from
the cylinder, i.e., by the normal component of the boundary
director, nn, in terms of our elastic model. To estimate the
change of the elastic energy of the membrane upon DLPC →
DMPC transfer of gA dimer, we utilized the following elas-
tic parameters for DMPC (per monolayer): bending modulus
6.8 kBT [53]; hydrophobic thickness 1.275 nm [67]; lateral
stretching modulus 117 mN/m [53]; tilt modulus 40 mN/m
[48]; spontaneous curvature +0.075 nm–1 [68]. DLPC does
not form stable bilayers, and to the best of our knowledge its
elastic parameters are not determined. We can only roughly
estimate the spontaneous curvature of DLPC monolayer as
+0.3 nm–1. In the work [53] it is demonstrated that for DMPC
and shorter lipid diC13:0 the lateral stretching and bending
moduli are the same. Thus, for DLPC we used the values
of the elastic moduli that are experimentally determined for
DMPC. The hydrophobic thickness of the DLPC monolayer
is 1.075 nm [67]. For the radius of the gA dimer we used the
value of 1 nm, and we utilized its “crystallographic” length of
2.2 nm [67]. For such a set of the parameters, our model pre-
dicts the change of the elastic energy upon DLPC → DMPC
transfer of gA dimer to be equal to –3.5 kBT , if the value of
the normal component of the boundary director nn = –0.45.
This deviation of the gA dimer shape from the cylindrical
one is quite large. We thus suppose that, most likely, both
effects: (1) the increase of the effective “deformational” length
as compared to the actual length and (2) the deviation of the
gA dimer shape from the cylindrical one, should contribute to
the determined value of the elastic energy change upon DLPC
→ DMPC transfer of gA dimer [67].

MD modeling of the lateral distribution of tLAT demon-
strates its strong preference for the Lo/Ld phase boundary and
somewhat weaker preference for the Ld phase: at the Lo/Ld

phase boundary the energy of tLAT is about 4 kBT lower than
in the Ld phase, while in the Lo phase the energy is about 11
kBT higher than in the Ld phase [69]. Such energy values
are quite close to our calculated differences in energies of
elastic deformations induced by the TMD incorporated into
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the bulk of Ld and Lo bilayers. The preferential distribution of
a transmembrane peptide to the Lo/Ld phase boundary, most
probably, means that the hydrophobic length of the peptide
is intermediate between hydrophobic thicknesses of Ld and
Lo bilayers [30]. As demonstrated theoretically [24,25] and
observed in MD modeling [55,56,70], there is a zone of a
“hybrid” bilayer at the interphase boundary, the hydrophobic
thickness of which is intermediate between that of Ld and
Lo bilayers, ∼(h + ho)/2. The zone is very narrow: its width
is about 2–4 nm only [24,25,55,56,70]. Such a zone may
provide conditions of minimal hydrophobic mismatch to the
peptide. However, the capacitance of the “hybrid” zone to
accommodate the peptides is finite. After its saturation, the
peptides have to accumulate in the Ld phase, as demonstrated
for tLAT by means of MD [69]. Besides, it is shown theoret-
ically that a strong preference to the Lo/Ld phase boundary
should have short (Lp ∼ 2h) barrel-like peptides and long
(Lp ∼ 2ho) hourglass-like peptides [36], i.e., the length of the
peptide is not the only determinant of its lateral distribution.
Note that when comparing the elastic energy of the peptides
in the Lo and Ld phases we considered the bulk phases only.
The bulk parts of the phases may differ from the boundary
regions in local lipid composition, molecular packing, and,
consequently, in elastic rigidities: the saturated lipids form
rigid clusters that are bounded by the unsaturated lipids and
cholesterol, as demonstrated by means of MD [71,72]. We
took this inhomogeneity into account to some extent by at-
tributing to the bulk Lo phase the values of the elastic moduli
that substantially exceed those of the Ld phase. Although the
Lo/Ld boundary region seems to be softer than the bulk Lo

phase, its capacitance to accommodate the peptides is more
limited than that of bulk Lo, Ld phases. Besides, modeling
the tilted peptide at the Lo/Ld interphase boundary is quite
challenging, because of low symmetry of such a system: all
possible relative positions and orientations of the TMD and
the boundary should be explicitly considered. In the future,
such an analysis could be done in the framework of the model
developed here.

The model peptide WALP23, the hydrophobic length of
which is smaller than that of tLAT (17 vs 24 amino acids),
is shown to accumulate in the Ld phase unless it is palmitoy-
lated [73]. Palmitoylation drives WALP23 to the Lo-Ld phase
boundary, while palmitoylated tLAT is shown to accumulate
in the Lo phase [7]. Unfortunately, it is not obvious how to
describe the case of palmitoylated peptides in the framework
of our elastic model, as, most likely, the preference of the
palmitic acid for the Lo phase has chemical rather than elastic
nature. In the work [47] it was shown by means of MD that
both WALP23 and longer transmembrane peptide WALP31
(TMD length 25 amino acids) prefer the Ld phase. In the
course of the simulation, WALP31 demonstrated a strong tilt
with respect to the membrane plane. In the case of artificially
prevented tilt, WALP31 preferentially distributed to the Lo-Ld

phase boundary. This may imply that the hydrophobic length
of WALP31 has an intermediate value between the hydropho-
bic thicknesses of Ld and Lo bilayers and/or that its effective
shape is not a cylinder, but rather an hourglass-like one.

At the characteristic length L2 the energies of elastic defor-
mations induced by the TMD in Ld and Lo bilayers are equal
[Fig. 5(c)]. It seems that L2 is close to the actual hydropho-

bic length of the longest transmembrane peptides studied
experimentally or modeled by MD (e.g., tLAT, WALP31).
For substantially (by 1.5–2 nm) longer cylindrical peptides
or TMDs, our model predicts another characteristic length,
L4, at which the energies of elastic deformations induced
by the peptide in Ld and Lo bilayers should coincide again
[Fig. 5(c)]. This characteristic length is strongly dependent
on the elastic parameters of the Lo bilayer [Fig. 7(a)] and de-
pendent, although rather weakly, on the TMD diameter [Fig.
6(a)]. The origin of such a length is physically transparent.
Long cylindrical TMDs should prefer to distribute to the Lo

bilayer as this leads to the decrease of the hydrophobic mis-
match. However, if the TMD length does not perfectly fit the
hydrophobic thickness of the Lo bilayer, the TMD will induce
elastic deformations in its vicinity. Since the Lo membrane is
more rigid, with an increasing hydrophobic length of the TMD
the energy of the deformations should grow up faster in the Lo

membrane than in the Ld one even though, due to the larger
hydrophobic thickness of the Lo membrane, the amplitude
of the induced deformations is smaller. At the characteristic
length of the TMD Lp = L4, the energy of smaller elastic
deformations arising in the more rigid Lo membrane matches
the energy of larger deformations induced in the softer Ld

bilayer. Longer TMDs, Lp > L4, are thus predicted to prefer
the Ld phase [Fig. 5(c), 7(a)]. As far as we know, such a regime
has not been considered earlier. The strong dependence of the
characteristic length L4 on elastic properties of the Lo mem-
brane may be used to experimentally determine the elastic
moduli of the Lo phase, which are not exactly known to date.

The tilted transmembrane configuration of amphipathic α-
helical peptides is demonstrated to be an intermediate stage
of the pore formation process [74]. Such peptides are consid-
ered as perspective antimicrobial drugs. They are positively
charged, which allows them to bind negatively charged outer
leaflets of bacterial membranes [75]. At some critical surface
concentration, the peptides transform from surface-bound to
tilted transmembrane configuration to form a through pore in
the bacterial membrane [74,76]. This process is cooperative,
i.e., the pore is formed in the course of concerted action
of several peptides. However, at the initial stage, the tilted
transmembrane configuration is attained by a single peptide,
as demonstrated by means of MD [74]. Although the prob-
ability of such a transformation is determined by the energy
barrier rather than by the difference of the energies of the
final (tilted transmembrane) and initial (surface-bound) states,
the energy difference nevertheless represents estimation from
below for the activation barrier. That is, the energy barrier
cannot be lower than the difference of the energies of final
and initial states. The elastic energy of the membrane in the
surface-bound configuration of an amphipathic peptide can be
obtained analytically in the framework of a unidimensional
consideration, which has been shown to be quite accurate
[35]. In the present work, we calculated the energy of elas-
tic deformations induced by tilted transmembrane peptides
in various conditions. Along with the results of the work
[35], this provides a tool to estimate the probability of the
initial stage of the pore formation by amphipathic peptides in
membranes of different thicknesses, characterized by various
elastic parameters. Such a tool may be useful for improving
the selectivity of newly developed peptides, i.e., for better
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binding to bacterial membranes and ignoring mammalian cell
membranes.

In the present work, we calculated the energy of mem-
brane deformations, which are induced by TMD in different
configurations. The TMD was considered as a cylinder,
hourglass-like or barrel-like rigid nondeformable membrane
inclusion, which strictly imposes the boundary conditions on
the adjacent lipids. However, the possibility of some influence
of the surrounding bilayer on the TMD conformation cannot
be excluded. In such a situation, the same TMD may impose
different boundary conditions on the deformations, depending
on what kind of a bilayer it is embedded in. Probably the

simplest variant of such an adjustment is a change in the
hydrophobic length of the TMD, which is likely accompanied
by a simultaneous change in its diameter. The change in
the diameter has a little effect on the characteristic lengths
of the TMD (Fig. 6), while the influence of the length is
quite strong; such an adjustment path thus seems possible and
effective.
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