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Effect of extracellular volume on the energy stored in transmembrane concentration gradients
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The amount of energy that can be retrieved from a concentration gradient across a membrane separating two
compartments depends on the relative size of the compartments. Having a larger low-concentration compartment
is in general beneficial. It is shown here analytically that the retrieved energy further increases when the high-
concentration compartment shrinks during the mixing process, and a general formula is derived for the energy
when the ratio of transported solvent to solute varies. These calculations are then applied to the interstitial
compartment of the brain, which is rich in Na+ and Cl− ions and poor in K+. The reported shrinkage of this
compartment, and swelling of the neurons, during oxygen deprivation is shown to enhance the energy recovered
from NaCl entering the neurons. The slight loss of energy on the part of K+ can be compensated for by the uptake
of K+ ions by glial cells. In conclusion, the present study proposes that the reported fluctuations in the size of
the interstitial compartment of the brain (expansion during sleep and contraction during oxygen deprivation)
optimize the amount of energy that neurons can store in, and retrieve from, their ionic concentration gradients.
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I. INTRODUCTION

Concentration gradients can be used to store energy [1].
This phenomenon is well known in biology [2–4], and in par-
ticular in neuroscience [5], where neurons use ion gradients
to generate currents that charge or discharge the capacitive
element of their cell membrane, in this manner continually
adapting their electrical potential.

Neurons spend 50–60% of the oxygen they consume main-
taining an outward gradient for K+ and inward gradients for
Na+ and Cl− (for the physiological concentrations of these
ions, see Table I) [6–10]. The major part of this oxygen is used
by the Na+/K+ pump, which is located in the cell membrane
separating the intra- and extracellular compartments (the latter
compartment being interchangeably called interstitial space
in the present text) [7]. The Na+/K+ pump hydrolyzes the
metabolic intermediary adenosine triphosphate (ATP) to pro-
vide the energy for the expulsion of 3 Na+ ions against the
entry of 2 K+ ions [11,12].

Neurons subsequently use the energy stored in their Na+
and K+ gradients for several purposes, such as the secondary
transport of other ions [13], the uptake of nutrients such as
glucose [2], the re-uptake of released neurotransmitters such
as glutamate [14], or, as mentioned above, for the maintenance
of an electrical membrane potential of about −65 mV and the
exchange of signals with other neurons [9,15].

Failure to provide the necessary energy leads to a break-
down of the ion gradients on a time scale of seconds to
minutes [10,16,17]. Because all membrane transport is in
principle reversible, including the production of ATP by a
backward-running Na+/K+ pump [2–4,11,18,19], most of the
energy stored in the gradients could be retrieved as work done
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by the ions when they mix between the intra- and extracellular
compartments.

Apart from having different ion concentrations, the intra-
and extracellular compartments of the grey matter of the
brain also have strikingly different volumes. Diffusion stud-
ies demonstrated that α, the fraction of volume occupied by
the interstitial compartment, decreases from 0.4 after birth
to 0.2 in adult animals [20–22]. Remarkably, acute energy
deprivation and the resulting breakdown of the ion gradients
are invariably associated with a shrinkage of the interstitial
compartment [23–25]. The opposite movement, expansion of
interstitial space by up to 60%, was observed during sleep
[26], and is associated with a restoration of the ion gradients
[27]. The expansion of interstitial space during sleep has been
proposed to enhance the clearance of metabolites by promot-
ing their convective flow [26].

The present theoretical study investigates whether the ob-
served expansion and contraction of extracellular space may
serve another purpose, namely, to enhance the quantity of
energy that can be stored in, and retrieved from, the ion
gradients. Previous studies of the energy balance of neurons,
on the contrary, focussed entirely on the homeostasis of the
intracellular ion concentrations, and considered extracellular
space as an infinite reservoir of constant ionic composition
[9,13,28–30].

The text is organized as follows. In Sec. II a two-
compartmental model is presented. Section III A introduces
various mixing strategies, corresponding to different degrees
of cotransport of solvent and solute, and hence to differ-
ent extents of concomitant volume contraction or expansion.
Sections III B–III D analytically derive the work that can be
done by mixing of a single compound at constant volume
(Sec. III B), or by mixing at changing volume but with the
compound’s concentration held constant in one compartment
(Sec. III C), or by mixing with both volume and concentration
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varying (Sec. III D). The brief Sec. III E explains how the
model can be made more flexible by allowing the compound
to be buffered in one of the compartments. Two physiological
applications are presented in Secs. IV and V. Section IV
calculates the work done by multiple ion gradients that simul-
taneously evolve to their Donnan equilibrium, whereas Sec. V
explores the combined contributions of mixing, volume con-
traction and buffering to the concentration changes that have
been observed during acute energy deprivation or ischemia.
The Discussion (Sec. VI) focuses on the physiological rele-
vance of the present study. Detailed analytical derivations are
referred to the Appendixes.

II. MODEL AND NOTATION

The model consists of two compartments, characterized
by their volume V1 versus V2 (in units of m3) and by the
concentration (or ionic activity) of a single compound K , K1

versus K2 (in units of mol/m3 or mM). To quantify the stored
energy, the maximum amount of work is calculated that can be
done when the concentrations and volumes evolve from their
initial values K∗

1 , K∗
2 , V ∗

1 , and V ∗
2 to their final values K◦

1 , K◦
2 ,

V ◦
1 , and V ◦

2 . During mixing, the total volume V and the total
amount of solute Ktot (in units of moles) are conserved:

V = V ∗
1 + V ∗

2 = αV + (1 − α)V = V ◦
1 + V ◦

2 , (1)

and

Ktot = V ∗
1 K∗

1 + V ∗
2 K∗

2 = [αK1 + (1 − α)K2]V

= V ◦
1 K◦

1 + V ◦
2 K◦

2 , (2)

where α denotes the fraction of total volume V occupied
by the first compartment. In the derivations and graphs, α

will often be used as the independent (dimensionless) vari-
able representing volume (using V ∗

1 = αV ). To conform to its
meaning in the experimental literature [20–22], α then denotes
the fraction of volume taken by interstitial space. Hence at the
physiological value of α = 0.2, the ratio of interstitial (extra-
cellular) to intracellular volume is 0.2 to 0.8. In addition, if the
relative size of the compartments changes during the mixing
process, then the final volume V ◦

1 is denoted by ωV , but often

it is more useful to express V ◦
1 as the fractional change w of

the initial volume V ∗
1 , such that V ◦

1 = wV ∗
1 = wαV .

The two compartments are separated by a semipermeable
membrane barrier. An element of solute transferred from the
second to the first compartment is denoted by

dK = d (V1K1) = −d (V2K2).

Two special cases will be considered, in which either the
volume V1 (Sec. III B) or the concentration K1 (Sec. III C) is
held constant during the mixing process, so that dK reduces to
V1dK1 or K1dV1, respectively. Section III D then investigates
the general case, in which volume and concentration evolve
according to a parameter a which quantifies the degree of
cotransport of solvent and solute across the membrane,

dV = adK, (3)

where dV = dV1 = −dV2, such that parameter a has a posi-
tive value when the solvent and solute are transported in the
same direction.

Further, for the analytical calculations of energy in Sec. III,
only one compound K at a time is considered, and the total
energy is assumed to be the sum over all compounds (for
applications involving multiple gradients, see Secs. IV and
V). All transport is also assumed to be electroneutral. Even
if the actual transport mechanism has an electrogenic com-
ponent, such as with the 3Na+/2K+ pump, energy should
be considered a function of state that is independent of the
path traversed to reach that state [31,32]. Because the intra-
and extracellular bulk solutions are electroneutral, apart from
the narrow Debye-layer lining the cell membrane [28,33,34],
it is always possible to imagine an electroneutral transport
strategy to achieve the concentration gradients (see Sec. IV B).
In accord with this, the energy stored in the transmembrane
electrical potential will be shown to be only a small fraction
(<0.01%) of that stored in the ion gradients (Sec. IV C).

With the above conventions, the maximum work done, or
Gibbs free energy retrieved, by the passive transport of solute

TABLE I. Intra- and extraneuronal ion concentrations and calculated Donnan equilibria.

Physiologicala Donnan equilibriumb

concentration (mM) at α = 0.2 (mM) Transported chargesc

Ion speciesd inside outside inside outside (mM)

Na+ 12 143 42.9 19.6 24.7
K+ 140 4 126.5 57.8 −10.8
Cl− 8 116 23.9 52.3 −12.7
HCO−

3 10 31 11.5 25.1 −1.2
A−e 134 134

Total 304 294 338.8 154.8 0

aBased on Fig. 3 of Ref. [15]
bAs calculated in Sec. IV.
cPositive for positive charges entering the cells during mixing.
dDi-valent ions such as Ca2+ have concentrations that are an order of magnitude smaller than those of monovalent ions so that they can, to a
first approximation, be neglected in a study of energy storage.
eImpermeant anions, mostly negatively charged metabolites and macromolecules.
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FIG. 1. Diagram of paths plotting volume V1 of the high-
concentration compartment against solute concentration K1, both in
arbitrary units, starting from an initial state (1, 1). Different paths
represent different values of parameter a in Eq. (3), hence different
ratios of solvent to solute transport. The paths and their construction
are described in greater detail in Sec. III D.

K , can be expressed as

W = �G = −
∫ K◦

1

K∗
1

RT ln
K1

K2
dK =

∫ K∗
1

K◦
1

RT ln
K1

K2
d (K1V1),

(4)
where R denotes the gas constant (8.3145 J mol−1 K−1) and
T is the physiological temperature (310 K). Hence the in-
tegration over elementary amounts of solute dK leaving the
high-concentration compartment, each element multiplied by
the current level of the chemical potential (the integrand),
generates units of energy.

III. CALCULATION OF THE WORK DONE BY MIXING
OF SOLUTE

The present calculations investigate how the work done by
mixing of a single compound, flowing down its concentration
gradient across a semipermeable membrane barrier [Eq. (4)],
depends on the volume ratio of the compartments [parameter
α in Eq. (1)], and on the cotransport of solvent, hence on vol-
ume changes occurring during the mixing process [parameter
a in Eq. (3)].

A. Mixing strategies

Different mixing strategies, corresponding to different
ratios of solvent to solute transport [different values of pa-
rameter a in Eq. (3)], are represented by different paths
on the volume-concentration diagram of Fig. 1. Each path
plots the evolution of the volume V1 and solute concentra-
tion K1 of the high-concentration compartment during the
mixing process, using arbitrary units. The complementary
paths for the low-concentration compartment (not shown) are
completely determined from the conservation of total volume
[Eq. (1)] and the conservation of the number of solute particles
[Eq. (2)]. A detailed description of this diagram is deferred to
Sec. III D, but here the main mixing strategies are introduced.

Path A represents classical mixing at constant volume.
There is no cotransport of solvent, and any changes in concen-
tration are exclusively caused by the transmembrane flow of
solute (for instance through the Na+/K+ pump). This strategy
is dealt with in Sec. III B.

Path B plots the other extreme, in which only the solvent
is transported. Since there is no solute transport, no work is
done by mixing [Eq. (4)], and this path is drawn for reference
only.

A disadvantage of strategy A is that the concentration
gradient rapidly declines during the mixing process. In strat-
egy C, in contrast, concentration K1 is held constant by a
concomitant contraction of the high-concentration compart-
ment, whose volume V1 decreases. In this special case of
the cotransport of solvent and solute, the solute flows to the
low-concentration compartment at a concentration identical
to that of the high-concentration compartment it leaves (for
instance via ion-water cotransporter channels).

Strategy C will be shown to be superior to A (Sec. III C)
but may still not be optimal because, after mixing, a residue
of high-concentration solute is left within the contracted com-
partment (provided its final volume is finite). This residue
could have been used to do work during the mixing process.
Section III D therefore investigates other ratios of solvent
to solute transport. Three of these are represented by paths
D–F in Fig. 1; their construction is explained by Eq. (23) in
Sec. III D.

B. Mixing with fixed barrier between the compartments

The first special case arises when the volume of the two
compartments is held constant, hence V1 = V ◦

1 = V ∗
1 and V2 =

V ◦
2 = V ∗

2 (see path A in Fig. 1). Equation (4) then reduces to

�G

RT
= V ∗

1

∫ K∗
1

K◦
1

ln
K1

K2
dK1. (5)

Solving this integral [Appendix A, Eq. (A1)] yields the clas-
sical formula for the work of mixing at constant volume [31]:

�G

RT
= V ∗

1 (K∗
1 lnK∗

1 − K◦
1 lnK◦

1 ) + V ∗
2 (K∗

2 lnK∗
2 − K◦

2 lnK◦
2 ),

(6)

or, using Eq. (1),

�G

RTV
= α(K∗

1 lnK∗
1 − K◦

1 lnK◦
1 ) + (1 − α)

× (K∗
2 lnK∗

2 − K◦
2 lnK◦

2 ). (7)

If the mixing continues until the compound K is fully equili-
brated at its final concentration Ke = K◦

1 = K◦
2 , with

Ke = K tot

V
= V ∗

1 K∗
1 + V ∗

2 K∗
2

V
= αK∗

1 + (1 − α)K∗
2 , (8)

then the mixing is complete and Eq. (7) can be rewritten as

�G

RTV
= αK∗

1 lnK∗
1 + (1 − α)K∗

2 lnK∗
2

− [αK∗
1 + (1 − α)K∗

2 ]ln[αK∗
1 + (1 − α)K∗

2 ]. (9)

The blue curve in Fig. 2, labeled V1const, plots the work
done by complete mixing of the intra- and extracellular
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FIG. 2. Energy density in joules per liter retrieved from the phys-
iological concentration gradient of Na+ (Table I). Work done was
calculated for four different mixing strategies during which either
the volume of interstitial space (curve labeled V1const), or the Na+

concentration therein (curves labeled K1const), was held constant.
In the first case (V1const) mixing was complete. In the latter cases
(K1const), the interstitial compartment shrank during mixing from its
initial volume fraction α either to zero (ω = 0), or to half its initial
volume α (ω = 0.5α), or to a final volume that was less than α by an
absolute value of 0.2 [ω = max(0, α − 0.2)].

Na+ ions, starting from their physiological concentrations in
Table I. The horizontal axis plots the volume fraction α oc-
cupied by extracellular space, which is the high-concentration
compartment for Na+. The work done by mixing at constant
volume reaches its peak value of 86 J/l at a volume fraction
α = 0.41. At this maximum the derivative of Eq. (9) with
respect to α,

K∗
1 lnK∗

1 − K∗
2 lnK∗

2 − (K∗
1 − K∗

2 ){ln[αK∗
1 + (1 − α)K∗

2 ] + 1},
must vanish, hence

ln[αK∗
1 + (1 − α)K∗

2 ] = K∗
1 (lnK∗

1 − 1) − K∗
2 (lnK∗

2 − 1)

(K∗
1 − K∗

2 )

= K∗
1 lnK∗

1 − K∗
2 lnK∗

2

K∗
1 − K∗

2

− 1

or

αopt =
exp

(K∗
1 lnK∗

1 −K∗
2 lnK∗

2
K∗

1 −K∗
2

− 1
) − K∗

2

K∗
1 − K∗

2

= K∗
1

[K∗
1 /(K∗

1 −K∗
2 )]K∗

2
[−K∗

2 /(K∗
1 −K∗

2 )]e−1 − K∗
2

K∗
1 − K∗

2

. (10)

As expected from the problem formulation [Eq. (5)], multiply-
ing K∗

1 and K∗
2 by the same constant does not change the value

of αopt in Eq. (10), so that, denoting by K∗ the ratio K∗
1 /K∗

2 ,

αopt = K∗[K∗/(K∗−1)]e−1 − 1

K∗ − 1
. (11)

This function has a value of 0.5 at K∗ = 1, and approaches
1/e or (1 − 1/e) for K∗ → ∞ or K∗ → 0, respectively.

Hence, for optimal energy storage at fixed volume, the high-
concentration compartment must take a fraction of the total
volume between 0.37 and 0.5, depending on the magnitude
of the gradient [35]. The greater the gradient the lesser αopt.
Denoting by K∗

1 and K∗
2 , respectively, the extra- and intracel-

lular concentrations of the monovalent ions of Table I, αopt

takes values of 0.412 (Na+), 0.609 (K+, which has an outward
directed gradient), 0.408 (Cl−), and 0.455 (HCO3

−).
The optimal volume fraction αopt [Eq. (11)] can be

understood as follows. For optimal energy retrieval, the com-
partmental sizes should be such that (1) a maximum amount of
high-potential compound is available for downhill transport,
while at the same time (2) during transport the concentra-
tion gradient is maintained as long as possible. To quantify
the amount of high-potential solute, the equilibrium concen-
tration Ke must be subtracted from the initial concentration
K∗

1 present within the high-concentration compartment. This
quantity then measures, using Eq. (8),

α(K∗
1 − Ke) = α{K∗

1 − [αK∗
1 + (1 − α)K∗

2 ]}
= α(1 − α)(K∗

1 − K∗
2 ),

and maximizes at α = 0.5. On the other hand, maintaining
the concentration gradient after an infinitesimal amount of
solute �K has been transferred requires minimizing (see
Appendix A),

lim
�K→0

1

�K

(
ln

K1

K2
− ln

K1 − �K
V1

K2 + �K
V2

)
= 1

αV K1
+ 1

(1 − α)V K2
,

(12)

the derivative of which with respect to α vanishes at

α =
√

K1K2 − K2

K1 − K2
. (13)

The optimal value of α in Eq. (13) approaches 0.5 and 0.0
for K1 → K2 and K1 → ∞, respectively. Hence, using solely
Eq. (13) as optimality criterion, interstitial space should take
a volume fraction α of 0.225 (using the Na+ gradient), 0.86
(K+), 0.208 (Cl−), or 0.362 (HCO3

−).
In summary, from the considerations in this subsection, it

is clear that for mixing at constant volume (along path A in
Fig. 1) the low-concentration compartment should be greater
than the high-concentration compartment.

Finally, for large gradients (K∗
1 � K∗

2 ), the stored energy
scales almost linearly with the magnitude of the gradient K∗ =
K∗

1 /K∗
2 , as the partial derivative of Eq. (9) with respect to K∗

approximates the constant

lim
K∗→∞

αK∗
2 ln

K∗K∗
2

[αK∗K∗
2 + (1 − α)]

= −K∗
2 αlnα.

C. Mixing with movable barrier and fixed concentration in the
high-concentration compartment

The second special case of Eq. (4) arises when, during
mixing, the concentration K1 in the high-concentration com-
partment remains clamped at its initial value K∗

1 (see path C in
Fig. 1). This requires that, when an element of solute d (K1V1)
diffuses across the membrane barrier, solvent is extruded
as well, and the compartment shrinks. If the compartmental
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volume V1 thereby decreases to zero, then Eq. (4) reduces to

�G

RT
= K∗

1

∫ V ∗
1

0
ln

K∗
1

K2
dV1. (14)

This integral can be solved (Appendix B) to yield

�G

RT
=V ∗

1 K∗
1 lnK∗

1 + V ∗
2 K∗

2 lnK∗
2 − K totln

K tot

V

− (K∗
1 − K∗

2 )V ∗
2 ln

V ∗
2

V
, (15)

which can be rewritten, using Eq. (1), as

�G

RTV
= αK∗

1 lnK∗
1 + (1 − α)K∗

2 lnK∗
2 − [αK∗

1

+ (1 − α)K∗
2 ]ln[αK∗

1 + (1 − α)K∗
2 ]

+ (K∗
2 − K∗

1 )(1 − α)ln(1 − α). (16)

Comparing Eq. (16) with Eq. (9) yields(
�G

RTV

)
K1

=
(

�G

RTV

)
V1

+ (K∗
2 − K∗

1 )(1 − α)ln(1 − α),

(17)
where the subscripts K1 and V1 indicate the quantity held
constant. Note that, apart from the position of the barrier, the
final states are identical in these two mixing strategies (K◦ =
Ke over the entire volume V ). Moreover, the supplemental
term in Eq. (17) is non-negative because 0 � (1 − α) � 1 and
K∗

1 > K∗
2 . This term can therefore be thought of as the osmotic

work done by the second compartment during the mixing pro-
cess. Indeed, if the mixing starts from iso-osmotic conditions,
then the second (low-concentration) compartment must con-
tain impermeant solute particles, (K∗

1 − K∗
2 )(1 − α)V moles

in total, that balance the concentration difference for K . This
supplemental term then represents the isothermal work that
can be done by these particles when they diffuse, during ex-
pansion of the second compartment, from their initial volume
fraction (1 − α) to the entire volume. [Strictly speaking, the
assumption K∗

1 > K∗
2 is not required for the derivation of

Eq. (17). The supplemental term is negative when the high-
concentration compartment expands instead of shrinking, as
will be illustrated in Sec. III D].

In Eq. (16), the work done is maximal at the value αopt at
which the derivative with respect to α vanishes. Using again
K∗ to denote K∗

1 /K∗
2 , and assuming K∗

1 to be the concentration
that is held constant during the mixing process,

αopt = 1 − K∗

K∗[K∗/(K∗−1)] + K∗ − 1
. (18)

This function has limits of 0.5 for K∗ → ∞, (1 − 1/e)
for K∗ → 1.0, and 1.0 for K∗ → 0. Hence, if the high-
concentration compartment shrinks to zero volume at constant
concentration K1 (this implies K∗

1 � K∗
2 ), then it should take

a fraction αopt of the total volume between 0.5 and 0.63,
depending on the magnitude of the gradient.

In Fig. 2, the black curve labeled K1const, ω = 0 represents
the work done by the mixing of the physiological Na+ gradi-
ent, when the interstitial compartment shrinks from its initial
volume fraction α to zero without changing its Na+ concentra-
tion. Compared to complete mixing at constant volume (blue

curve) the retrieved energy more than doubles (peak value of
202 J/l at α = 0.54 versus 86 J/l at α = 0.41).

The above calculations Eqs. (14)–(18) concerned the hy-
pothetical case in which the high-concentration compartment
shrinks to zero volume. If, instead, this compartment shrinks
from its initial volume V ∗

1 = αV to a finite volume V ◦
1 = ωV ,

then Eq. (14) reads

�G

RT
= K∗

1

∫ αV

ωV
ln

K∗
1

K2
dV1

= K∗
1

∫ αV

0
ln

K∗
1

K2
dV1 − K∗

1

∫ ωV

0
ln

K∗
1

K2
dV1. (19)

The first integral is solved by Eq. (16), the second by the
same equation but with the initial value K∗′

2 at V1 = ωV now
given by

K∗′
2 = K tot − ωV K∗

1

(1 − ω)V
.

Substitution yields immediately

�G

RTV
= (α − ω)K∗

1 lnK∗
1 + (1 − α)K∗

2 lnK∗
2 − (K tot

− ωK∗
1 )ln(K tot − ωK∗

1 )

+ (K∗
2 − K∗

1 )(1 − α)ln(1 − α)

+ K∗
1 (1 − ω)ln(1 − ω). (20)

The value of α that maximizes Eq. (20) is then given, using
K∗ to denote K∗

1 /K∗
2 , by

αopt = 1 − K∗(1 − ω)

K∗[K∗/(K∗−1)] + K∗ − 1
. (21)

Volume contractions of 50% and more have been observed
for the interstitial compartment of the brain [21,25,26,36]. To
estimate the energy that can be gained from contractions of
this extent, the work done by mixing of the physiological
Na+ gradient was recalculated using Eq. (20). Two illus-
trative cases are plotted in Fig. 2. The green-dotted curve
(labeled K1const, ω = 0.5α) represents a relative contraction
of interstitial space by 50% from each initial volume α. Its
peak energy measures 136 J/l at α = 0.6. In comparison with
mixing at constant volume (blue curve), the peak is moved
towards greater values of α because when α was increased,
the extent of the contraction was greater in absolute terms, and
hence more solute would leave the high-concentration com-
partment, within which the concentration was held constant.

The red-dotted curve [labeled K1const, ω = max(0, α −
0.2)] therefore illustrates the case in which, during mixing,
interstitial space always shrank by 20% of the total volume V ,
hence the absolute volume of contraction was independent of
the initial volume α. From the location of the energy peak of
129 J/l at α = 0.2, it is clear that if there were, for instance,
a mechanical limit on the absolute volume by which the
high-concentration compartment could shrink, then no further
energy would be gained from assigning this compartment a
greater volume than this limit (the reason being that having
a greater low-concentration compartment now becomes im-
perative, as explained in Sec. III B). If this 20% limit on the
volume of contraction were further reduced, however, to a
level below 12% of the total volume V (using the present
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sodium gradient), then the (red) energy curve, whose rising
leg coincides with the black curve of full contraction, would
partially fall below the energy curve of complete mixing
at constant volume (blue). The reason for this anomaly is
that the interstitial Na+ concentration is held constant in the
present strategy, and hence the mixing may be very incom-
plete when the shrinkage is only of limited extent. Other
mixing strategies, described in the next subsection, can pre-
vent this anomaly.

D. Mixing with both concentration and volume varying

In the general case, which covers the special cases of
Secs. III B and III C, an elementary volume dV of solvent
is transported in linear proportion a to an element of solute
dK , taking again ideal solutions in which only the solvent
contributes to the volume. For convenience, Eq. (3) is repeated
here:

dV = adK, (22)

in which the constant a expresses the fixed stoichiometry
between solvent and solute transport [13,37]. Provided a 	= 0,
a−1 represents the concentration at which compound K is
transported within the element of solvent dV . Depending on
the value of a, the following cases can be distinguished, as
illustrated by their labeled paths in Fig. 1:

(A) a = 0, there is no cotransport of solvent, hence the
compartmental volumes remain constant. This case was pre-
sented in Sec. III B.

(B) a → ∞, there is no transport of solute. Any changes
in concentration are exclusively caused by shrinkage or ex-
pansion of the compartment, hence by transport of solvent.

(C) aK∗
1 = 1, the concentration at which solute is trans-

ported is equal to that within the compartment it leaves. Hence
during shrinkage of the compartment, the concentration K1

remains constant at K∗
1 . This case, which can be called iso-

osmotic transport, was investigated in Sec. III C.
(D) 0 < aK∗

1 < 1, the transported element of solution is
hyperosmotic with respect to the compartment it leaves.
Hence the concentration K1 decreases when the compartment
shrinks. The flow of solvent and solute can only continue until
no solute is left within a final volume V ◦

1 > 0.
(E) aK∗

1 > 1, the transported element of solution is
hypo-osmotic. Hence the concentration K1 rises when the
compartment shrinks, but this rise is less than what would re-
sult from a mere volume contraction without solute transport.

(F) a < 0, solute and solvent move in opposite directions,
or the high-concentration compartment expands while solute
flows out of it.

Along the limiting path B (a → ∞), no work is done by
mixing of solute [Eq. (4)]. In the five other strategies, energy
can be retrieved from solute leaving the high-concentration
compartment, whose volume can be constant (A), decrease
(C–E), or increase (F).

Note that the illustrative paths in Fig. 1 were constructed
by setting parameter a in Eq. (22) equal to 0 (A), ∞ (B), 1
(C), 0.5 (D), 2 (E), and −1 (F), and that the vertical asymp-
tote of each hyperbolic path is located at K1 = a−1 [see next
Eq. (23)].

As explained in Appendix D [Eqs. (D2) and (D6)], pro-
vided aK∗

1 	= 1 	= aK∗
2 , the following relations are maintained

during evolution of the system from its initial to final state:

V1 = C

1 − aK1
and V2 = D

1 − aK2
, (23)

where the integration constants C and D are determined by the
initial conditions

C = V ∗
1 (1 − aK∗

1 ) and D = V ∗
2 (1 − aK∗

2 ).

The amount of work that can be done is then given by [see
Eq. (D10)]

�G

RT
= [V1K1lnK1]K∗

1
K◦

1
+ [V2K2lnK2]K∗

2
K◦

2
−

[
C

a
lnV1

]V ∗
1

V ◦
1

−
[

D

a
lnV2

]V ∗
2

V ◦
2

. (24)

This formula is elaborated on in Appendix D, where it is
also shown [Eq. (D19)] that the value of parameter a can be
derived from the initial (K∗

1 and K∗
2 ) and final concentrations

(K◦
1 and K◦

2 ) and the initial volume V ∗
1 = αV , such that

a = α(K∗
1 − K◦

1 ) + (1 − α)(K∗
2 − K◦

2 )

α(K∗
1 − K◦

1 )K◦
2 + (1 − α)(K∗

2 − K◦
2 )K◦

1

. (25)

In addition, the final volume V ◦
1 can be expressed as the

fractional change w of V ∗
1 , such that V ◦

1 = wV ∗
1 , where w is

given by [see Eq. (D20)]

w = (1 − aK∗
1 )/(1 − aK◦

1 ). (26)

Equations (24)–(26) will be applied in Sec. V to analyze
the changes observed in the brain’s interstitial compartment
during ischemia.

Alternatively, the value of w may be given, along with
α, K∗

1 , K∗
2 , and K◦

1 , and in that case the values of a and
K◦

2 are fully determined. This is the protocol adopted in
Fig. 3. This figure illustrates the work done by (complete
or partial) mixing during contraction (b) or expansion of the
high-concentration compartment (d), with the associated val-
ues of a−1 plotted in (a) and (c).

The sodium gradient (Table I) was chosen in Figs. 3(a)
and 3(b) to further demonstrate the effects of volume con-
traction on the work done by mixing, hence K∗

1 = 143 mM
and K∗

2 = 12 mM. For all four curves, the size of interstitial
space was shrunk by 50% from each initial value α, hence
w = 0.5, but different mixing strategies were implemented
by assigning different values to the final concentration K◦

1 .
The green-dotted curve labeled K1const, with peak energy of
136 J/l at α = 0.6, can be taken as the point of reference.
As in Fig. 2, it represents the work done along path C in
Fig. 1, with concentration K1 held constant in the contracting
compartment, hence K◦

1 = K∗
1 . The green horizontal line in (a)

confirms that Na+ was transported at a concentration a−1 of
143 mM.

As argued in Sec. III A, after such iso-osmotic trans-
port (path C, and by extension also path E in Fig. 1), a
high-concentration residue of solute (Na+) is left within the
contracting compartment (interstitial space). Its energy can be
assessed by mixing the residual gradient, in a second stage, at
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 K1const 

FIG. 3. Work done by mixing strategies with various ratios of
solvent to solute transport. The quantity a−1 plotted in (a) and
(c) represents the concentration at which solute either left (positive
values) or entered (negative) interstitial space. Panels (a) and (b) il-
lustrate mixing of the physiological Na+ gradient of Table I, for
(c) and (d) the K+ gradient was used. Since these gradients have
opposite directions, a contraction of interstitial space corresponds to
a contraction or expansion, respectively, of the high-concentration
compartment of Na+ or K+. During mixing, the volume of interstitial
space shrank by 50% (w = 0.5) from its initial value α for all
curves, except for the curve labeled w = 1.0 in (d), which represents
mixing at constant volume. After mixing, the concentration K◦

1 in
interstitial space was that of complete mixing Ke [Eq. (8)], except
for the curve “K1const” where K◦

1 = K∗
1 and for the curve “partial

mixing” where K◦
1 = 0.8K∗

1 + 0.2Ke. Mixing in the “two-step” case
was accomplished in two stages: first mixing at constant K1 followed
by mixing at constant volume.

constant volume. This is shown in Fig. 3(b) by the black-solid
curve labeled two-step mixing, which reaches a higher peak
energy of 153 J/l at α = 0.54.

A strategy to achieve complete mixing in a single stage
is to let the solute leave the contracting high-concentration
compartment at a higher concentration than that needed to
keep K1 constant (along path D in Fig. 1). This is illustrated by
the black-dotted curve labeled complete mixing for which the
final concentration K◦

1 was imposed to be equal to the equi-
librium concentration Ke of Eq. (8). Figure 3(a) shows that
the Na+ ions traveled from interstitial to intracellular space
at a concentration a−1 (black-dotted line) that was indeed

higher than the (initial) interstitial Na+ concentration (green).
As shown in Fig. 3(b), however, the work this strategy can
deliver (black-dotted curve) is less than that of iso-osmotic
transport (green), with peak values of 128 J/l at α = 0.51,
and 136 J/l at α = 0.6, respectively. Thus there is a tradeoff
between recruiting all solute for transport and keeping the
concentration gradient high throughout the mixing process.

Nevertheless, slightly more work can still be done in a
single stage if the mixing is only partial, as shown by the red
curve in Fig. 3(b), whose peak energy measures 136.5 J/l at
α = 0.58. Here the final interstitial Na+ concentration was
imposed to be K◦

1 = 143 − 0.2 × (143 − Ke), hence K1 tra-
versed only 20% of the gap between K∗

1 and Ke. Accordingly,
the Na+ ions left the interstitial compartment at a concentra-
tion a−1 [red line in Fig. 3(a)] that was an average of the green
and black lines weighted in a ratio of 0.8 to 0.2.

Evidently, the amount of work that can be gained from such
partial mixing becomes more substantial when more high-
concentration solute would be left, hence when the shrinkage
is of lesser extent (not shown). Note also that each of the four
cases of mixing with contraction produced a peak energy that
was higher than that of mixing at constant volume, the latter
strategy, represented by the blue curve in Fig. 2, having a peak
energy of 86 J/l at α = 0.41.

In contrast, if the high-concentration compartment expands
instead of shrinking, along path F instead of path D in Fig. 1,
then the work done is less than that of mixing at constant
volume (path A). This conclusion was implicit in Eq. (17),
and can also be inferred from Eq. (D7) in Appendix D. Fig-
ures 3(c) and 3(d) illustrate this result by the work of complete
mixing of the K+ gradient of Table I, hence K∗

1 = 4 mM, K∗
2= 140 mM, and K◦

1 = Ke = K◦
2 . For the black-dotted curve

labeled w = 0.5, interstitial space was shrunk again by 50%,
leading to a dilation (of varying extent) of potassium’s high-
concentration intracellular compartment. Less work was done
in this case [black curve in (d)] than by mixing at constant
volume (red curve labeled w = 1.0), with peak energies of
59 J/l at α = 0.53 and 110 J/l at α = 0.61, respectively.
Figure 3(c) shows, in addition, that the parameter a was neg-
ative at all but the highest interstitial volumes α, indicating
that solvent and solute moved in opposite directions. Hence
water was transported from the interstitial to the cellular com-
partment, while K+ flowed in the opposite direction down its
concentration gradient. At α > 0.97, however, the value of a
is positive because the cellular compartment was dilated to
such an extent that the concentration K2 would have fallen be-
low its imposed final value K◦

2 = Ke [Eq. (8)] if K+ ions were
not transported up their gradient (from extra- to intracellular
space), at the expense of work and with, as a result, a negative
value for the retrieved energy in Fig. 3(d).

E. Mixing with solute buffered in one of the compartments

When the solute moves from one compartment to another,
only part of the transported particles may contribute to raising
the concentration in the recipient compartment, the other frac-
tion being buffered. Conversely, a buffer located in the donor
compartment will lead to a lesser decrease of the concentra-
tion therein. Hence, not unlike volume contraction, buffering
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FIG. 4. Effect of the buffering of solute particles on the work
done, at constant volume α, by a complete mixing of the K+ gradient
of Table I. The buffer was located in the interstitial compartment.
Curves of increasing amplitude represent increasing buffering capac-
ity, corresponding to values of γ in Eq. (27) equal to 0, 1, 2, 4, and 8,
or to fractions of 0, 50, 66, 80, or 89% of the K+ ions being buffered.

is expected to maintain the concentration gradient at a higher
level throughout the mixing process.

Without loss of generality, it is assumed here that com-
pound K is buffered in the second compartment, and that
its concentration still measures K2 mM. Equation (2) then
extends to

K tot = K1V1 + K2V2 + γ K2V2, (27)

where the last term indicates the amount of K taken up by the
buffer, implying that a fraction

γ

1 + γ

of compound K has been buffered within volume V2. Rewrit-
ing Eq. (27) as

K tot =K1αV + K2(1 − α)(1 + γ )V

makes clear that buffering is equivalent to an extension of the
buffering compartment by a volume

Vb = (1 − α)γV, (28)

so that the extended total volume can be written as

V ext = V1 + V2 + Vb = αV + (1 − α)(1 + γ )V. (29)

To calculate the work of mixing at constant volume, Eq. (6)
is still valid provided the extended volumes are substituted.
Generalizations of buffering to mixing at nonconstant volume
(the strategies described in Secs. III C and III D) are derived
in Appendixes C and E.

Figure 4 illustrates the effect of buffering on the work
done, at constant volume, by a complete mixing of the K+
gradient. The buffer was located in interstitial space (the low-
concentration compartment of K+) because the auxiliary glial
cells are well known to prevent sharp rises in the interstitial
K+ concentration by taking up K+ ions released by neurons
[25,38,39] (for a detailed argument, see Sec. VI). The buffer-
ing capacity was varied in Fig. 4 by incrementing, from 0

(bold curve) to 8, the value of γ in Eq. (27). The graphs
show that, in addition to increasing the retrieved energy,
buffering also moved the optimal volume αopt in the direction
of smaller sizes of the buffering compartment. As already
shown by the red curve in Fig. 3(d), the work of unbuffered
mixing peaked at α = 0.61 (peak value of 110 J/l). With in-
creasing buffering capacity, the optimal volume of interstitial
space decreased to values of α = 0.53 (γ = 1; peak value of
163 J/l), 0.49 (γ = 2; 201 J/l), 0.44 (γ = 4; 254 J/l), and
0.37 (γ = 8; 322 J/l).

IV. QUANTIFICATION OF THE ENERGY STORED IN THE
PHYSIOLOGICAL ION GRADIENTS IN THE PRESENCE

OF IMPERMEANT INTRACELLULAR ANIONS

The membrane-impermeant (and hence immiscible) anions
residing within the intracellular compartment (collectively de-
noted by A− in Table I) have been neglected so far in the
calculations, apart from the suggestion that they may pro-
vide the osmotic forces underlying the volume changes in
Sec. III C. Nevertheless, their presence prevents the permeant
ions from fully equilibrating between the intra- and extracellu-
lar compartments. Indeed, a complete mixing of all permeant
ions would, in the presence of A−, violate the electroneu-
trality of the bulk solutions. The equilibrium concentrations
that satisfy electroneutrality constitute the Donnan equilib-
rium [13,31,33], and must be calculated simultaneously for all
ion species involved. Table I lists, for instance, the values of
the Donnan equilibrium at an extracellular volume fraction α

of 0.2.
In the following, Sec. IV A quantifies the total work done

by the permeant ions during their evolution, at constant vol-
ume, to the Donnan equilibrium. Sections IV B and IV C
verify two related assumptions made in the present study
(see Sec. II): first, that the considered ion gradients can be
generated in an electroneutral manner by the electrogenic
3Na+/2K+ pump (Sec. IV B), and second, that the energy
stored in the electrical membrane potential can be neglected in
comparison with that stored in the ion gradients (Sec. IV C).

A. Quantification of the work done by multiple ion gradients
mixing to their Donnan equilibrium

Starting from the physiological ion concentrations of
Table I, the concentrations at Donnan equilibrium were calcu-
lated by solving, for each given interstitial volume α, a set of
nine algebraic equations: two for electroneutrality of the intra-
and extracellular compartments, four for the conservation of
the number of particles of each permeant ion species [Eq. (2)],
and three for the coincidence of their Nernst potentials. The
physiological concentrations and those at Donnan equilibrium
were then substituted into Eq. (7) to calculate the work done
by mixing at constant volume. Figure 5 dissects the total work
(black curve labeled Donnan) into the work done by each indi-
vidual ion species. In accordance with the sign and magnitude
of each gradient (Sec. III B), the component energies peak at
α = 0.39 (Na+, peak energy of 79 J/l), 0.63 (K+, 104 J/l), 0.4
(Cl−, 68 J/l), and 0.5 (HCO3

−, 5 J/l), with the total energy
peaking at α = 0.5 (244 J/l).
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FIG. 5. Total work done by the four ion species of Table I when
they mix, at constant volume, from their physiological concentrations
to those at Donnan equilibrium (solid black curve labeled Donnan),
and total work that would be done if they were able to mix completely
(dotted black curve labeled complete). Colored curves plot, for each
component ion species, the work of mixing to Donnan equilibrium.

As a theoretical point of reference, the black curve labeled
complete in Fig. 5 plots the cumulative work that would be
done if all four ion gradients mixed completely and indepen-
dently to their equilibrium concentrations Ke calculated from
Eq. (8). This curve has a greater peak energy of 269 J/l at α =
0.49, but, as mentioned above, a complete mixing, being not
electroneutral, would not be feasible.

B. Generation of the physiological ion gradients by the
Na+/K+ pump

If the four ion gradients of Table I are ultimately to generate
ATP by a reverse-mode operation of the Na+/K+ pump, then
it must first be demonstrated that a normally operating pump
is able to generate these gradients starting from the Donnan
equilibrium. In particular, the concentrations must be shown
to be consistent with the 3/2 stoichiometry of the pump.

The last column of Table I lists, for α = 0.2, the number
of ions transported from one compartment to the other during
the mixing process, expressed as the number of charges per
volume brain tissue in units of mol/m3 or mM. Although
the physiological gradient of K+ is about three times greater
than that of Na+, overall more Na+ ions entered the cells
during mixing than that K+ ions left (24.7 versus 10.8 mM,
similar ratios held at all values of α). These numbers can be
reconciled with the 3/2 stoichiometry of the Na+/K+ pump
if it is assumed that, during the buildup of the concentra-
tion gradients, part of the inward pumped K+ ions left the
cell again to expel Cl− and HCO3

− with them. Indeed, if
the electrogenic component of the pumping (one-third of the
transported Na+ ions, the other two-thirds being balanced by
K+) is neutralized by the extrusion of Cl− and HCO3

− ions,
then the outward pumped Na+ ions can account for 8.2 mM of
this anion transport. The remaining 5.7 mM of permeant an-
ions need another channel for their extrusion, presumably the
K+/Cl− cotransporter [13], using the K+ gradient as energy.
This implies that the total amount of inward pumped K+ ions

during energy storage had been 10.8 + 5.7 = 16.5 mM, or
two-thirds of the amount of transported Na+ ions, as required
by the stoichiometry of the pump. This numerical relationship
follows directly from the identity for electroneutrality:

�K+ + �Cl− + �HCO3
− = �Na+,

or

�K+ + (
�Cl− + �HCO3

− − 1
3�Na+) = 2

3�Na+, (30)

where the left-hand side of Eq. (30) indicates the total number
of K+ ions pumped inward during buildup of the gradients.
The first term represents the K+ ions that stay inside the cell
(10.8 mM), the second term the K+ ions that left the cell
again together with Cl− and HCO3

− (5.7 mM). As explained
above, the term between brackets can also be seen as the
amount of anions that is expelled in excess of the electrogenic
component of the Na+/K+ pump, and hence presumably is
cotransported with K+.

In summary, this analysis, based on the electroneutrality
of the Donnan equilibrium, justifies the assumption made in
Sec. II that most of the electrical work done by the (elec-
trogenic) Na+/K+ pump is converted into, and stored in,
secondary gradients of other ions such as Cl− and HCO3

−.

C. Comparison of the energy stored in the ionic concentration
gradients with that of the electrical membrane potential

To justify further the assumption that the buildup of the
ion gradients, and by reciprocity also their breakdown dur-
ing mixing, are electroneutral processes, the energy stored
in the physiological ion gradients is next compared with that
stored in the electrical potential difference across the neuron
membrane separating the two compartments. The cerebellar
granule cell is chosen for this comparison because its small
size has enabled precise capacitance measurements to be
made [40]. At a resting potential Vm of −65 mV, the cell
membrane, which has a capacitance Cm of 3 pF [40], stores an
energy E = 0.5 CmV 2

m = 6.33 fJ. Since at Donnan equilibrium
Vm still measures −21 mV (Table I), the energy that can be
retrieved from the membrane capacitor is further reduced to
2.91 fJ.

As for the energy stored in the ion gradients, given a
specific membrane capacitance of 1 μF/cm2, the globu-
lar granule cell has the capacitance of a sphere of radius
4.9 μm, with an intracellular volume of V ∗

2 = 4
3πr3 = 4.93 ×

10−16 m3. Taking again an extracellular volume fraction α of
0.2 [22,26], this implies that V ∗

1 = 1.23 × 10−16 m3. These
volumes and the concentrations of Table I were substituted
into Eq. (6) to calculate the work done by the ions when they
mix to their Donnan equilibrium at constant volume. For the
Na+ ions, the work done measured 39.9 pJ. For the K+, Cl−,
and HCO3

− gradients, the respective values were 28.3, 34.1,
and 1.69 pJ, giving a total work at α = 0.2 of 104 pJ. Hence
the energy stored in the granule cell’s ion gradients is more
than four orders of magnitude that stored in its electrical mem-
brane potential, justifying the assumption of electroneutrality
made in Sec. IV B [41,42].

Finally, from the molar number of transported Na+ ions
in Table I, it follows that 9.16 × 109 Na+ ions would enter
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TABLE II. Reported ion concentrations from ischemia experiments.

Before During
ischemia (mM) ischemia (mM)

Ion species inside outside inside outside

Na+ a 10 154 35 59
K+ a 134 3 106 60
Cl− b 11.4 128.3 32 89.2
A− c 134 134
Total 289.4 285.3 307 208.2

aSupplementary Table 1 of Ref. [44].
bReference [43].
cTable I

the granule cell during mixing. Given that the hydrolysis of
one ATP molecule suffices to pump out 3 Na+ ions [11], the
granule cell could, in theory, recover 3.05 × 109 molecules
of ATP from a reversal of its Na+/K+ pump (at constant
volume).

V. ESTIMATION OF THE ENERGY WHICH NEURONS
CAN RETRIEVE FROM THEIR ION GRADIENTS DURING

ISCHEMIA

An interruption of the energy supply to neurons, such as
caused by reduced blood flow or ischemia, does not only break
down the ion gradients but also induces neurons to swell and
interstitial space to shrink [10,21,23–25,36]. Table II lists for
the three major monovalent ion species the concentrations
recorded during ischemia [43,44].

The analytical results of Secs. III D and III E (see also
Appendixes D and E) are used here first to examine whether
the reported concentration changes can be generated by ion
and water transport in a two-compartmental model, and sec-
ond to quantify the work done by mixing of the ions.

In general, changes in concentration can be a consequence
of solute or solvent transport, or both (Fig. 1). The task is to
find, for each given ion species and value of α, the ratio of
solvent to solute transport that satisfies the initial and final
concentrations (Table II) and conserves the number of par-
ticles [Eq. (2)]. In addition, to be consistent, the amount of
transported solvent, and hence the resulting volume change,
must be identical for all three ion species.

As explained in Sec. III D, the flows of solute and solvent
are governed in the model by two parameters: parameter a
specifies the ratio of solvent to solute transport [Eqs. (22)
and (25)], whereas parameter w [Eq. (26)], by denoting the
fractional change of the size of interstitial space (such that
its final volume V ◦

1 equals wαV ), quantifies solvent transport.
For each ion species, the values of these parameters were
calculated by substituting the initial and final concentrations
of Table II, along with a given value of α, into Eqs. (25)
and (26). The energy was then derived from Eq. (24), or its
corollaries Eqs. (D18) and (E2). When no physical solution
existed, for instance because the final volume V ◦

1 was negative
or greater than the total volume V , the energy was set to zero.

The left panels of Fig. 6 plot for each ion species (a) the
work done by mixing and (b) the associated volume change w

of interstitial space. It is clear, for instance, that only a limited

range of interstitial volumes α is compatible with the imposed
changes in Na+ concentration (namely, those α at which the
blue curve in (a) has a nonzero value). When α was too small
(<0.18) the total amount of Na+ available in interstitial space
would not suffice to raise the Na+ concentration in the cellular
compartment [of size (1 − α)] from 10 mM to the desired
level of 35 mM during ischemia. In that case no physical
solution existed. Beyond its peak, the work declines because,
as α was increased, fewer Na+ ions needed to enter the smaller
cellular compartment to cause the same rise in concentration.
The energy profile is similar for Cl− (black), but opposite
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FIG. 6. Energy retrieved by mixing of the three major ion species
during ischemia (Table II). The left column, (a) and (b), represents
the plain model in the absence of buffering (Sec. III D). In the
right column, (c) and (d), Cl− and K+ ions were buffered in the
interstitial compartment, using parameters γCl = 1.1 and γK = 1.2
in Eq. (27) (Sec. III E and Appendix E). The bottom graphs, (b) and
(d), plot the fractional change w of the volume of the interstitial
compartment during the mixing of each ion species separately. The
vertical black bar in (c) indicates the total energy density (276 J/l) at
α = 0.195, which is the size of the interstitial compartment at which
mixing of each of the three ion species required an identical volume
change in (d).
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for K+ (red), for which interstitial space constitutes the low-
concentration compartment.

Although Fig. 6(a) shows that the concentration changes
during ischemia (Table II) could be generated, for each ion
species separately, by the combined transport of ions and
water, no value of α was found at which the associated volume
change w in (b) was identical for all three ion species. Making
the final volumes coincide required the introduction of free
parameters for the buffering of Cl− and K+ in interstitial
space: γCl = 1.1 and γK = 1.2 [see Eqs. (27)–(29)]. With
these parameters added, the three volume profiles intersect at
α = 0.195 in Fig. 6(d), with a resulting shrinkage of interstitial
space by 32% (w = 0.68). The total work at this intersec-
tion point measures 276 J/l [black bar in (c)]. To this work
the mixing of Na+ (34.1%), Cl− (34.7%), and K+ (31.2%)
contributed almost equally. Note that this energy is 15.3%
greater than that calculated from Eq. (7) for mixing at constant
volume (using the same concentration changes and buffering
parameters), but in that case the numbers of ions would not be
conserved.

If the calculated energy of 276 J/l is compared with the
ATP consumption rates mentioned in the literature (12–16
μmol/g/min ≈ 12–16 J/l/s in [7], and 30 μmol/g/min ≈
30 J/l/s in [9] based on [45]), then the energy stored in the
three major ion gradients would be able to substitute for ATP
during 10–20 s. This is an upper limit because some buffering
mechanisms presumed by the model, such as the uptake of
interstitial K+ by glial cells [39], may be ATP-dependent
themselves, and because leak currents may dissipate part of
the energy as heat [46].

VI. DISCUSSION

The present analytic treatment of the amount of energy
that can be stored in concentration gradients is valid for any
(charged or uncharged) compound, in both artificial and bio-
logical cells, but focuses on the ion gradients generated by the
Na+/K+ pump across the cell membrane of neurons. In that
case, the work done by mixing of the gradients can be con-
ceived of as the production of ATP by a reversal of the pump
[2–4,11,18,19]. Two particular questions were addressed: the
optimal path for energy retrieval (see Fig. 1) and the effect of
the size of the interstitial (or extracellular) compartment.

The main result is that a concomitant contraction of the
high-concentration compartment (paths C and D in Fig. 1)
enhances the work of mixing, because the concentration gra-
dient is maintained at a higher level throughout the mixing
process (Sec. III C). The optimization of energy storage there-
fore amounts to finding the appropriate ratio of solvent to
solute transport (Sec. III D and Fig. 3). The same princi-
ple, maintaining the concentration gradient, also underlies the
optimal compartmental sizes for mixing at constant volume
[Sec. III B and Eqs. (12) and (13)] and the increase of work in
the presence of buffering (Sec. III E).

Mixing of multiple gradients, with changing compartmen-
tal volumes, was illustrated in Sec. V for the flow of Na+
and Cl− into the neurons during ischemia, accompanied by a
swelling of the neurons and shrinkage of the interstitial com-
partment to an extent similar to that observed in experiments
[24,25,36] (Fig. 6). The shrinkage of interstitial space and

swelling of the neurons must result from osmotic forces ex-
erted by the impermeant intracellular anions that account for
more than 40% of a neuron’s osmolarity (A− in Table I), and
which, secondarily, enhance the osmotic imbalance during
Donnan equilibration (Table I) and during ischemia (Table II).

The osmotic forces were not modeled explicitly in the
present study, but water was assumed to follow passively the
flow of solute through water-solute cotransporter channels.
Actual neurons lack specific water channels in their cell mem-
brane, and water is cotransported in a fixed stoichiometry with
other substances such as KCl, using the solute gradients as
energy [13,37]. Hence the mechanism described in Sec. IV B
for the expulsion of Cl− out of the cells during the buildup of
the ion gradients—via K+/Cl− cotransporters using the K+
gradient generated by the Na+/K+ pump—will at the same
time reduce the cellular volume and so lead to an expan-
sion of interstitial space, as has been observed during sleep
[26,27]. Under conditions of ischemia or neuronal hyperac-
tivity, the flow through cotransporter channels may reverse, so
that water enters the cells via Cl− cotransporters [36], causing
in this case interstitial space to shrink. The present study
therefore offers an alternative functional interpretation of the
large movements of fluid between the intra- and extracellular
compartment of the brain [26], namely, an optimization of
energy storage.

The experimentally observed value of about 0.2 for α, the
fraction of volume occupied by the interstitial compartment
of the brain under physiological conditions [20–22,26], is
less straightforward to explain within the context of energy
optimization. Although the optimal volume ratio for energy
storage αopt deviates considerably from 0.5 for single gradi-
ents [Eq. (11)], an asymmetry is needed to prevent the effects
of inward and outward gradients from canceling each other (as
they did in Fig. 5, where the total energy peaks at α = 0.5).
As shown in Sec. IV, neither the 3/2 stoichiometry of the
Na+/K+ pump nor the intracellular abundance of impermeant
anions (the Donnan effect) sufficed in this respect. The re-
quired asymmetry can be generated, instead, by the buffering
of compound in one of the compartments (Sec. III E and
Fig. 4). For instance, the experimentally observed concentra-
tion changes listed in Table II could only be reproduced if the
K+ and Cl− ions were buffered in the interstitial compartment
(Fig. 6). The effect of this buffering was to move the energy
curves for K+ and Cl− towards smaller values of α [Fig. 6(c)],
until, at a value of α = 0.195, the water transport associated
with the flows of K+ and Cl− coincided with that for (un-
buffered) Na+ [Fig. 6(d)].

The presumed physiological mechanism underlying this
buffering is the uptake of interstitial K+ ions by glial cells
[25,38,39,47]. In the present model, buffering of a compound
is equivalent to a virtual enlargement of its compartment
[Sec. III E and Eq. (28)], and it is noteworthy in this respect
that the appearance of glial cells during growth and develop-
ment coincides with a reduction of α from 0.4 to 0.2 [20,21].
Nevertheless, it is difficult to determine the precise position
of glial cells in a two-compartmental model [48]. Surely, glial
cells have an active Na+/K+ pump and their K+ gradient is
similar to, or greater than, that of neurons [8,12,39]. On the
other hand, they are able to clear the K+ ions which neurons
release into interstitial space, owing to a different kinetics
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of their Na+/K+ pump [49] and the expression of inward
rectifying (Kir4.1) K+ channels [39,49]. In that respect, the
glial cells would constitute a third compartment. In Sec. V
this ambivalence was resolved by assigning them a buffering
function in the interstitial compartment. Note further that the
interstitial compartment of the brain communicates with the
cerebrospinal fluid and the vascular compartment, so that its
actual buffering capacity may be time dependent. To reduce
such confounding effects, the ion concentrations in Table II
were taken from ischemia experiments, in which the blood
flow is reduced.

Finally, from the present study, there are two further rea-
sons why having a small interstitial compartment (α = 0.2)
may be beneficial, apart from leaving more room for the vital
intracellular substances, and providing Na+ and Cl− with a
larger low-concentration compartment. First, it was shown in

Sec. III C that if there are (mechanical) limitations on the
volume by which a compartment can shrink, then this limiting
contraction volume may also constitute the optimal volume
for energy storage (see red curve in Fig. 2). Such limitations
on the swelling of neurons, and hence on the shrinkage of
interstitial space, may be imposed by intracellular mechanical
forces, or restrictions on the surface area of the cell membrane
[50,51].

Second, a small volume fraction α for interstitial space
may also minimize unwanted fluctuations of the physiological
gradients of Na+ and Cl− and their Nernst potentials. As in-
dicated in Sec. III B, there is an optimal volume ratio at which
the flux of an ion least affects its gradient [Eq. (13)]. Using the
physiological concentrations of Table I, the resulting values of
α were 0.22 and 0.21 for Na+ and Cl−, the ions carrying most
of the excitatory and inhibitory synaptic currents, respectively.

APPENDIX A: WORK OF MIXING AT CONSTANT VOLUME

During the mixing process, the compartments retain their initial volumes, hence V ◦
1 = V ∗

1 and V ◦
2 = V ∗

2 .
Starting from Eq. (5),(

�G

RT

)
V1

= V ∗
1

∫ K∗
1

K◦
1

lnK1dK1 − V ∗
1

∫ K∗
1

K◦
2

lnK2dK1

= V ∗
1

∫ K∗
1

K◦
1

lnK1dK1 + V ∗
2

∫ K∗
2

K◦
2

lnK2dK2

= V ∗
1 [K1(lnK1 − 1)]K∗

1
K◦

1
+ V ∗

2 [K2(lnK2 − 1)]K∗
2

K◦
2

= V ∗
1 K∗

1 lnK∗
1 − V ∗

1 K∗
1 − V ∗

1 K◦
1 lnK◦

1 + V ∗
1 K◦

1 + V ∗
2 K∗

2 lnK∗
2 − V ∗

2 K∗
2 − V ∗

2 K◦
2 lnK◦

2 + V ∗
2 K◦

2

= V ∗
1 K∗

1 lnK∗
1 − V ∗

1 K◦
1 lnK◦

1 + V ∗
2 K∗

2 lnK∗
2 − V ∗

2 K◦
2 lnK◦

2 . (A1)

The derivation of Eq. (12) goes as follows:

lim
�K→0

1

�K

(
ln

K1

K2
− ln

K1 − �K
V1

K2 + �K
V2

)
= lim

�K→0

1

�K
ln

K1

K2

K2 + �K
V2

K1 − �K
V1

= lim
�K→0

1

�K
ln

1 + �K
V2K2

1 − �K
V1K1

= lim
�K→0

1

�K
ln

(
1 + �K

V2K2

)
− lim

�K→0

1

�K
ln

(
1 − �K

V1K1

)

= lim
�K→0

1

V2K2
ln

(
1 + �K

V2K2

)V2K2/�K

+ lim
�K→0

1

V1K1
ln

(
1 − �K

V1K1

)−V1K1/�K

= 1

V2K2
+ 1

V1K1

= 1

αV K1
+ 1

(1 − α)V K2
.

APPENDIX B: WORK OF MIXING WITH THE CONCENTRATION KEPT CONSTANT IN ONE OF THE COMPARTMENTS

Without loss of generality, during the mixing process volume V1 shrinks from V ∗
1 to zero while concentration K1 remains

constant at its initial value K∗
1 .

Starting from Eq. (14), and using Eq. (2),(
�G

RT

)
K1

= K∗
1

∫ V ∗
1

0
lnK∗

1 dV1 − K∗
1

∫ V ∗
1

0
lnK2dV1

= K∗
1 lnK∗

1

∫ V ∗
1

0
dV1 − K∗

1

∫ V ∗
1

0
ln

K tot − V1K∗
1

V − V1
dV1
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= V ∗
1 K∗

1 lnK∗
1 − K∗

1

∫ V ∗
1

0
ln(K tot − V1K∗

1 )dV1 + K∗
1

∫ V ∗
1

0
ln(V − V1)dV1

= V ∗
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1 lnK∗
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∫ V ∗
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1
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1

0
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1 lnK∗
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1 )[ln(K tot − V1K∗
1 ) − 1]}V ∗

1
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1 [V2(lnV2 − 1)]V ∗
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1 V (lnV − 1)
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1 lnK∗
1 + V ∗

2 K∗
2 ln(V ∗

2 K∗
2 ) − K totlnK tot − K∗

1 V ∗
2 lnV ∗

2 + K∗
1 V lnV

= V ∗
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1 lnK∗
1 + V ∗

2 K∗
2 lnK∗

2 − K totlnK tot − (K∗
1 − K∗

2 )V ∗
2 lnV ∗
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1 V lnV
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1 lnK∗
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2 lnV ∗
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2 )V ∗
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= V ∗
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1 lnK∗
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2 lnK∗

2 − K totln
K tot

V
− (K∗

1 − K∗
2 )V ∗

2 ln
V ∗

2

V
. (B1)

APPENDIX C: EFFECT OF BUFFERING ON THE WORK OF MIXING AT CONSTANT CONCENTRATION

The derivation of Appendix B is repeated, but with compound K buffered in the second compartment. Following Eq. (27),
the following substitution is used:

K2 = K tot − K1V1

V2 + γV ∗
2

= K tot − K1V1

V − V1 + γV ∗
2

,

(
�G

RT

)
K1,buffer

= K∗
1

∫ V ∗
1

0
lnK∗

1 dV1 − K∗
1

∫ V ∗
1

0
lnK2dV1
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1 lnK∗

1

∫ V ∗
1

0
dV1 − K∗

1

∫ V ∗
1

0
ln
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1

V − V1 + γV ∗
2

dV1

= V ∗
1 K∗

1 lnK∗
1 − K∗

1

∫ V ∗
1

0
ln(K tot − V1K∗

1 )dV1 + K∗
1

∫ V ∗
1

0
ln(V − V1 + γV ∗

2 )dV1

= V ∗
1 K∗

1 lnK∗
1 +

∫ V ∗
1

0
ln(K tot − V1K∗

1 )d (K tot − V1K∗
1 )

− K∗
1

∫ V ∗
1

0
ln(V − V1 + γV ∗

2 )d (V − V1 + γV ∗
2 )

= V ∗
1 K∗

1 lnK∗
1 + {(K tot − V1K∗

1 )[ln(K tot − V1K∗
1 ) − 1]}V ∗

1
V1=0

− K∗
1 {(V2 + γV ∗

2 )[ln(V2 + γV ∗
2 ) − 1]}V ∗

2
V ,

which further reduces to (
�G

RT

)
K1,buffer

= V ∗
1 K∗

1 lnK∗
1 + (1 + γ )V ∗

2 K∗
2 lnK∗

2 − K totln
K tot

V ∗
1 + (1 + γ )V ∗

2

− (K∗
1 − K∗

2 )(1 + γ )V ∗
2 ln

(1 + γ )V ∗
2

V ∗
1 + (1 + γ )V ∗

2

,

where Ktot/[V ∗
1 + (1 + γ )V ∗

2 ] is the equilibrium concentration of K when K has spread over the entire volume, the first
(nonbuffered) compartment having shrunk to zero.

Note that this result is also obtained directly from Eq. (B1), by substituting (1 + γ )V ∗
2 for V ∗

2 and V ∗
1 + (1 + γ )V ∗

2 for the
total volume V .

APPENDIX D: WORK OF MIXING WITH BOTH CONCENTRATION AND VOLUME VARYING

Following Eqs. (3) and (22), take

�V = a�K,
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where �V is an elementary volume of solvent that is trans-
ported in fixed proportion a to the element of solute �K . As
noted in Sec. III D, if aK∗

1 = 1 then the solute flows out of
the compartment at a concentration identical to that of the
compartment it leaves, hence K◦

1 = K∗
1 (see path C in Fig. 1).

This case was treated in Sec. III C and Appendix B.
In contrast, provided aK∗

1 	= 1, the development proceeds
as follows:

dK = d (K1V1)

= K1dV1 + V1dK1

= aK1dK + V1dK1

= V1dK1

1 − aK1
, (D1)

and

dV1 = adK = aV1dK1

1 − aK1
. (D2)

Integration yields

V1 = C

1 − aK1
, (D3)

where the integration constant C is given by

C = V ∗
1 (1 − aK∗

1 ), (D4)

so that, combining Eqs. (D1), (D2), and (D4),

dK = C

(1 − aK1)2
dK1. (D5)

In the same way, a constant D can be defined as

D = V − C − aK tot

= V1 + V2 − V1(1 − aK1) − aV1K1 − aV2K2

= V2(1 − aK2) = V ∗
2 (1 − aK∗

2 ). (D6)

Then, starting from Eq. (4), and using Eq. (D5),

�G

RT
=

∫ K∗
1

K◦
1

ln
K1

K2
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=
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= C

a
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(D8)

The first integral of Eq. (D8) can be integrated by parts as

C

a
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1
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1
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Provided aK∗
2 	= 1, and using D defined in Eq. (D6), the second integral of Eq. (D8) can be developed as

C

a

∫ K∗
1

K◦
1

lnK2d
1

(1 − aK1)
= 1

a

∫ V ∗
1

V ◦
1

lnK2dV1

= 1

a

∫ K∗
2

K◦
2

lnK2d

(
V − D

1 − aK2

)

= −D

a

∫ K∗
2

K◦
2

lnK2d
1

(1 − aK2)
.

Equation (D9) can then be used to solve this last integral, so that the full solution, Eq. (D8), reads

�G

RT
= [V1K1lnK1]K∗

1
K◦

1
+ [V2K2lnK2]K∗

2
K◦

2
−

[
C

a
lnV1

]V ∗
1

V ◦
1

−
[

D

a
lnV2

]V ∗
2

V ◦
2

. (D10)

The notation of solution (D10) can be further simplified by introducing the coefficients w, x, y, and z, so as to write the final
volumes and concentrations as V ◦

1 = wV ∗
1 , K◦

1 = xK∗
1 , V ◦

2 = yV ∗
2 , and K◦

2 = zK∗
2 . If w is given [or has been calculated from
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Eq. (D20) below], then y is determined from the conservation of volume [Eq. (1)] by

y = V − wV ∗
1

V ∗
2

. (D11)

To w and y, respectively, x and z are related by Eqs. (D4) and (D6)

C = V ◦
1 (1 − aK◦

1 ) = wV ∗
1 (1 − axK∗

1 ), (D12)

D = V ◦
2 (1 − aK◦

2 ) = yV ∗
2 (1 − azK∗

2 ), (D13)

from which

x = V ∗
1 − C

w

V ∗
1 − C

, (D14)

z =
V ∗

2 − D
y

V ∗
2 − D

. (D15)

Using these four coefficients, Eq. (D10) simplifies to
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RT
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1
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1
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1 lnK∗
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1 ln(xK∗

1 ) + V ∗
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2 lnK∗
2 − yzV ∗

2 K∗
2 ln(zK∗

2 )

+C

a
lnw + D

a
lny (D16)

or, using Eq. (1),

�G

RTV
= αK∗

1 lnK∗
1 − wxαK∗

1 (lnK∗
1 + lnx) + (1 − α)K∗

2 lnK∗
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2 (lnK∗
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2 )lny (D17)

= α(1 − wx)K∗
1 lnK∗

1 − wxαK∗
1 lnx + (1 − yz)(1 − α)K∗

2 lnK∗
2 − yz(1 − α)K∗

2 lnz

+α
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1 )lnw + 1 − α

a
(1 − aK∗

2 )lny. (D18)

From this general expression [Eq. (D18)], the special solutions of Secs. III B and III C are derived as follows. Taking w = y = 1
yields the work done by mixing at constant volume [Eq. (7), corresponding to path A in Fig. 1]. Setting a = 1/K∗

1 and x = 1,
and writing ω = wα, reduces Eq. (D18) to Eq. (20) (path C). Last, if there is only flow of solvent without solute transport (path
B), then the concentration in each compartment changes in inverse proportion to volume, and the energy vanishes. This is seen
by setting wx = yz = 1 and letting a → ∞.

If, instead of a and w, the initial and final concentrations K∗
1 , K◦

1 , K∗
2 , and K◦

2 are given, then the values of a and w can be
derived for each initial volume α. For instance, using Eqs. (D12) and (D13) to find expressions for w and y, and substituting
these into Eq. (D11), yields

a = α(K∗
1 − K◦

1 ) + (1 − α)(K∗
2 − K◦

2 )

α(K∗
1 − K◦

1 )K◦
2 + (1 − α)(K∗

2 − K◦
2 )K◦

1

, (D19)

and, using Eq. (D12),

w = (1 − aK∗
1 )/(1 − aK◦

1 ). (D20)

APPENDIX E: EFFECT OF BUFFERING ON THE WORK OF MIXING WITH VARYING CONCENTRATION AND VOLUME

As in Appendix C, and without loss of generality, the buffer resides in the second compartment, and the first compartment
contracts during the mixing process. Using Eq. (27), and applying the same substitutions as in Appendix C, the analysis of
Appendix D can be modified as follows.

With constant D now reading

D = (1 + γ )V ∗
2 (1 − aK∗

2 ), (E1)
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Eq. (D8) becomes

�G

RT
= [V1K1lnK1]K∗

1
K◦

1
+ [(V2 + γV ∗

2 )K2lnK2]K∗
2
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2
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V ◦
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−
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D
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2 )

]V ∗
2 +γV ∗

2

V ◦
2 +γV ∗

2

. (E2)

Note that the buffer capacity, or the size Vb = γV ∗
2 of the virtual extension of the buffering compartment [see Eq. (28)], is

assumed to remain constant during shrinkage of the first, and expansion of the second, compartment. If, as before in Eq. (D11), y
indicates the relative expansion of the second compartment excluding the buffer, then the whole second compartment measures
(y + γ )V ∗

2 after expansion, and its relative expansion is (y + γ )/(1 + γ ).
With the value of z in Eq. (D15) modified to

z =
V ∗

2 − D
y+γ

V ∗
2 − D

1+γ

,

Eq. (D16) becomes
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1 lnK∗
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ln
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. (E3)

Finally, Eq. (D19) needs to be modified to

a = α(K∗
1 − K◦

1 ) + (1 + γ )(1 − α)(K∗
2 − K◦

2 )

α(K∗
1 − K◦

1 )K◦
2 + (1 + γ )(1 − α)(K∗

2 − K◦
2 )K◦

1

. (E4)
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