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Heterogeneity is not always a source of noise: Stochastic gene expression in regulatory heterozygote
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Zygosity of diploid genome (i.e., degree to which two parental alleles of a gene have varied genetic sequences)
adds another dimension to stochastic gene expression. The allelic imbalance in chromatin accessibility or
divergence in regulatory sequences leads to fitness effects but the quantitative aspects thereof are largely left
unexplored. We investigate diploid gene expression systems with homozygous (the same) and heterozygous
(varied) combination of alleles in cis-regulatory sequences, not in structural gene loci, and characterize the
zygosity-associated stochastic fluctuations in protein abundance. An emerging feat of heterozygosity is its
counterintuitive capacity for genetic noise control. Especially when the noise is dominantly contributed to by
the fluctuations in duty cycle (“reliability”) rather than in process speed (“productivity”) of gene expression
machinery, its interallelic discrepancy acts to reduce the gene expression noise. These findings offer a novel
insight into the rich repertoire of balancing selection enriched in the regulatory elements of immune response
genes.
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I. INTRODUCTION

Origins and consequences of cell-to-cell variability are
essential to the understanding of diverse biological processes
underlying the development, aging, immune response, and tu-
morigenesis, just to name a few [1–4]. As a micrometer-sized
chemical reactor, living cells call for analytical frameworks
that respect the stochasticity of biochemical reactions and dis-
crete nature of macromolecules. In particular, gene expression
involves a series of macromolecular binding and unbinding
events orchestrated by enzyme complexes and transcription
factors often occurring in low copy numbers. Together with
genetic and environmental factors, this fundamental random-
ness may play a crucial role in determining the phenotype,
giving rise to cell-to-cell variations in a clonal population sub-
ject to the same environmental conditions. Recent advances in
molecular imaging and microfluidics-based cytometric tech-
nology led to an unprecedented opportunity in single-cell
biology [5,6]. “Noisy” gene expression [7–9], or random
fluctuations in the gene product levels, turned out to be an
essential notion for deepening our quantitative understanding
of central dogma and intracellular metabolism alike. Efforts
to date, however, have been predominantly devoted to the
natural and synthetic gene expression systems in prokaryotic
cells. Despite the recent surge in single-cell genomics and
single-molecule biophysics, full-fledged stochastic treatment
of eukaryotic gene expression has been limited with a few
notable exceptions [10,11].

Although the majority of genes in diploid cells (i.e., cells
with paired chromosomes, one from each parent) express both
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the maternal and paternal alleles, genes are often subject to
epigenetic modifications that allow only one allele to be ex-
pressed, while leaving the other transcriptionally silent. This
random monoallelic expression (MAE) accounts for up to
24% of the human genome according to a recent study [12].
What is the rationale, if any, behind this “idling” of an al-
lele? Yet, despite its prevalence in eukaryotic gene expression
system, the roles of MAE remain by and large to be elu-
cidated. Recent transcriptomic studies [13,14] suggest that
MAE increases the variability of the gene expression level
in some specific tissues by generating different expression
patterns based on allelic compositions even in the genetically
identical cells. Another novel hypothesis put forward is that
MAE is a mechanism for exercising tight control over ex-
pression level by avoiding the “overshoot” [13,14]. In the
same vein, it was proposed that the heterozygous combina-
tion of alleles could be an important regulatory mechanism
to achieve fine-tuning of gene expression levels [15,16] es-
pecially when robust titration of gene products is required
for accurate decision making, e.g., during cell division and
differentiation.

Motivated by the putative rationale behind MAE, here
we address the general question of the gene expression
noise in a regulatory heterozygote and compare it with its
mean-expression-preserving homozygous counterparts. To be
specific, contrary to the previous model [16], where the
promoter dynamics is only implicit under the “adiabatic” ap-
proximation and the source of the “extrinsic noise” is limited
to the cell-to-cell variability in the transcription factor con-
centration, we consider a stochastic model of diploid gene
expression in a more general nonequilibrium setting, which
takes the previous model as a limiting case of fast promoter
switching.
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FIG. 1. Schematic of diploid gene expression system. (a) In
general two alleles have divergent regulatory sequences or distinct
epigenetic status, differing either in kinetic rates of activation and
deactivation (ki, qi ) or the rate of lumped transcription process αi

(i = 1, 2). (b) A realization of stochastic gene expression at the level
of the transcript in homo- and heterozygous cell. The white and gray
bands respectively denote the durations of “ON” and “OFF” state and
the dotted lines in red or blue represent the events of mRNA synthesis
from the allele 1 or 2.

II. MODEL OF DIPLOID GENE EXPRESSION

We employ the chemical master equation (CME) to de-
scribe a stochastic model of gene expression, where the
distinct stages of transcription and translation are “coarse-
grained” as discrete birth and death events of single mRNA
and protein molecules (Fig. 1). The synthesis and degradation
(or dilution) of the transcript is respectively governed by the
propensity α and γ , but the synthesis occurs only when the
allele is in an active state [17–21]. Unlike the transcription
and other upstream events, translation and protein decay is
not affected by the activity of an allele but governed by a
constant propensity β and δ. The promoter switches back and
forth between active and inactive promoter states at a rate k
(activation) and q (deactivation), reflecting random binding
and unbinding of the transcription factor(s) to the control
element of the allele. When the transcription factors are non-
competitively shared by the two alleles, the mean activity of
an allele is controlled by a dimensionless equilibrium constant
K = q/k with 1/(1 + K ) ≡ θ being the duty cycle, i.e., prob-
ability that the allele is in an active state.

The model of diploid gene expression under consideration
is composed of two alleles independently expressing the same
gene products. The allelic differences lying only in the reg-
ulatory sequences, not in the coding region, a heterozygous
gene with no interallelic interaction is modeled as a pair
of alleles with distinct expression kinetics. The kinetic rates
associated with each allele are independently modulated and
the copy numbers of the gene products as a phenotype are
thus additive. To be specific, the divergence in the regulatory
sequences or varied epigenetic status may lead to a different
set of propensity values (ki, qi ), i = 1, 2, which are related to
the “reliability” in a sense that the ratio qi/ki determines the
probability of the failure-free operation of the gene expression

machinery. Another manifestation of heterozygosity, related
to the “productivity” of the gene expression, is the interallelic
discrepancy in the overall rate αi of the open complex for-
mation and the ensuing processive downstream events down
to the synthesis of the nascent transcript. Since we consider
identical coding regions, the other rates β and δ associated
with the translation and protein decay are not affected by the
zygosity.

For quantitative analysis, let us now define the probability
Ps(m, p, t ) that a diploid cell has m and p copies of the mRNA
and protein associated with a gene when its two promoters are
in a state s at time t . The promoter state s can assume one
of the four possible combinations of the active/inactive allele
pairs. Then the chemical master equation is given by

∂

∂t
Ps(m, p, t ) = −

∑
s′

(vss′ + wss′ )Ps′ (m, p, t ), (1)

where the transition rate matrix V = (vss′ ) includes the rates
involved in the change of promoter states, while W = (wss′ )
denotes the rates of the transcription, translation, and degra-
dation events of the gene products. Further details of V and W
can be found in Appendix A.

III. NOISE PROFILES

Because of the linearity of the underlying CME, the first
and second moment of the steady-state probability distribu-
tion |P(m, p,∞)〉 can be obtained exactly by the method of
probability generating function. The mean and variance of the
protein level thus obtained is

〈p〉 = β

δ

2∑
i=1

αi

1 + Ki
≡

2∑
i=1

〈pi〉, (2a)

σ 2
p = (1 + b)〈p〉 + δ

1 + δ

2∑
i=1

〈pi〉2g(ki, qi ), (2b)

where b ≡ β/(1 + δ), ωi ≡ ki + qi, and

g(ki, qi ) ≡ Ki

1 + ωi

(
1 + 1

δ + ωi

)
. (3)

All the rates are now rescaled in units of γ . The noise, defined
as the coefficient of variation squared (CV2), is given by

η ≡ σ 2
p

〈p〉2 = 1 + b

〈p〉︸ ︷︷ ︸
≡ η0

+ δ

1 + δ

1

〈p〉2

2∑
i=1

〈pi〉2g(ki, qi )︸ ︷︷ ︸
≡ η1

. (4)

The first term on the right-hand side, which we will denote as
η0, originates from the fluctuations inherent to the birth-death
process of the gene products. Being inversely proportional
to mean copy number, η0 is likely to matter only when the
mean expression level is sufficiently low. The second term,
η1, reflects the propagation of the “upstream” noise due to
the ON-OFF switching of the promoter down to the protein
level. As shown explicitly in Appendix B, the copy-number
statistics of mRNA can be exactly described, up to its second
moment, an intermittent Poisson process gated by a telegraph
noise arising from the random ON/OFF switching of the
promoter state. The factor Ki = qi/ki = (1 − θi )/θi is, in fact,
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(a) (b)

FIG. 2. Noise landscape of the monoallelic gene expression.
(a) The color code represents CV2 of the protein copy number
produced by a single allele as a function of the activation and de-
activation rates (k, q). The other rates are α = 4.2, β = 1.8, and
δ = 0.15, which are all rescaled in units of γ . The broken lines
along the diagonal are, from top to bottom, the contours for the
average copy number 〈p〉 = 4.6, 25.2, and 45.8, each of which is
the y-intercept of Figs. 3(a), 3(d), and 3(g). The three black dots
indicate the reference alleles used in Figs. 3 and 4. Hetk/Hetq refers
to the allele pairs composed of these reference alleles and their k-/q-
modified partner alleles. (b) The heatmap encodes the ratio η1/η0.
The white solid trajectory signifies η1 = η0, below which η1 is the
dominant contribution to the total protein noise. The axis ranges, left
out for brevity, are the same as in panel (a).

CV2 of the number of active alleles, which follows Bernoulli
distribution. The remaining factors (1 + ωi )−1 and δ/(1 + δ)
have an intuitive interpretation as a damping factor reflecting
the time-averaging of the promoter noise propagated to the
transcript level and of the mRNA noise to the protein level,
respectively [22].

For notational simplicity and analytical utility as well,
we introduce a parameter λ that captures the interallelic
discrepancy in the rate parameters, and designate a general
genotype by the allelic rate pairs (k, λk), (q, λq), and/or
(α, λα), where λ = 1 represents a homozygote. Note that with
λ being defined as the ratio of the higher rate to the lower
one, we always choose the reference allele to have (k, q, α)
and set λ � 1 without losing generality. To investigate the
impact of the individual processes on the genetic noise pro-
file [6,23,24], we employ three types of heterozygotes, k-, q-,
and α-heterozygote, which we denote as Hetk , Hetq, and Hetα ,
respectively. Then, for a meaningful comparison of the noise
profile between homo- and heterozygotes, we first determine
the rates k̄, q̄, and ᾱ of the mean-expression-preserving ho-
mozygote. See Fig. 2 and Eq. (C1) in Appendix C.

IV. PROMOTER NOISE UNDER NONEQUILIBRIUM
BINDING DYNAMICS

For a single allele in the limit of fast promoter dynamics,
i.e., for ω � 1 with a physiologically sound assumption that
δ � 1 and a finite ratio q/k ≡ K , the contribution of the
promoter switching, contained in the g function in Eq. (4),
is only O(K/ω) to both the mRNA- and protein-level noise,
and thus becomes negligible. In this limit, the slow birth-
death dynamics of the gene products is shielded from the
promoter noise, and the overall gene expression is accurately

reproduced by a Poisson point process with the rate parameter
α · (1 + K )−1 = θα.

However, as shown in Fig. 2(b), when either of the rates
(k, q) decrease down to the mRNA degradation rate γ , η1

starts to dominate. This tendency is prominent near the main
diagonal characterized by a 50% duty cycle of the promoter
(K = 1), but weakens when either of the rates k or q ex-
ceeds γ . Notice that, even with a constant duty cycle, η1/η0

changes its value by more than three orders of magnitude.
In general, as the duration of the ON or OFF state of the
promoter becomes longer, the noise propagated from the ON-
OFF switching becomes more significant.

Since, at the mean protein level, a c-fold change in k is
indistinguishable from a reciprocal change in q, and since
g(ck, q) from Eq. (3) is always less than g(k, q/c) for c > 1,
the unilateral increase in k is the solution to increase the
expression level by adjusting k or q with minimal noise. Like-
wise, to decrease the expression, a unilateral increase in q is
the solution for c < 1. Moreover, tuning α entails even higher
noise as is clearly seen in Figs. 3(c), 3(f), and 3(i), where the
dotted lines fall deep below the corresponding solid lines at a
given mean.

The biallelic gene expression as the sum of the contri-
butions from each independent allele shows nontrivial noise
behavior. As the binding affinity of the reference allele en-
hances when K shifts from 10 to 1 to 0.1 [Figs. 3(b), 3(e),
and 3(h)], the noise level shows an overall trend of decrease.
However, at higher duty cycle, due to the earlier onset of the
saturation in the mean expression level with growing discrep-
ancy [Figs. 3(d) and 3(g)], the noise level rebounds, rendering
it a nonmonotonic function of K . The increased duty cycle
in the reference allele from 9 % (K = 10) to 50% (K = 1)
to 91% (K = 0.1) results in ∼1500% and ∼30% relative
increase in the total expression for a hundred-fold discrepancy
in K , leaving little room for improvement in noise reduction
at higher duty cycles.

V. HETEROZYGOSITY IN PRODUCTIVITY AND
RELIABILITY

From Eq. (4), the reduced noise ν of a heterozygous gene
with respect to its mean-expression-preserving homozygote
can be expressed as

ν ≡ ηhet − ηhom

ηhom
=

∑2
i=1 〈pi〉2g(ki, qi ) − 1

2 〈p〉2ḡ
β(1+b−1 )〈p〉

δ
+ 1

2 〈p〉2ḡ
, (5)

where ḡ is either g(k̄, q) or g(k, q̄) depending on whether the
heterozygote in question is Hetk or Hetq. Notice that, from
Eq. (2a), 〈pi〉 contains the allele-specific variation of both αi

and Ki.
Specifically, when the interallelic heterogeneity is intro-

duced into the productivity measure αi with homozygous
(ki, qi ), the numerator in Eq. (5), up to the positive common
factor ḡ, becomes 1

2 (〈p1〉 − 〈p2〉)2 ∝ (1 − λ)2 > 0, showing
that the heterozygous gene expression is noisier than the ho-
mozygote’s. This is a conspicuous feature of Hetα as shown
by the solid lines in Figs. 4(c), 4(f), and 4(i). The reduced
noise ν for Hetα monotonically grows with the interallelic
discrepancy in the transcriptional processing rate α.
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FIG. 3. Mean and noise level of biallelic gene expression. The first two columns are the mean expression and noise level as a function of
discrepancy parameter λ, and the last column is the resultant 2D map between the mean and the noise. The rows are arranged according to
the values of the equilibrium constant: K = 10 (blue, a–c), K = 1 (green, d–f), and K = 0.1 (red, g–i). The dotted, dash-dotted, and sold lines
represent Hetk , Hetq, and Hetα , respectively. The intersection point of the three distinct lines in each of the mean-noise relation denotes the
mean and noise level of the homozygote at each equilibrium constant K . All the zygosity-independent rates are chosen the same as in Fig. 2.

However, when the heterozygosity manifests as a differ-
ence in the reliability rather than the productivity of the gene
expression machine, the rates affected are ki and/or qi. In the
fast switching limit, i.e., ki � 1 and qi � 1,

〈pi〉2g(ki, qi ) ∼ kiqi

(ki + qi )3
. (6)

Hence, from Eq. (5), for Hetk ,

ν(λ) ∼ kq

(k + q)3

[
1 + λ

(
1 + K

λ + K

)3

− 2rk

(
1 + K

rk + K

)3]
, (7)

where rk ≡ k̄/k. The same form of approximation is obtained
for Hetq with the substitutions k ↔ q and K ↔ K−1. It fol-
lows that, as long as K > 2 for Hetk and K < 1/2 for Hetq,
ν remains negative, i.e., Hetk and Hetq are less noisy than
their mean-preserving homozygotes regardless of λ. This is
consistent with the results in Figs. 4(a) and 4(h), where the
Hetk’s noise buffering capacity is clearly enhanced in the
weak-promoter limit, while Hetq is beneficial as the binding
affinity becomes stronger. Even with moderate values of k and
q—actually the k value of the reference allele here is set to
0.1, the noise reduction reaches as high as 40% (Hetk) to 60%

(Hetq) for the reference allele with not too “balanced” duty
cycle (K ∼ 1).

In the large-discrepancy limit (λ � 1), Hetk with a weak
reference promoter [blue solid line in Fig. 4(a)] and Hetq with
a strong promoter [red solid line in Fig. 4(h)] corresponds to
MAE, where both the mean and noise levels are contributed to
almost exclusively by a single allele, i.e., the reference (non-
reference) allele for the former (latter) case. In this regime,
the heterozygotes show lower noise level than their mean-
preserving homozygotes, which is consistent with a recent
report [14] on the noise reduction as a potential rationale of
MAE.

VI. DISCUSSION

The phenotypic diversity stemming from stochastic gene
expression and its evolutionary implications have been the
target of recent research [25–28]. Matsumoto et al. [29] in-
vestigated an individual-based diploid model to assess the
impact of stochastic gene expression in shaping the gene pool
through the interplay among the selection strength, magnitude
of genetic noise, and frequency of environmental changes.
Here, as an effort to understand a seemingly counterintuitive
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. The noise and reduced noise of the heterozygotes in comparison with their mean-preserving homozygotes. The solid (dotted) black
lines represent the heterozygotes (homozygotes) and should refer to the y-axis on the left. The solid lines in color represent the reduced noise
(ηhet − ηhom)/ηhom and refer to the y-axis on the right. The rows are arranged according to the equilibrium constant of the reference allele:
K = 10 (a)–(c), K = 1 (d)–(f), and K = 0.1 (g)–(i). As clearly seen in the shaded subfigures (a) and (h), the Hetk’s noise buffering capacity is
prominent in the low duty-cycle regime (a), while Hetq plays the same role in the opposite regime of the duty-cycle (h).

role of regulatory heterozygote as a noise buffer, we differ-
entiate the “productivity” of the gene expression machinery
from its “reliability.” Unlike the productivity measure αi for
the processive events that are hardly an engineering target for
obvious physiological reasons, the reliability measures (ki, qi)
controlling the intermittency of the promoter activity provide
a novel heterozygote advantage in diploid genome through its
noise reduction capacity.

The analytical origin of this effect could be attributed
to the convexity of the noise with respect to ki and qi.
From Eq. (4) and the discussion in Appendix E, we see that
∂2η/∂k2

i < 0 and ∂2η/∂q2
i < 0 for certain conditions while

∂2η/∂α2 is always positive. That is, under the modulation
of ki and/or qi, the birth-death process gated by a tele-
graph noise develops concave regions, where the opposite
of Jensen’s inequality holds. This observation is in line with
the recent study [15], where the heterozygosity mitigates the
gene expression noise under the trans-acting noise due to the
fluctuating transcription factor availability. In the context of
the balancing selection emerging in the cis-regulatory regions
of the human genome, our results hint at yet another type
of heterozygote advantage. That is, the heterozygosity may
arise as a selectable trait in the sequence evolution through its
effects on noise reduction.

The results presented in this article also shed a new light
on the double-sided roles of monoallelic expression as an

extreme of Hetq with a high degree of interallelic discrepancy
(λ � 1). The intuitive rationale of MAE is to enhance the
cellular “mosaicism” by differential expression of structural
alleles [14,30,31]. At the same time, a gene ontology-based
annotation reveals that the MAE pattern is found at dispropor-
tionately high frequencies in the cell fate decisions such as cell
division, quiescence, and differentiation [13,14], suggesting a
means to tighten the control of gene expression. Our analytical
and numerical results show that, compared with the allele-
independent regulations mediated by transcription factors or
microRNA molecules, the allele-specific modification of the
gene dosage provides a more controlled way to buffer the
expression noise—Hetq at high duty cycles (K � 1) and Hetk

at low duty cycles (K � 1) [11]. Experimental studies on the
genetic and epigenetic control of k and q, instead of their ratio
K , will be an important step toward fruitful ramifications in
biological and engineering domains.
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APPENDIX A: CHEMICAL MASTER EQUATION AND ITS
EXACT SOLUTION

The matrix V appearing in the CME, Eq. (1), writes

V =

⎛
⎜⎝

k1 + k2 −q1 −q2 0
−k1 k2 + q1 0 −q2

−k2 0 k1 + q2 −q1

0 −k2 −k1 q1 + q2

⎞
⎟⎠, (A1)

where the subindices 1 and 2 denote the allele identity. The
matrix W capturing the birth and death process is diagonal in
the promoter-state representation, i.e.,

wss′ = δss′
[
nsα(1 − L̂−

m ) + γ (1 − L̂+
m )m

+ β(1 − L̂−
p ) + δ(1 − L̂+

p )p
]
, (A2)

where δss′ = 1 only if s = s′ and δss′ = 0 otherwise. Note that
ns ∈ {0, 1, 2} is the number of active alleles in state s. The
birth and death operators are defined as L̂±

m f (m, p) = f (m ±
1, p) and L̂±

p f (m, p) = f (m, p ± 1) for an arbitrary function
f (m, p) defined on the domain of nonnegative integers (m, p).

To work around the difficulty of dealing with discrete vari-
ables, (m, p), we introduce the probability generating function

s(x, y; t ) ≡
∞∑

p=0

∞∑
m=0

xmypPs(m, p; t ), (A3)

the equivalent CME with respect to the continuous variables,
(x, y), becomes

∂

∂t
s(x, y; t ) = −

∑
s′

(vss′ + w̃ss′ )s′ (x, y; t ), (A4)

where

w̃ss′ = δss′ [(1 − x)(nsα − γ ∂x ) + (1 − y)(βx∂x − δ∂y)].

(A5)

The steady-state solution of Eq. (A4) can be obtained ana-
lytically by the method of characteristics [32]. In practice,
once the steady-state copy number distribution, Pr(n|�), for
a haploid gene with a given set of rate parameters � ≡
{k, q, α, β, γ , δ} is given, the distribution for the diploid gene
can be expressed as their convolution, i.e.,

Pr(n|�,�′) =
n∑

m=0

Pr(m|�) Pr(n − m|�′).

And the haploid distribution is given by [9]

Pr(n|�) = �
(

ω
δ

)
�(n + c+)�(n + c−)

�(c+)�(c−)�
(
n + ω

δ

)
�(n + 1)

(
1

1 + β

)c+(
β

1 + β

)n

2F1

(
n + c+,

ω

δ
− c−, n + ω

δ
;

β

1 + β

)
, (A6)

where 2F1(·) is a Gaussian hypergeometric function and

c± = α + ω

2δ

(
1 ±

√
1 − 4kα

(α + ω)2

)
.

Thus, obtained distributions are shown in Fig. 5.

FIG. 5. The exact copy number distribution of protein. Here the
discrepancy parameter is set to λ = 30 and the rate parameters for
the reference allele are chosen as β = 1.8, δ = 0.15, and k = 0.1.
The promoter deactivation rate is chosen as q = 1.0, 0.01, and 0.1,
representing the cases of Figs. 4(a), 4(h), and 4(f). The reduced noise
ν defined in Eq. (5) is −0.33, −0.45, and 0.82 from left to right.

APPENDIX B: EXACT FORM OF MOMENTS

Thanks to the linearity of the CME, the exact form of
the first and second moment of the steady-state probability
distribution

∑
s Ps(m, p,∞) can be obtained by the method

of probability generating function [22]. Thus, obtained mean
and variance reads

〈m〉 =
2∑

i=1

αi

1 + Ki
, (B1a)

〈p〉 = β

δ

2∑
i=1

αi

1 + Ki
, (B1b)

σ 2
m = 〈m〉 +

2∑
i=1

〈mi〉2 Ki

1 + ωi

=
2∑

i=1

αi

1 + Ki

(
1 + αi

1 + Ki

Ki

1 + ωi

)
, (B1c)

σ 2
p = 〈p〉(1 + b) + δ

1 + δ

2∑
i=1

〈pi〉2 Ki

1 + ωi

1 + δ + ωi

δ + ωi

= β

δ

2∑
i=1

αi

1 + Ki

[
1 + β

1 + δ

(
1 + αi

1 + Ki
gi

)]
, (B1d)

where the parameters are defined the same as in the main text
and gi is short for g(ki, qi ) from Eq. (3). Note that all the rates
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are rescaled in units of γ . The stationary cross-correlation
between the mRNA and protein copy numbers captures how
tightly the level of the two gene products are correlated and
provides a clue to the gene expression dynamics responsi-
ble for the seeming absence of correlation [5]. From the
expression

Cov(m, p) = β

1 + δ

2∑
i=1

αi

1 + Ki

(
1 + αi

1 + Ki
gi

)
, (B2)

the normalized cross-correlation can be computed as

Cov(m, p)

σmσp
=

√
βδ

(1 + δ)(1 + δ + β )
χ (k, q, α), (B3)

where the vector notation is used to indicate the collective
contribution from both of the alleles and χ (k, q, α) ap-
proaches its minimum value of 1 in the limit of the constitutive
promoter, q → 0.

From the exact results obtained above, the protein noise for
an arbitrary pair of alleles is now given by Eq. (4). In particu-
lar, for a homozygote with k1 = k2 = k̄ and q1 = q2 = q̄, and
thus 〈mi〉 = 〈m〉/2 and 〈pi〉 = 〈p〉/2, the noise level becomes

ηhom = 1 + b

〈p〉 + 1

2

δ

1 + δ
g(k̄, q̄). (B4)

This constitutes the reference level of noise to be compared
with the heterozygotes that have the same mean level of gene
expression.

APPENDIX C: CALCULATION OF THE AVERAGE RATE
VALUES OF THE MEAN-EXPRESSION-PRESERVING

HOMOZYGOTE

In computing the differential noise between hetero- and
homozygotes for a given mean expression level, we require,
from Eqs. (B1a) and (B1b), the following conditions:

(k, λk) vs. (k̄, k̄) :
1

1 + K
+ 1

1 + K/λ
= 2

1 + Kk/k̄

→ k̄

k
= aλ · K + hλ

K + aλ

� aλ, (C1a)

(q, λq) vs. (q̄, q̄) :
1

1 + K
+ 1

1 + λK
= 2

1 + Kq̄/q

→ q̄

q
= aλ · K−1 + hλ

K−1 + aλ

� aλ, (C1b)

(α, λα) vs. (ᾱ, ᾱ) :
α

1 + K
+ λα

1 + K
= 2ᾱ

1 + K

→ ᾱ

α
= aλ, (C1c)

where aλ = (1 + λ)/2 and hλ = 2λ/(1 + λ), respectively, de-
notes the arithmetic and harmonic mean of 1 and λ. With
this preparation, the reduced noise of the heterozygote with
reference to the mean-preserving homozygote is

σ 2
p,het − σ 2

p,hom = δ

1 + δ

[
2∑

i=1

〈pi〉2g(ki, qi ) − 1

2
〈p〉2ḡ

]
. (C2)

Here the terms 〈pi〉, 〈p〉, and ḡ contain λ dependence, and the
variables with an overbar can be substituted by using Eq. (C1).
Hence, the reduced noise level is given by Eq. (5).

APPENDIX D: NOISE IN FAST SWITCHING LIMIT

In the fast switching limit, i.e., ki � 1 and qi � 1 with
a physiological requirement δ � 1 (upper right section of
Fig. 2 in the main text, where the noise profile produces con-
tours near parallel to the diagonal, reflecting the accuracy of
“adiabatic” approximation),

〈pi〉2g(ki, qi ) =
(

αiβ

δ

)2 Ki

(1 + Ki )2

���1 + δ + ωi

(�1 + ωi )(�δ + ωi )

∼ 1

ki

Ki

(1 + Ki )3
= kiqi

(ki + qi )3
. (D1)

Hence, from Eq. (5),

νHetk ∝ kq

(k + q)3

[
1 + λ

(
1 + K

λ + K

)3

− 2rk

(
1 + K

rk + K

)3]
,

(D2a)

νHetq ∝ kq

(k + q)3

[
1 + λ

(
1 + K−1

λ + K−1

)3

− 2rq

(
1 + K−1

rq + K−1

)3
]
,

(D2b)

where rk ≡ k̄/k, and rq ≡ q̄/q whose explicit form is given
by Eqs. ((C1a),(C1b)). If we define the function fK (x) ≡
x( 1+K

x+K )3, then

νHetk (λ) ∝ 1
2 [ fK (1) + fK (λ)] − fK (rk ), (D3a)

νHetq (λ) ∝ 1
2 [ fK−1 (1) + fK−1 (λ)] − fK−1 (rq). (D3b)

We find that ν is negative, i.e., the heterozygote is less noisy
than the mean-preserving homozygote regardless of λ for
K > 2 (Hetk) and for K < 1/2 (Hetq). This is consistent with
the results presented in Fig. 4 of the main text, where the
Hetk’s noise buffering capacity is clearly enhanced in the
weak-promoter limit, whereas Hetq exhibits noise reduction
as the duty cycle becomes higher.

APPENDIX E: CONVEXITY OR CONCAVITY OF THE
NOISE PROFILE

The observations presented here clearly show a possible
reduction of the expression noise from a gene that harbors
regulatory heterozygosity, i.e., when the same transcript is
produced by two alleles that only differ by their promoter
activity. This result seems to defeat our naive intuition that
the “mixture” of two alleles with different statistical be-
haviors should produce more noise simply because of the
statistical heterogeneity. The analytical origin of this ef-
fect can be attributed to the concavity of the noise with
respect to ki and qi. Notice that the overall protein noise
can be expressed as a linear combination of the allelic
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contributions:

ηp = σ 2
1 + σ 2

2

(〈p1〉 + 〈p2〉)2

=
(

α1θ1

α1θ1 + α2θ2

)2

ηp1 +
(

α2θ2

α1θ1 + α2θ2

)2

ηp2 , (E1)

where θi = 1/(1 + Ki ) is the duty cycle of each allele as
defined in the main text. From Eq. (4), since α2θ2η(k, q)
yields a quadratic function of α with a positive quadratic
coefficient g(k, q)/(1 + δ−1), it is trivial to see the convexity
of the overall noise with respect to α. Thus, the heterozygosity
in productivity measure leads to noisier expression.

To check the convexity of the function with respect to k
and q, we consider

θ2η(k, q) = A(1 + K )−1 + Bg(k, q)(1 + K )−2

= Aθ + Bθ (1 − θ )
1 + δ + ω

(1 + ω)(δ + ω)︸ ︷︷ ︸
≡ G(ω)

≡ F (θ, ω),

(E2)

where A = δ(1 + b)/αβ and B = δ/(1 + δ). Using the short-
hand notation ∂/∂� ≡ ∂�, the chain rule reads:

∂k = 1 − θ

ω
∂θ + ∂ω , (E3a)

∂q = − θ

ω
∂θ + ∂ω , (E3b)

∂2
k = 1 − θ

ω

(
1 − θ

ω
∂2
θ + 2∂θ∂ω − 2

ω
∂θ

)
+ ∂2

ω, (E3c)

∂2
q = θ

ω

(
θ

ω
∂2
θ − 2∂θ∂ω + 2

ω
∂θ

)
+ ∂2

ω. (E3d)

Thus, the second-order derivatives are rearranged as

∂2
k F = −2(1 − θ )

ω2
[A + B(2 − 3θ )G(ω) + B(1 − 2θ )ωG′(ω)]

+ B(1 − 2θ )G′′(ω), (E4a)

∂2
q F = 2θ

ω2
[A + B(1 − 3θ )G(ω) − B(1 − 2θ )ωG′(ω)]

+ B(1 − 2θ )G′′(ω), (E4b)

which can assume negative values. That is, under the mod-
ulation of ki and/or qi, the birth-death process gated by a
telegraph noise develops concave regions, where the opposite
of Jensen’s inequality holds.
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