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Game-environment feedback dynamics in growing population: Effect of finite carrying capacity

Joy Das Bairagya,* Samrat Sohel Mondal ,† Debashish Chowdhury,‡ and Sagar Chakraborty§

Department of Physics, Indian Institute of Technology, Kanpur 208016, India

(Received 15 June 2021; revised 9 September 2021; accepted 28 September 2021; published 13 October 2021)

The tragedy of the commons (TOC) is an unfortunate situation where a shared resource is exhausted due
to uncontrolled exploitation by the selfish individuals of a population. Recently, the paradigmatic replicator
equation has been used in conjunction with a phenomenological equation for the state of the shared resource
to gain insight into the influence of the games on the TOC. The replicator equation, by construction, models a
fixed infinite population undergoing microevolution. Thus, it is unable to capture any effect of the population
growth and the carrying capacity of the population although the TOC is expected to be dependent on the size
of the population. Therefore, in this paper, we present a mathematical framework that incorporates the density
dependent payoffs and the logistic growth of the population in the eco-evolutionary dynamics modeling the
game-resource feedback. We discover a bistability in the dynamics: a finite carrying capacity can either avert
or cause the TOC depending on the initial states of the resource and the initial fraction of cooperators. In fact,
depending on the type of strategic game-theoretic interaction, a finite carrying capacity can either avert or cause
the TOC when it is exactly the opposite for the corresponding case with infinite carrying capacity.
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I. INTRODUCTION

Resources are finite; selfishness is infinite. Consequently,
selfish rational individuals—who defect from helping others
with a motive of maximizing their own utilities—cause losses
to the cooperators in the population and lead to overex-
ploitation of the shared common resources and, thus, bring
forth the unfortunate tragedy of the commons (TOC) [1–3].
Uncontrolled population growth [3], water pollution and water
crisis [4], pollution of the Earth’s atmosphere [5], property
rights, communal rights or state regulation [6], and wildlife
crimes [7] are a few of the examples of the TOC. The TOC
leads a system to a degraded state of the shared resource such
that in the long run, the evolutionary as well as the ecological
fitness of all the individuals are adversely affected [8].

Moreover, the TOC is not restricted to merely human so-
ciety; it can be witnessed in evolutionary systems where the
concept of rationality is arguably nonexistent: For example,
intra- and interplant competitions for root proliferation give
rise to a competition for the nutrition and water intake from
soil by the plants [9–11]; also, the TOC is witnessed in
microbes vying for nutrients [12–15] or aerial oxygen [16].
Another intriguing example is witnessed in the colonies of
eusocial Hymenoptera where the conflict among the immature
females trying to develop into a queen in order to gain greater
direct reproductive fitness imposes a productivity cost on the
colony by reducing the common resource—the workforce,
i.e., the number of workers [17–21].

Any depleted resource around a population has an adverse
effect on the population size if the growth of the popu-
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lation depends on it; or in slightly technical terms, if the
carrying capacity [22–25] of the population is tied to the
resources under consideration. The carrying capacity refers
to the upper limit of the size of the population that can be
sustained. It is easy to envisage that this feedback between
the resources and the ecology of the population—in light
of the finite carrying capacity—can give rise to interesting
eco-evolutionary dynamics that is suitably modeled through
(evolutionary) game-theoretic ideas [26–29] describing the
strategic interactions between the cooperators and the de-
fectors. This paper focuses on this aspect of the TOC. The
resources present around a population constitute the envi-
ronment for the population; hence, in line with the existing
terminology in the literature, we use resources and environ-
ment synonymously. In other words, this paper is concerned
with the game-environment feedback in a growing population
while keeping in mind that the carrying capacity is practically
always finite.

The state of the environment—i.e., how replete or de-
pleted it is—can change the preferences of the individuals
(henceforth, to be called players in accordance with the
game-theoretic terminology): As the environment degrades,
the cooperation tendency must increase in the population in
order to avert the TOC. In fact, enforcing cooperation in
various ways is an obvious and well-studied mechanism for
averting the TOC [3,30,31], even in chimpanzees [32]. If
one considers the players to be von Neumann–Morgenstern
rational [33], the change of preferences can be quantitatively
showcased through their utilities or the payoff matrices cor-
responding to the interaction between the players. Interesting
recent works [34–36] have explicitly mathematized this idea
to elaborately study the fate of the commons in the resulting
eco-evolutionary dynamics.

In the context of the growing population, however, the
concept of the environment needs to be scrutinized a little bit
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more closely. Specifically, one should appreciate that there
are two somewhat similar aspects of the environment: The
environment may be seen as a combination of two resources—
one, an ecological resource that is directly responsible for the
growth of the population size, and the other, a common shared
resource that is under threat from the overexploiting defectors.
These two resources are not necessarily mutually exclusive.
However, we find that, for our purpose, the case where the
two resources are mutually exclusive is qualitatively similar
to the other cases.

The conceptually nontrivial formalism that we adopt in
this paper is mathematically minimal while keeping all the
essential aforementioned ideas incorporated into it. Specifi-
cally, the evolutionary dynamics is taken to be governed by the
paradigmatic replicator dynamics [29,37–41], the population
growth is considered logistic [22–25], and the state of the
common shared resource is also considered to be essentially
logistic in nature. In the next section, we elaborately discuss
the deterministic mathematical model on which our investiga-
tion in this paper rides.

II. THE MODEL

Let there be a set of μ distinct strategies that can be adopted
by any individual member of the consumer population. Let
Ni(t ) be the number, and xi(t ) = Ni/N (1 � i � μ) denote the
corresponding fraction, of the consumer population at time
t that adopts the ith strategy. Alternatively, xi can also be
interpreted as the probability or frequency of the ith strategy
being used. The vector x(t ) ≡ [x1(t ), x2(t ), . . . , xμ(t )] defines
the state of the consumer population. The total population of
the consumers at time t is N (t ) = ∑

i Ni(t ), which defines
the size of the population. Let n(t ) ≡ [n1(t ), n2(t ), . . . , nν (t )]
denote the state of the ν distinct shared resource pools in the
environment where, for convenience, we assume that vari-
ables nj are normalized so as to lie in the unit interval, i.e.,
0 � n j (t ) � 1.

Thus, the state of the composite system, consisting of
the consumer population and the shared resource pools, is
given by σ(t ) ≡ [N (t ), x(t ), n(t )]. The dynamics of the sys-
tem is governed by μ − 1 differential equations for x(t ) (since∑μ

i=1 xi = 1), ν differential equations for n(t ), and a single
equation for N (t ).

Having succinctly presented the general formulation of the
systems of our interest, we now turn to the specific setting that
is conducive to studying the tragedy of the commons. More
specifically, in the simplest nontrivial setting, the rise of the
defectors who lead to the TOC can be exemplified through the
prisoner’s dilemma game (T > R > P > S) [42]. The pris-
oner’s dilemma game is a one-shot two-player–two-strategy
game (μ = 2) in which defecting is the only symmetric Nash
equilibrium [43,44] that is non-Pareto optimal [45]; mutual
cooperation could fetch the players comparatively more re-
ward. Its normal bimatrix form is as follows:

where the first and the second elements (real numbers) in each
cell respectively are the payoffs of player 1 and player 2 and
R, S, T , and P respectively refer to Reward, Sucker’s payoff,
Temptation, and Punishment. Thus, here we identify x1 and x2

as the fractions of “cooperators” and “defectors,” respectively.
Furthermore, for simplicity, we choose ν = 1. Therefore the
set of three dynamical variables—x(t ) ≡ [x1(t ), x2(t ) = 1 −
x1(t )], n(t ) ≡ n(t ), and N (t )—together describe the state σ(t )
of the composite system. In fact, since x1 and x2 are not
independent variables, we henceforth use x(t ) = x1(t ) as the
only variable to specify the state of the population, wherever
convenient.

We now explain the motivation for the choice of the actual
effective payoff matrix used in our model in a step by step
manner. In the first step, let us begin with the simplest situa-
tion where R, S, T , and P are the payoffs realized ignoring the
environmental resources and the size of the population. In this
case the payoff matrix, U(n, N ), for a focal player would have
the n- and N-independent form

U(n = constant, N = constant) = U =
[

R S
T P

]
, (1)

where the elements are time-independent numbers. In the next
step, in order to extend the payoff matrix to include the effect
of the state of the environment, we introduce an effective
payoff matrix Ũ(n) that has the form

Ũ(n) = (1 − n)U0 + nU1. (2)

Here Uk (k ∈ {0, 1}) is the shorthand notation for U(n =
k, N = K → ∞). In more explicit words, in the presence of
a fixed infinite population, the payoff matrix reduces to U0

in the limit of n = 0, which corresponds to a poor environ-
mental resource; whereas in the opposite limit n = 1 of rich
resource it reduces to U1. Guided by the form (1), a natural
parametrization of U0 and U1 is

U0 =
[

R0 S0

T0 P0

]
(3)

and

U1 =
[

R1 S1

T1 P1

]
. (4)

The new key element of our model is the finite carrying
capacity K whose effect is incorporated next in the third step
of our generalization of the payoff matrix. We assume that the
finite carrying capacity further modifies the payoff matrix to
the following form:

U(n, N ) = (1 − n)

[(
1 − N

K

)
U0

]
+ n

[(
1 − N

K

)
U1

]
. (5)

We note that the matrix U(n, N ) is independent of x because
we are considering matrix games [46] where x dependence
enters through the fitness fi—an individual consumer’s fitness
upon adopting the ith strategy is given by

fi(σ) =
2∑

j=1

Ui j (n, N )x j ; i = 1, 2. (6)
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Since the fitter population is expected to grow at a faster rate,
it is quite natural to assume

dNi

dt
= fi(σ(t ))Ni. (7)

Summing Eq. (7) over all the strategies, we get

dN

dt
= N

2∑
i=1

2∑
j=1

Ui j (n, N )xix j, (8)

where xi is to be recognized as Ni/N . Making use of Eqs. (7)
and (8), the equation for the evolution of xi is then simply

dx

dt
= x

[
2∑

j=1

U1 j (n, N )x j −
2∑

i=1

2∑
j=1

Ui j (n, N )xix j

]
, (9)

which is the replicator equation. Here
∑μ

j=1 f jx j is the mean
fitness of the population. Thus, the population evolves under
a replication-selection process modeled appropriately by the
time-continuous replicator equation.

While the replicator equation can be derived in vari-
ous equivalent ways [29,40,47–49], the continuous replicator
equation was originally introduced in the evolutionary game
theory to model the frequency-dependent selection. In order
to model density-dependent selection [50] into it, we have in-
corporated the finite carrying capacity explicitly. It quantifies
the implicit ecological resource. In addition, the dependence
of the rate of evolution of the replicators on the state of an ad-
ditional common shared resource must be modeled separately.

To this end, we need to provide a dynamics for the variable
n(t ). In this model, for simplicity, we ignore any intrinsic
dynamics of the resource population in the absence of con-
sumers. Instead, only the consumption (or enhancement) of
the resource by the consumer population is assumed to alter
the resource population. In this scenario, the cooperators help
in augmenting the resource, while the defectors act to degrade
it. If θ > 0 is the ratio of this enhancement rate to the degra-
dation rate, it has been shown [34] that a simple model for the
state n of the shared resource may be written as

dn

dt
= ε[θx − (1 − x)]n(1 − n), (10)

where parameter ε � 1 because the environment is assumed
to change relatively slowly compared to the strategists’ fre-
quencies.

Equations (8)–(10), together with Eq. (5) as the pay-
off matrix, constitute the set of dynamical equations that
mathematically describes the eco-evolutionary dynamics of
the composite system’s state, σ(t ) ≡ [N (t ), x(t ), n(t )], in the
presence of finite ecological resource quantified by a finite
carrying capacity K . Figure 1 presents the setup schematically.

III. RESULTS

The main aim of our study is to explore the dependence of
TOC on the types of strategic interactions and initial condi-
tions.

Equation (5) enforces the intuitive expectation that the state
of the resource affects the way the players interact. Since we
are interested in the TOC, we assume that in the fully replete
case the players play the prisoner’s dilemma game (i.e., U1

FIG. 1. Schematic diagram of the environmental feedback via
games: A finite population (left box) of size N with carrying capacity
K , has x fraction of the cooperators (blue) and 1 − x fraction of the
defector (yellow). It affects the shared resource (right box) n whose
state moves between richer (greener) as well as poorer (redder) states
via the game-dynamics—governed by the payoff matrix U(N, n)—
between the cooperators and the defectors.

corresponds to the prisoner’s dilemma) but as degradation
starts the cooperation can, in principle, ensue. Essentially this
means that the form of U0 could deviate from the prisoner’s
dilemma. In general, depending on how the preferences of the
players change as degradation of the shared resource takes
place, U0 could be the payoff matrix for any of the four
classes of games [51–55]. The games are classified into four
types based on the correspondence of the Nash equilibria with
cooperation and defection: (i) in the harmony game, the Nash
equilibrium is mutual cooperation; (ii) in the anticoordination
game, there exists a unique mixed symmetric Nash equilib-
rium in which the players play a mixed strategy randomized
over the pure strategies; (iii) in the prisoner’s dilemma, the
mutual defection is the unique Nash equilibrium; and (iv) in
the coordination game, there are two symmetric pure Nash
equilibria [(cooperate, cooperate) and (defect, defect)] and
one mixed symmetric Nash equilibrium like the one in the
anticoordination games.

While we want to fully investigate how the finite ecologi-
cal resource affects the eco-evolutionary dynamics, a specific
curiosity of ours is whether any counterintuitive situation ap-
pears where finite K leads to the TOC even though infinite K
averts the TOC.

A. Linear stability analysis

It is easy to see that if a same additive constant is added
to all the elements, the replicator equation remains invariant.
Hence, for the purpose of our goal, we can restrict ourselves to
only positive values of the payoff matrix elements. This means
that the N component of phase velocity, Ṅ , is always positive
for (0 < N < K ). Through this restriction, one can observe
that there cannot be any periodic orbit in the phase space of
the set of three eco-evolutionary dynamical equations because
for that to occur it is required that generically all the com-
ponents, (ẋ, ṅ, and Ṅ ), of the phase velocity alter sign along
such an orbit. The absence of the periodic orbits also means
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the absence of unstable periodic orbits that must be densely
embedded in a chaotic attractor for the latter to exist. In other
words, no chaotic attractor is also expected in the system of
equations under consideration. These considerations naturally
dictate us to exclusively confine our attention towards the
fixed-point solutions of the system.

In the model, there are three nonisolated sets of fixed
points:

(1) (n∗ = 0, x∗ ∈ [0, 1], N∗ = K ): completely depleted re-
source;

(2) (n∗ = 1, x∗ ∈ [0, 1], N∗ = K ): completely replete re-
source; and

(3) (n∗ ∈ [0, 1], x∗ = 1/(1 + θ ), N∗ = K ): partially re-
plete resource.

So far as the linear stability of these nonisolated fixed
points are concerned, we find the following:

(i) (n∗ = 0, x∗ ∈ [0, 1/(1 + θ )), N∗ = K ): stable;
(ii) (n∗ = 0, x∗ ∈ (1/(1 + θ ), 1], N∗ = K ): unstable;
(iii) (n∗ = 1, x∗ ∈ [0, 1/(1 + θ )), N∗ = K ): unstable;
(iv) (n∗ = 1, x∗ ∈ (1/(1 + θ ), 1], N∗ = K ): stable;
(v) (n∗ ∈ [0, 1], x∗ = 1/(1 + θ ), N∗ = K ): stable or unsta-

ble, depending on the exact payoff matrix structure.
Other than these three sets of nonisolated fixed points, there

are some isolated unstable fixed points that in the format
(n∗, x∗, N∗) are given by (0,0,0), (0,1,0), (1,1,0), (0, (P0 −
S0)/(P0 + R0 − S0 − T0), 0), (1, (P1 − S1)/(P1 + R1 − S1 −
T1), 0), and ([T0 − R0 + (P0 − S0)θ ]/[T0 − R0 − T1 + R1 +
(P0 − S0 − P1 + S1)θ ], 1/(1 + θ ), 0). All these fixed points
are unstable and not of practical importance to our investi-
gation.

B. Relevant partition of the parameter space

Our next aim is to find out how and when the stable fixed
points are physically attained as the system evolves with time.
The full nonlinear evolution can be studied only numerically.
To this end, we numerically evolve the system for a wide range
of initial conditions and parameters that we list shortly.

But first, following past works [34,36], we introduce four
parameters that can be intuitively interpreted as four distinct
types of incentives for changes in strategies:

�k
RT ≡ Rk − Tk, (11a)

�k
SP ≡ Sk − Pk, (11b)

where k ∈ {0, 1} specifies whether the payoff elements are
for the n = 0 or the n = 1 case. In the literature [56–59],
−�k

RT and −�k
SP are known as the gamble-intending dilemma

strength and the risk-averting dilemma strength, respectively.
We also introduce a parameter—relative dilemma strength,
δk ≡ �k

RT /�k
SP = (−�k

RT )/(−�k
SP )—that quantifies by what

multiplicative factor a player has more affinity to defect
against a cooperator than against a defector.

As discussed earlier, we can envisage four exhaustive, mu-
tually exclusive classes listed below for which we present the
results separately:

(1) Harmony game: R > T and S > P, i.e, �RT > 0 and
�SP > 0.

(2) Anticoordination game: R < T and S > P, i.e, �RT <

0 and �SP > 0.

(3) Prisoner’s dilemma: T > R > P > S, i.e., �RT < 0 and
�SP < 0.

(4) Coordination game: R > T � P > S, i.e., �RT > 0 and
�SP < 0.

Since we want to analyze the dependence of TOC on the
strategic interactions modeled by all possible types of U0, it is
convenient to present the results on a plane spanned by �0

RT =
0 and �0

SP = 0. Thus the �0
RT -�0

SP plane is divided into
four quadrants identified by the four aforementioned different
types of games, each having a distinct structure of the cor-
responding payoff matrix [51–55], viz., that of the harmony
game, the anticoordination game, the prisoner’s dilemma, and
the coordination game.

Subsequently, drawing a line with slope δ0 = δ1 and an-
other line with slope −δ0 = θ , the �0

RT -�0
SP plane gets finally

divided into seven distinct regions. In each of these regions
thus obtained, we present the fate of any arbitrary initial
condition (x0, n0) for a finite value of carrying capacity and
also for infinite carrying capacity [34]. Essentially, we find out
whether an initial condition evolves to reach an attractor with
n = 0 (TOC) or with n �= 0 (averted TOC); the x component
of the attractor is the cooperator fraction in the final state.

C. Numerical results

In Fig. 2, we pictorially summarize the comprehensive
results thus obtained. While we discuss the details in the
subsequent sections, one point is crystal clear from the figure:
unlike the case of the infinite carrying capacity, in the presence
of the finite carrying capacity, the TOC is strongly dependent
on the initial states of the population and the shared resource.

For generating the figures, we evolve the system by fixing
U1 = [ 4 1

4.5 1.25] (the prisoner’s dilemma),
θ = 1.5 and ε = 0.1; any changes in these values do not
qualitatively effect the results reported herein as is expected.
For the sake of concreteness, we further chose the following
U0 in the above-mentioned seven distinct regions (see Fig. 2
as well):

(1) For the harmony game with δ0 < δ1: U0 = [3.5 1
2 0.75].

(2) For the harmony game with δ0 > δ1: U0 = [3.5 1
3 0.05].

(3) For the anticoordination game with −δ0 < θ : U0 =
[ 3 1
3.5 0.05].

(4) For the anticoordination game with −δ0 > θ : U0 =
[3.5 1

2 1.25].

(5) For the prisoner’s dilemma: U0 = [ 2 0.05
3.5 1 ].

(6) For the coordination game with −δ0 < θ : U0 =
[3.5 0.05

3 1 ].
(7) For the coordination game with −δ0 > θ : U0 =

[3.5 1.25
2 1 ].

We use the fourth-order Runge-Kutta scheme for time
evolving the eco-evolutionary system. The system of differen-
tial equations evolves from t = 0 to t = 1000 in step size of
dt = 0.1. We start with a population size of N (t = 0) = N0 =
100. So far as the choice of x(t = 0) = x0 and n(t = 0) = n0

are concerned, we choose 100 × 100 different initial condi-
tions taken as the grid points of the uniformly spaced square
grid of side 0.01 units spanning the entire x-n unit square.
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FIG. 2. TOC is crucially dependent on the carrying capacity, the initial conditions, and the type of strategic interactions: Each of the two
panels shows four regions—light blue, light yellow, light red, and light green, respectively corresponding to the matrix U0 for the harmony
game, the anticoordination game, the prisoner’s dilemma, and the coordination game. The black lines demarcate seven different regions [for
K = ∞ in subplot (a), and for K = 104 in subplot (b)]. In each of these regions, using the common color codes shown below the panels, we
present x∗ and n∗—the final cooperator fraction and the state of the shared resource, respectively—realized for 100 × 100 uniformly distributed
initial conditions (x0, n0 ). The bluer the plot, the greater is the cooperator fraction; the greener the plot, the more replete the shared resource is.
Specifically, in the plots for n∗, red indicates realization of the TOC, green indicates complete aversion of the TOC, and other colors indicate
partial aversion of the TOC. In all cases with finite carrying capacity K , these plots for the final resource state, n∗, show bistability: Every
initial condition either ends up at n∗ = 0 (TOC) or n∗ = 1 (averted TOC) as time evolves. We remark that the swirling red inside green in the
plot for n∗ showcases the oscillatory TOC [34]. Here we have fixed N0 = 102 (other values give similar results).

1. K → ∞: Pure effect of payoff structure

First, in Fig. 2(a), we present the case of the infinite car-
rying capacity where only the payoff structure is expected to
decide the conditions under which the TOC is averted. The
corresponding results are exactly in line with what is known
in the existing literature [34], although with an interesting
technical difference that we discuss in Sec. IV.

We present a short summary of the results for this special
case: (i) The TOC is inevitable when (a) U0 is that for the
prisoner’s dilemma or the coordination game; (b) U0 is for
the anticoordination game with −δ0 > θ . (ii) When U0 corre-
sponds to the anticoordination game with −δ0 < θ , the TOC is
partially averted in the sense that an intermediate state of the
resource—along with a mixed population of the cooperators
and the defectors—is asymptotically arrived at. (iii) Most
interesting is the case when U0 corresponds to the harmony
game. The corresponding region in Fig. 2(a) is divided by a
line δ0 = δ1; as K → ∞, there is an oscillatory TOC above
this line, whereas the TOC is partially averted below this line.
Thus, ignoring the detailed features, we can conclude that in
the case of the infinite carrying capacity (K → ∞), the TOC
is never completely averted (i.e., n �= 1 asymptotically at all
times) irrespective of the payoff structure.

2. Effect of finite carrying capacity

We find a finite carrying capacity is capable of averting
the TOC which occurs in the corresponding counterpart with
infinite carrying capacity: Specifically, this happens when U0
corresponds to the prisoner’s dilemma, the coordination game,
and the anticoordination game with −δ0 > θ . One could in-
tuitively argue that comparatively less number of individuals
would be unable to exploit the shared resource fully and hence
the TOC is possibly averted when the carrying capacity is
finite. The case of the finite carrying capacity is presented in
Fig. 2(b).

More interesting are the cases where U0 corresponds to the
harmony game and the anticoordination game with −δ0 < θ :
One finds that while in the case of the infinite carrying ca-
pacity the TOC is averted—at least partially (0 < n∗ < 1) or
periodically (oscillatory TOC)—making the carrying capacity
finite yields a set of initial conditions for which the TOC is,
quite counterintuitively, realized.

From Eqs. (8) and (10), we note dn/dN ∝ (1 − N/K )−1.
This implies that change in the state of the resource with the
change in the size of population is more if the carrying capac-
ity is finite. In other words, the individuals—both cooperators
and defector—are capable of bringing more change in the
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state of the resource as they replicate. Consequently, if a finite
population has a large fraction of cooperators (say, x → 1) to
begin with, they may be able to positively change the state of
the resource compared to the case of infinite population where
the TOC is inescapable. While we explain in the next section
how the interplay between the growth rates of x and n leads to
this effect, it should be immediately clear that this argument
is independent of the form of U0 as is validated in Fig. 2(a).
Intriguingly, it means that even if the prisoner’s dilemma is
played always (i.e., both U0 and U1 both correspond to the
prisoner’s dilemma), a finite value of K can avert TOC if there
are mostly cooperators initially.

When U0 corresponds to the coordination game, the extent
of aversion of the TOC depends on the relative strength of
−δ0 and θ . As can be seen above the oblique line (−δ0 = θ )
in Fig. 2(a), −δ0 > θ ; it means that the enhancement rate by
the cooperators is overshadowed by the fact that a player has
more affinity to defect against a cooperator than cooperate
against a defector when compared with the region given by
−δ0 < θ below the oblique line. Naturally, the extent of the
TOC should be more in the former. Similar consideration ex-
plains the difference in the extent of the TOC below and above
the line, −δ0 = θ , that splits the region of the anticoordination
game as well.

In the case of the harmony game, if K is made finite, the
TOC results when initially there is a dearth of cooperators.
The difference in the nature of x0-n0 plot near n0 = 0 above
and below the line may be understood physically as follows:
above the line, δ0 > δ1 and below the line, δ0 < δ1. In other
words, in the former there is comparatively more affinity to
defect against a cooperator than against a defector. Hence, if
initially there are a small number of cooperators, in the former
case the defectors simply overcome them, which is harder to
do in the latter case because the affinity to defect against the
cooperator is less.

IV. THE MECHANISM

Having discussed some important aspects of the results
from physical considerations, we now bring a crucial physical
feature of the system to the fore. It is the phenomenon of
bistability in the presence of finite carrying capacity. The
bistability is an omnipresent feature of many physical, chemi-
cal, and biological systems; there is a lot of current interest in
its presence in the phenomena witnessed in quantum [60–62],
thermal [63–65], electrical [66], optical [67,68], and mechan-
ical [69–72] systems. Consequently, it is exciting to find the
bistability in an eco-evolutionary dynamical scenario and that
too resulting in counterintuitive conclusions: e.g., the bista-
bility makes it possible to sustain cooperation—and hence
to avert the TOC—in the finite population even when every
individual faces the prisoner’s dilemma.

In the context of the eco-evolutionary dynamics, the bista-
bility manifests itself as the partition of the set of all possible
initial conditions into two classes: one class leads to the com-
plete realization of the TOC, whereas the other leads to the
complete aversion of the TOC. In this section, we intend to
explain the mathematical mechanism leading to the related
observed effects of the finite carrying capacity. A closely
related question is how the results for finite carrying capacity

tend towards the results known for an infinite population’s
eco-evolutionary dynamics.

We note in Fig. 2, the results obtained for K → ∞ are,
indeed, in complete agreement with similar results in litera-
ture [34] where the population is supposed to be fixed and
infinite. Despite the agreement, we must mention here the
important difference with Ref. [34] which tacitly assumes that
the population is fixed and infinite. There the state marked
by (x∗, n∗) = (1, 1), corresponding to the TOC aversion, is
an unstable fixed point and hence there is no possibility of
bistability. This is quite unlike the situation of the growing
population with infinite carrying capacity where the bistability
effectively vanishes not because (x∗, n∗) = (1, 1) is unstable
but because its basin of attraction vanishes that otherwise is
present for any finite carrying capacity. We elaborate on this
in what follows.

Broadly speaking, there are two cases of interest for us:
(i) There is partial or oscillatory aversion of TOC for infinite
K , but the TOC can show up for certain initial conditions for
finite K ; and (ii) there is TOC for infinite K irrespective of
the initial conditions, but it gets averted for certain initial con-
ditions for finite K . This hints to us that we can best explain
the phenomenon by picking an appropriate initial condition,
(x0, n0, N0), and find out towards which attractor—n = 0 (re-
alization of the TOC) or n = 1 (aversion of the TOC)—it
approaches as K changes. Before we discuss an illustrative
example, we mention that the crux of the matter is that the
rate of change of x is dependent on K (ẋ increases with K) but
the rate of change of n is K independent.

Consider an example of case (i): U0 is the payoff matrix
for the harmony game with δ0 < δ1. The fixed points (x∗ ∈
[0, 1/(1 + θ )), n∗ = 0, N∗ = K ) (stable) and (x∗ ∈ (1/(1 +
θ ), 1], n∗ = 0, N∗ = K ) (unstable) correspond to the TOC
while the fixed points (x∗ ∈ [0, 1/(1 + θ )), n∗ = 1, N∗ = K )
(unstable) and (x∗ ∈ (1/(1 + θ ), 1], n∗ = 1, N∗ = K ) (stable)
correspond to complete aversion of the TOC. Suppose we start
from a half-replete resource and a low fraction of cooper-
ators, and say we choose (x0, n0) = (0.1, 0.5) (see Fig. 3).
Additionally, we choose N0 such that 0 � N0 � K . When
K is small, ẋ < ṅ, the initial state is pulled towards a stable
fixed point that corresponds to the TOC (n = 0) while mak-
ing minimal excursion towards the x direction. But if K is
increased, ẋ increases as well, and the state is pushed beyond
x = 1/(1 + θ ) to be subsequently pulled towards the fully re-
plete resource state (n = 1). Thus, the basin of attraction that
leads to complete circumvention of the TOC increases in size
as K increases and its measure becomes unity as K → ∞. The
examples of the aforementioned case (ii) can be analogously
understood as illustrated in Fig. 4 with the specific example of
U0 as the payoff matrix for the prisoner’s dilemma.

However, there is an interesting caveat: In light of Fig. 2
(and also previously reported work [34]), it is clear that when
U0 corresponds to the harmony game and the anticoordination
game with −δ0 < θ , K → ∞ leads to partial (or oscilla-
tory) aversion of the TOC for all initial conditions; but in
light of Fig. 3, it appears that depending on the value of
K , a particular initial condition asymptotically either leads
to n = 0 or n = 1. This discrepancy can be traced to the
nature of the set of nonisolated fixed points (x∗ = 1/(1 +
θ ), n∗ ∈ [0, 1], N∗ = K ). Unfortunately, the linear stability
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FIG. 3. Bistability in the growing population with finite carrying
capacity: The case of U0 for the harmony game with δ0 < δ1 is
considered here. For the sake of generating illustrative plots, we

have specifically chosen U0 = [3.5 1
2 0.05] and U1 = [4 1

7 2]. We

have fixed N0 = 102 (other values give similar results). The figure
exhibits how an initial condition, (x0, n0 ) = (0.5, 0.1), approaches
either n∗ = 0 or n∗ = 1 with monotonic change in the value of the
carrying capacity, K . In each subplot, (a), (b), and (c) respectively de-
pict the time series of n, the time series of x, and the phase trajectory
projected on the x-n plane. The solid green line means stable fixed
points; the dashed red line indicates unstable fixed points; and the
gray dashed line [x = 1/(1 + θ ) = 2/5] shows the fixed points for
which the linear stability analysis fails. The inset showcases that any
increased carrying capacity reduces the timescale of the dynamics of
x but has no explicit effect on the timescale of n.

analysis fails for this fixed point because on linearization
about these phase points, the Jacobian of the vector field of
the phase space flow has two zero eigenvalues and one neg-
ative eigenvalue, viz., −[(1 − n)(R0 + θS0 + θT0 + θ2P0) +
n(R1 + θS1 + θT1 + θ2P1)]/(1 + θ )2. The true nature of the

FIG. 4. Bistability in the growing population with finite carrying
capacity: The case of U0 for the prisoner’s dilemma is considered
here. All the details of the plot are the same as in Fig. 3 except that

here U0 = [ 2 0.05
3.5 1 ], U1 = [ 4 1

4.5 1.25], (x0, n0) = (0.9, 0.6), and

the gray dashed line is given by x = 1/(1 + θ ) = 1/3.

FIG. 5. Exclusive partial aversion of the TOC happens only at
K = ∞: This figure correspond to U0 for the harmony game with
δ0 < δ1. The first column [subplots (a), (c), (e), and (g)] and the
second column [subplots (b), (d), (f), and (h)] exhibit the value of the
final state of the resource (n∗) and the final fraction of the cooperators
(x∗), respectively, for progressively increasing values of the carrying
capacity, K , for 100 × 100 uniformly distributed initial conditions
(x0, n0). We have fixed N0 = 102 (other values give similar results).
For the sake of generating illustrative plots, we have specifically

chosen U0 = [3.5 1
2 0.05] and U1 = [ 4 1

4.5 1.25].

stability property of this set of fixed points can be ascertained
numerically.

In Fig. 5, we explore the stability of the set of nonisolated
fixed points, (x∗ = 1/(1 + θ ), n∗ ∈ [0, 1], N∗ = K ), particu-
larly for the same case considered in Fig. 3. We find that
an interior phase point belonging to this set of fixed points
is actually nonlinearly stable and as K increases, its basin of
attraction increases in comparison with the other stable fixed
points’ (corresponding to n∗ = 0, 1) basins. In fact, when the
carrying capacity becomes infinity, it is the only basin of
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attraction existing with measure unity. While this observation
validates our model that completely reproduces the results
existing in the literature [34], this raises an important point:
The partial (or oscillatory) aversion of the TOC seems to be
true only in the limit of unrealistically high carrying capacity;
what is more plausible is that depending on the initial states
of the cooperators and the resource, all three possibilities—
complete realization, partial aversion, and complete aversion
of TOC—may be encountered at any finite carrying capacity
howsoever large.

V. CONCLUSIONS

Our mathematical framework reveals the hitherto unex-
plored nontrivial effects of the carrying capacity on the TOC
in the eco-evolutionary dynamics of game-resource feedback
in a growing population. While in the case of a fixed infinite
population—realized in our model in the limit of K → ∞—
the status of the TOC is independent of the initial states of the
cooperator fractions and the shared resource, we find that this
is definitely not so when the carrying capacity is finite. In fact,
depending on the type of strategic game-theoretic interaction
and the initial conditions, a finite carrying capacity either
averts or causes the TOC; sometimes the result is at direct
odds with that which would happen, if the carrying capacity
is infinite.

Some of the results are rather counterintuitive: Even
though prisoner’s dilemma is played, irrespective of whether
the common resource is replete or depleted, a finite value
of K can avert the TOC if there is enough initial cooperator
fraction. Furthermore, one could argue that finite carrying
capacity means a smaller number of individuals vying for
the shared resource, and hence the aversion of the TOC is
intuitively understandable. However, in this context, we have
found an intriguing scenario where finite K introduces the
TOC which is otherwise averted for infinite K . This is par-
tially because of the fact that the change in consumption
with increasing population (dn/dN) increases with a decrease
in K .

Mathematically, we pinpointed the mechanism behind the
effect of carrying capacity to the fact that the rate of change of
the cooperator fraction is dependent on the carrying capacity
but the rate of change of the state of the resource is constant
with K . Our model is validated by the fact that in the limit
K → ∞, we completely reproduce the various scenarios of
the TOC as reported in the literature [34]. What, however, is
interesting is that the fixed points’ stabilities do not change as
K approaches infinity; rather, it is the basin of attraction of the
corresponding stable fixed point that shrinks and practically
vanishes making the stable fixed point unattainable.

It should be pointed out that if one wants to consider
the situation of mutually nonexclusive ecological resource
and exploitable common resource (as mentioned in Sec. I),

then mathematically, K should be replaced by the expression
nKmax + (1 − n)Kmin where Kmax and Kmin are respectively
the maximum and the minimum carrying capacities as the
environmental state changes. However, we have found that
the qualitative effects of the finite carrying capacities in this
scenario are exactly identical to what we have already reported
in this paper; hence, we have chosen not to present the corre-
sponding results to avoid uninformative duplication.

The scope of our work, which is based on a deterministic
model, is complementary to a very extensive body of pub-
lished theoretical investigations [73–77] done using elegant
stochastic models. In those models, the changes in the envi-
ronment have been captured by a time-dependent form of the
carrying capacity and there is no explicit dynamic equation
for the state of the environment. More importantly, those
models primarily deal with the ecological resources; they do
not consider the dynamics of a different shared resource and
its exploitation by the replicators in a growing population.
We envisage that a stochastic extension of our deterministic
formalism, such that the deterministic formalism is seen as its
mean-field description, should be the next step of our inves-
tigation. Such a stochastic model would relate directly with
the aforementioned models if the ecological and the common
resource are one and identical.

We believe that our mathematical framework opens up
the possibility of further exciting research avenues in the
game-resource feedback dynamics in changing population.
Specifically, one could consider a renewable resource with
intrinsic growth dynamics [36] and investigate the effect of
finite carrying capacity on that. Moreover, one could develop
microscopic stochastic birth-death models [35,48,49,78] for
both the population and the resource, and investigate the effect
of finite population on the eco-evolutionary dynamics in a
more fundamental manner. Of course, it is always interest-
ing to extend the results of this paper to the situations of
multiplayer [79], multistrategy interactions (like in the public
goods game [80–83]). Additionally, it may also be possible
to introduce the phenomenon of cultural evolution [84–86]
because in many cases the TOC is due to cultural practices.

Most importantly, however, it needs to be investigated
whether the effects of the finite carrying capacity predicted
in this paper are actually realized in realistic eco-evolutionary
systems. In the past, some studies on the interplay between
evolution and ecology in growing populations have been con-
ducted experimentally, e.g., in the yeast population [87] and
in the bacterial population [88,89]. We hope that some experi-
ments with microbes [90–95] may possibly be designed to this
end.
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