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Subgraphs such as cliques, loops, and stars play a crucial role in real-world networks. Random graph models
can provide estimates for how often certain subgraphs appear, which can be tested against real-world networks.
These estimated subgraph counts, however, crucially depend on the assumed degree distribution. Fitting a
degree distribution to network data is challenging, in particular, for scale-free networks with power-law degrees.
Therefore, in this paper we develop robust subgraph counts that do not depend on the entire degree distribution
but only on its mean and mean absolute deviation (MAD), summary statistics that are easy to obtain for most
real-world networks. By solving an optimization problem, we provide tight (the sharpest possible) bounds for
the subgraph counts, for all possible subgraphs, and for all networks with degree distributions that share the
same mean and MAD. We identify the extremal random graph that attains these tight bounds as the graph with
a specific three-point degree distribution. We leverage the bounds on the maximal subgraph counts to obtain
robust scaling laws for how the number of subgraphs grows as a function of the network size. The scaling laws
indicate that sparse power-law networks are not the most extreme networks in terms of subgraph counts but
dense power-law networks are. The robust bounds are also shown to hold for several real-world data sets.
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I. INTRODUCTION

The occurrence of specific network subgraphs like cliques,
loops, and stars have proven important for understanding and
classifying complex networks, such as social, biological, and
technological networks. The triangle is a frequently studied
subgraph because it describes local clustering and signals the
presence of community structures. Other subgraphs such as
larger cliques are also important for understanding network
organization. Counting how often certain subgraphs appear,
in particular, in large-scale networks, is therefore a central
topic in network science. Indeed, subgraph counts might vary
considerably across different networks [1–4] and any given
network has a set of statistically significant subgraphs (also
called motifs). In many real-world networks, motifs were
found that signal important network structures for the function
of the particular network. For example, motifs can help to
identify spammers [5], improve recommendation systems [6],
and detect breast cancer [7].

Subgraphs in complex networks are broadly studied
through random graphs, mathematically tractable models that
can generate random samples of a graph in which nodes
have independent and identically distributed degrees [8–12].
Random graph models take the degree distribution as input.
Conditional on the degree distribution, many random graph
properties such as average distance, clustering, and clique
formation can be characterized. These statistics can then be
tested against measurements from real-world network data
with the same degree distribution. Classical choices for degree
distributions include the Poisson distribution and power-law
distributions.

A random variable obeys a power law if it is drawn from a
probability distribution

P (h) ∝ h−τ , h � 0, (1)

where τ > 0 is a constant known as the power-law exponent.
Many real-world networks were shown to be approximated by
a power-law degree distribution with an exponent in the range
2 < τ < 3 [13–15]. Fitting a power law to real-world data,
however, is statistically challenging [16–18]. For small values,
a power law is usually not a good fit. Therefore, one typically
assumes that the power law only holds for values greater than
some minimum hmin. Alternatively, one can consider a family
of distributions of the form

P (h) ∝ L(h)h−τ , h � 0, (2)

where L(h) is some slowly varying function, so
L(ch)/L(h) → 1 for any c > 0 as h → ∞. The function
L(h) can then account for deviations from the pure power
law caused by smaller values of the distribution. Hence,
introducing hmin and L(h) helps in dealing with imperfections
in data for smaller degree values.

Larger values of the power law also present challenges.
Most real-world data sets only follow a power law up to some
maximal degree, which is often modeled by an exponential
cutoff [19–21]. Real-world networks are finite by definition,
while a power law allows infinitely large values. One way to
link finite networks with possibly infinite power-law values is
to scale the maximum degree, called cutoff, as a function of
the network size, which we will also do in this paper.
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Network properties that are claimed to be universal should
not be overly sensitive to the assumed degree distribution,
especially when this distribution is hard to justify statistically.
For power laws as in (2), for instance, the exact shape of
L(h) is often not crucial, while the tail exponent τ implies
vastly different network properties. One reason for this is the
variance of the degree distribution. When the number of nodes
n becomes large, the variance grows to infinity for τ < 3,
while the variance remains finite for τ > 3. This difference
in variance growth crucially influences the network structure
and its subgraph formation [11,12,22].

In this paper, we characterize subgraph counts in random
graphs that only require partial information about the de-
gree distribution. Inspired by the example of the complicated
assessment of power laws, we assume that we only know
the mean, range, and mean absolute deviation (MAD) of the
degree distribution. The MAD is an alternative to variance
for measuring dispersion around the mean, and may be more
appropriate in the case of heavy tails. Indeed, MAD can deal
with distributions that do not possess a finite variance, in
particular, the class of power-law distributions with τ ∈ (2, 3),
for which MAD remains finite while variance becomes infi-
nite in the large-network limit when n → ∞.

We shall identify the maximal subgraph count that can
be achieved by all degree distributions that have the same
mean, range, and MAD. Consider a subgraph H and the
subgraph count EP [NH ] defined as the expected number of
subgraphs H that appear in a random graph. By constructing
a maximization problem, we determine the extremal degree
distribution P that maximizes the subgraph count EP [NH ].
We will refer to the random graph with the extremal degree
distribution as the extremal random graph. We solve this
maximization problem for the hidden-variable model [23,25],
a random graph model that generates graphs with degrees that
approximately follow some given distribution. The hidden-
variable model is a widely applied model due to its generality
and tractability: many network properties of the model have
been investigated, such as degree-degree correlations, clus-
tering, typical distances, and epidemic spreading [9,24–27].
Typically, these properties depend strongly on the input dis-
tribution of the hidden variables. For example, whether or not
the second moment of the input distribution diverges strongly
influences the degree-correlations, distances, and behavior un-
der epidemic processes. We therefore provide bounds on the
subgraph counts that hold for all input distributions with the
same mean and MAD.

For the hidden-variable model, we first show that EP [NH ]
is a convex function of the hidden variables. We then em-
ploy a method from distributionally robust optimization for
maximizing a convex function under certain constraints. We
seek for the maximum of EP [NH ], given the constraints on
the degree distribution in terms of the mean, range, and MAD.
This gives rise to a semi-infinite linear program with the
robust subgraph bounds as its solution.

The main contributions of this paper are fourfold:
(i) We show that for all subgraphs H the expected number

of subgraphs EP [NH ] is maximized for the extremal graph
model with a three-point degree distribution. This maximal
number of subgraphs only depends on the mean, MAD, and
range of the degree distribution, and therefore does not need

further detailed assumptions on the degree distribution. In
particular, we show that this extremal graph model is the same
for all possible subgraphs H and network sizes.

(ii) We derive scaling laws for EP [NH ] when the network
size n grows to infinity. These scaling laws provide an inherent
order over all subgraphs in terms of the maximal number
of copies of such subgraphs in any hidden-variable model,
and provide a method to compare the denseness of subgraphs
created by any degree distribution to its absolute maximum
provided by our bounds. We also show that the Chung-Lu
model achieves the maximal number of all types of subgraphs
among all hidden-variable models.

(iii) We compare the extremal graph model that provides
the highest subgraph counts to existing results for power-law
random graphs. We show that for all subgraphs, a power-law
degree distribution with τ � 2 achieves the maximal subgraph
scaling predicted by our bounds. This shows that power laws
with τ � 2 are densest networks in terms of subgraph counts
among all networks with the same average degree and MAD.
Power laws with larger exponents (τ > 2) do not achieve the
maximal scaling, and the subgraph counts scale at a slower
rate. This shows that in the sparse setting (τ > 2), where the
average degree does not grow, power-law networks are not
optimal in terms of subgraph counts, whereas in the dense
setting (τ � 2) they are.

(iv) We demonstrate that the robust bounds indeed bound
the number of subgraphs in nine real-world data sets. This
analysis does not require any assumption on the degree dis-
tribution of these data sets; only knowledge of the average
degree, the MAD, and the maximal degree is required. In
particular, the robust bounds work for both power-law and
non-power-law distributed data.

We introduce the hidden-variable model and assumptions
on the degree distribution in Sec. II. We then solve the max-
imization problem that finds the extremal random graph that
generates the maximal subgraph counts in Sec. III. The scaling
laws for subgraph counts as a function of the network size
are presented in Sec. IV. In Sec. V, we obtain some results
for the setting when the variance instead of the MAD is
known. In Sec. VI, we compare this extremal random graph
and tight subgraph bounds with existing results for scale-
free networks with power-law degrees. Section VII shows
subgraph counts and bounds for nine real-world networks.
The paper is concluded in Sec. VIII with a discussion and
outlook.

II. HIDDEN-VARIABLE MODEL

As a random graph model, we employ the hidden-variable
model, in which every vertex i ∈ [n] has a weight hi. Tra-
ditionally, one then assumes that the weights h1, . . . , hn are
independent and follow some given distribution. In this paper,
however, we only specify partial information about the weight
(i.e., degree) distribution. We will assume that for the weights
we know the minimal and maximal value, the mean, and the
MAD. Let h denote a generic weight. Then we assume that
the weights are sampled independently from a degree distri-
bution such that (i) h = hi has support supp(h) = [a, hc] with
−∞ < a � hc < ∞, (ii) E[h] = μ, and (iii) E[|h − μ|] = d .
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This defines the ambiguity set

P (μ, d )

= {P : supp(h) ⊆ [a, hc],E[h] = μ,E[|h − μ|] = d}. (3)

Hence, when we now analyze the hidden-variable model un-
der the assumption that the weight distribution belongs to
P (μ, d ), we perform a distribution-free analysis of the ran-
dom graph model.

We further assume that every pair of vertices is connected
independently with probability

p(hi, h j ) = f
(
hih j/h2

s

)
, (4)

where hs is the structural cutoff. This shape of the connection
probability ensures that the weight of a vertex is close to
its degree [28]. The structural cutoff describes the maximal
degree of vertices that are not prone to degree-degree cor-
relations [25]. As soon as the degree of a vertex becomes
larger than the structural cutoff, it is forced to connect to lower
degree vertices, as only a few high degree vertices can be
present while keeping the average degree fixed. The structural
cutoff has mainly been investigated for power-law networks,
where hs ∼ √

μn [25,26,29]. The natural cutoff describes
the constraint on the largest possible network degree. If the
objective is to generate uncorrelated networks, this natural
cutoff should be smaller than the structural cutoff, as larger
vertices experience degree correlations. Therefore, the natural
cutoff is often assumed to be equal to the structural cutoff
of

√
μn [23,24,29]. In this setting, many network properties

can be related to moments of the hidden variable distribution,
which makes it possible to investigate subgraph counts [24],
distances [23], and clustering [26]. We henceforth assume the
setting where hs = hc, equal structural and natural cutoff, so
the generated networks are uncorrelated [25].

For the connection function f , we make the following
assumption:

Assumption A. f (x) � 0 is nondecreasing and convex for
x ∈ [0, 1].

The class of hidden-variable models satisfying
assumption A is very rich. In particular, it contains the
following three frequently used connection probabilities: the
Chung-Lu model [9,23,31],

f (u) = min{u, 1}, (5)

the Poisson random graph [30–32],

f (u) = 1 − e−u, (6)

and the generalized random graph [26,33–35],

f (u) = u

1 + u
. (7)

III. EXTREMAL RANDOM GRAPH

We now investigate the maximal subgraph counts in
hidden-variable models over all probability distributions of
the weights that satisfy (3). We thus investigate the number
of copies NH of a given subgraph H = (VH , EH ) on k ver-
tices. Let the degrees of the vertices in H be denoted by
d1, d2, . . . , dk . Then, the expected number of copies of H

becomes

E[NH | (hi )i∈[n]] =
∑

i1<i2<···<ik

∏
{u,v}∈EH

p(hiu , hiv )

= 1

Aut(H )

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

∏
{u,v}∈EH

f
(hiu hiv

h2
s

)
, (8)

where Aut(H ) denotes the number of automorphisms of H .
Therefore,

EP [NH ] = nk

Aut(H )
EP

[ ∏
{u,v}∈EH

f
(huhv

h2
s

)]
, (9)

where hi denote independent copies of the random variable h.
Lemma III.1. Under assumption A, the function∏

{u,v}∈EH
f ( huhv

h2
s

) is convex in all hi.
Proof. The function f is convex, nondecreasing, and posi-

tive on [0,1], so a product of these f functions is also convex.
Hence, under the assumptions made for the hidden-variable

model, the subgraph count EP [NH ] viewed as function of the
hidden variables is convex in (h1, . . . , hn). This convexity can
be leveraged to employ a method from distributionally robust
optimization for maximizing a convex function under certain
mean-MAD-range constraints.

Theorem III.2 (Extremal graph model). Under assumption
A, the extremal distribution that solves maxP∈P(μ,d ) EP [NH ]
consists for each hi of a three-point distribution with values
a, μ, hc and probabilities

pa = d

2(μ − a)
, pμ = 1 − d

2(μ − a)
− d

2(hc − μ)
,

phc = d

2(hc − μ)
. (10)

Theorem III.2 follows from the the general upper bound in
Ref. [36] on the expectation of a convex function of indepen-
dent random variables with mean-MAD-range information.
The proof of Theorem III.2 crucially relies on the fact that
the solution of the univariate case can be straightforwardly
extended to the multivariate case. Consider a univariate con-
vex function x 	→ g(x) and consider the maximum EP [g(h)]
with h a random variable on [a, hc] with mean μ and MAD d .
In this univariate setting, we can formulate this maximization
problem as

max
P (x)�0

∫
x

g(x)dP (x)

s.t.
∫

x
|x − μ|dP (x) = d,

∫
x

xdP (x) = μ,∫
x

dP (x) = 1,

(11)

a semi-infinite linear program with three equality constraints,
and as a solution for P = P (x) the three-point distribution
on {a, μ, hc}. Notice that this solution does not depend on
the specific shape of the convex function g(x), which makes
the multivariate counterpart of (11) equally tractable. Take
as an example the function g(h1, . . . , hn) := EP [NH ], and
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FIG. 1. Illustration of the extremal Chung-Lu random graph: A
clique of size O(

√
n) (green) and O(n) vertices of weights μ or a

with small expected degree (orange).

formulate the maximal subgraph count as

max
P (x)�0

∫
x

g(x1, . . . , xn)dP (x1) · · · dP (xn)

s.t.
∫

x
|x − μ|dP (x) = d,

∫
x

xdP (x) = μ,∫
x

dP (x) = 1.

(12)

Indeed, to deal with this multivariate case, we can recursively
apply the univariate result. Suppose we first apply this result
to h1. Then the worst-case distribution is as in Theorem III.2,
independent of the values for h2, . . . , hn. Moreover, the max-
imal expectation becomes a convex function in h2, . . . , hn,
since the extremal probabilities for h1 are nonnegative. Hence,
we can apply the result above for the univariate case to h2,
and so on, which then establishes Theorem III.2. The theorem
thus shows that the extremal random graph for all possible
subgraphs and all possible hidden-variable models satisfying
assumption A consists of vertices with only three degrees: a,
μ, and hc = hs. Under the canonical choice hs = √

μn,

pa = d

2(μ − a)
, pμ ≈ 1 − d

2(μ − a)
, p√

μn ≈ d

2
√

μn
.

As pa and pμ are constant in n, the extremal random graph
contains O(n) vertices of low degrees a and μ. Furthermore,
p√

μn scales as 1/
√

n, creating on average d
√

n/(2μ) vertices
with degrees as large as

√
μn. The connection probability

(4) shows that p(hs, hs) = f (1), which does not depend on
n. This means that the

√
μn weight vertices form a dense

subgraph. The denseness is controlled by the parameter f (1).
When f (1) = 1, these vertices form a clique, and for f (1) =
p < 1, these high-degree vertices form a dense Erdős-Rényi
random graph with probability p. On the other hand, vertices
with weight a or μ in the extremal random graph have finite
average degrees. This shape of extremal random graph is
illustrated in Fig. 1 for the case f (1) = 1.

IV. SCALING LAWS FOR LARGE NETWORKS

A direct consequence of Theorem III.2 is that the tight
bound on the subgraph count is obtained by enumerating over

all 3n permutations of the outcomes {a, μ, hc} for all weight
h1, . . . , hn. This gives the following result:

Corollary IV.1. Under Assumption A, the tight bound on
the subgraph count can be expressed as

max
P∈P(μ,d )

EP [NH ]

= nk

Aut(H )

∑
i1∈{a,μ,hc}

. . .
∑

ik∈{a,μ,hc}

k∏
j=1

pi j

∏
{s,t}∈EH

f
( isit

h2
c

)
.

(13)

We next show how the maximal subgraph counts scale as a
function of the network size. To obtain these scaling relations,
we employ (13) and make an additional assumption next to
assumption A on the connection probabilities:

Assumption B. f (x) = xr(x) where r(0) = 1 and r(x) de-
creases in x.

While assumption B is a more detailed assumption on
the connection probabilities than assumption A, it still con-
tains the three classical examples of hidden-variable models
in (5)–(7).

We now investigate the behavior of (13) when f satisfies
assumption B. In that case, when hs = hc,

EP [NH ] = nk

Aut(H )

×
∑

i1∈{a,μ,hc}
. . .

∑
ik∈{a,μ,hc}

k∏
j=1

pi j

∏
{s,t}∈EH

isit
h2

c

r
( isit

h2
c

)

= nk

Aut(H )h2EH
s

×
∑

i1∈{a,μ,hc}
. . .

∑
ik∈{a,μ,hc}

k∏
j=1

pi j i
d j

j

∏
{s,t}∈EH

r
( isit

h2
c

)
. (14)

We show in Appendix A that for every vertex j with d j � 2,
the summation over i j ∈ {a, μ, hc} is dominated by the term
containing hc, so the other terms may be ignored. Therefore,
for subgraphs with minimal degree at least 2, we can ignore
the terms in (14) with i j = a or i j = μ, yielding

EP [NH ] ∼ nk

Aut(H )h2EH
s

k∏
j=1

d

2(hc − μ)
h

dj
c

∏
{s,t}∈EH

r(1)

= nkdkh2EH −k
c

h2EH
c 2kAut(H )

r(1)EH . (15)

When d j = 1, the contributions of i j = a, μ, hc in (14) are
of similar order of magnitude. In Appendix A, we show that
this yields the following result:

Theorem IV.2 (Core structure). Let H = (VH , EH ) be a
connected subgraph on k vertices and make assumptions
A and B.

(i) When dH > 1 for all v ∈ VH , hs = hc, and hc → ∞ as
n → ∞:

maxP∈P (μ,d ) EP [NH ]

nkh−k
c

→ dk

2kAut(H )
r(1)|EH |. (16)
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FIG. 2. Subgraphs with minimal degree at least 2 asymptotically
appear on the

√
nμ degree vertices (pink triangle), while degree-1

vertices inside a subgraph typically appear at the degree-μ, a, or hc

vertices (yellow 4-path).

(ii) When k � 3 and hc → ∞ and hs = hc as n → ∞,

maxP∈P (μ,d ) EP [NH ]

nkh−k
c

→ dk−n1

Aut(H )2k−n1

(
d

2
(r(1) − 1) + μ

)n1

r(1)EH −n1 , (17)

where n1 denotes the number of degree-1 vertices in H .
This theorem shows subgraphs with minimal degree at

least 2 predominantly appear in the core of the extremal
random graph containing all vertices of weight hc. Other sub-
graphs that contain degree-1 vertices asymptotically have their
degree-1 vertices everywhere in the extremal random graph,
while the other subgraph vertices typically still only appear in
the core of the extremal random graph, see Fig. 2.

Furthermore, (17) reveals the interesting property that the
scaling in n and hc is the same for all possible subgraphs of
size k. The effect of the precise subgraph structure is only
visible in the leading order constant. Also, if we compare all
subgraphs of a given size k with minimal degree at least 2, (16)
shows that this leading order constant only depends on the
subgraph through its number of automorphisms. Therefore,
we can easily order all such subgraphs based on the maximal
number of times they appear in any hidden-variable model.
For example, among all subgraphs of a given size, cliques
have the largest number of automorphisms. Thus, k cliques
appear the least often among all subgraphs of size k in the
extremal random graph, and therefore have the lowest upper
bound on their count among all size-k subgraphs. The rest of
the ordering in terms of the maximal number of subgraphs is
only determined by the number of subgraph automorphisms
in decreasing order.

When degree-1 vertices are contained in the subgraph, (17)
shows that a combination of the number of subgraph automor-
phisms, a term containing the fixed parameters d and μ, the
model-specific term r(1), and the number of degree-1 vertices
in the subgraph. When we take the specific case r(1) = 1 and
hs = hc = √

μn, (17) simplifies to

EP [NH ] ∼ nk/2dk−n1

Aut(H )2k−n1μk/2−n1
. (18)

K4 : 1/12 cycle: 1/8 diamond: 1/4

paw: c/2 path: c2/2 claw: c3/6

FIG. 3. The leading constant cn1/Aut(H ) for the maximal scaling
of the number of subgraphs in n for all subgraphs on four vertices,
where c = 2μ/d .

Equation (18) shows that for all subgraphs of size k, the
only effect of the graph structure of H is determined by the
number of automorphisms of H and the constant (2μ/d )n1 .
Figure 3 illustrates the ordering in terms of maximal fre-
quency of all subgraphs of size 4 by showing the leading
order constant of (18). A lower constant in Fig. 3 therefore
indicates that this particular subgraph appears less frequently
than a subgraph with a higher constant. Thus, the clique is
the least frequently occurring subgraph. The most frequently
appearing subgraph depends on the constant c = 2μ/d > 1,
and is either the path or the claw. A similar ordering for size 5
subgraphs is provided in Appendix C, Fig. 8.

We now apply Theorem IV.2 to the three classical hidden-
variable models mentioned in Sec. II. In particular, we show
that the Chung-Lu model can generate the largest amount of
cliques.

Proposition IV.3. Suppose hs = hc = √
μn. The Chung-Lu

model can generate the maximal number of cliques among
all connection probabilities that fall under assumption A,
scaling as

maxP∈P (μ,d ) EP [NKk ]

nk/2
→ dk

k!2kμk/2
. (19)

Furthermore, all three classical hidden-variable models (5)–
(7) satisfy

maxP∈P (μ,d ) EP [NKk ]

nk/2
→ dkr(1)k(k−1)/2

k!2kμk/2
. (20)

Proof. When taking hs = hc = √
μn, for all connection

probabilities satisfying assumption A, (16) gives for the ex-
pected number of k cliques

max
P∈P (μ,d )

EP [NKk ] ≈ dknk/2

k!2kμk/2
r(1)k(k−1)/2, (21)

proving the second part of the statement. Furthermore, from
(21) it is not difficult to see that the Chung-Lu model can
generate the maximal number of cliques among all connec-
tion probabilities that fall under assumption A. Indeed, the
function r(x) = 1 is the maximal possible function under as-
sumption A, and (21) is increasing in r(1), proving the first
part of the statement.
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V. FIXING VARIANCE INSTEAD OF MAD

We have shown that under mean-MAD-range information,
the search for the extremal random graph that maximizes
subgraph counts was tantamount to solving the optimization
problem in (12). The three-point solution of the one-
dimensional problem in (11) carried over directly to the
n-dimensional problem in (12). We now ask what happens
when we replace the MAD information with variance infor-
mation.

We then first solve the one-dimensional counterpart of (11),
but now optimizing over all distributions with known range,
mean, and variance (instead of MAD). As it turns out, the
solution (the extremal distribution) will depend on the convex
function g(x), which has severe consequences for the multi-
variate case, i.e., when we consider g(h1, . . . , hn). In that case,
the extremal distribution depends on the values of h2, . . . , hn,
and calculating (in closed form) the extremal distribution as a
function of h2, . . . , hn seems to be impossible. This means that
for each n, a new n-dimensional problem needs to be solved,
implying that the extremal random graph is different for every
value of n.

We now show how the key result for mean-MAD am-
biguity, Theorem III.2, can be used to obtain results for
mean-variance ambiguity. In general, MAD and variance are
related as [37,38]

dmin := 2σ 2

hc − a
� d � σ =: dmax.

Let P∗
(μ,σ ) denote the ambiguity set that contains all distribu-

tions with known range, mean, and variance, i.e.,

P∗
(μ,σ ) = {

P : supp(X ) ⊆ [a, hc],

EP (X ) = μ, EP (X − μ)2 = σ 2
}
.

Since maxP∈P(μ,d ) EP [g(h1, . . . , hn)] is nondecreasing in d ,
see Ref. [38], we obtain for fixed σ the bounds

max
P∈P(μ,dmin )

EP [g(h1, . . . , hn)] � max
P∈P∗

(μ,σ )

EP [g(h1, . . . , hn)]

� max
P∈P(μ,dmax )

EP [g(h1, . . . , hn)]. (22)

Thus, when fixing the variance at σ 2, we need to consider
the range of d ∈ [2σ 2/(hc − a), σ ]. For the extremal random
graph of (10),

σ 2 = da2

2(μ − a)
− dμ2

2(μ − a)
− dμ2

2(hc − μ)
+ dh2

c

2(hc − μ)

= d (hc − a)/2. (23)

Thus, the lower bound, dmin = 2σ 2/(hc − a) ensures that the
extremal graph has the desired variance σ 2. In this section,
we therefore set d = 2σ 2/(hc − a). Then, the MAD extremal
random graph with this value of d gives the desired variance
and provides a lower bound on the maximal number of sub-
graphs with given variance. In particular, we are interested in
the setting where σ 2 → ∞ as n → ∞ but σ 2/hc → 0, similar
to observations in many real-world networks.

In Appendix B, we again consider (14), and investigate
which of the three terms in the summation (a, μ, or hc) has
the dominant contribution for large n. The dominating terms

are slightly different compared to the fixed d setting: when
d j � 3, the contribution from i j = hc dominates, whereas for
d j = 2, the contribution from i j = hc and from i j = μ have
the same order of magnitude. Finally, when dj = 1, the contri-
bution to (14) from i j = μ dominates the other contributions.
Appendix B shows that this gives the following result:

Theorem V.1 (Diminishing d). Let H = (VH , EH ) be a
connected subgraph on k vertices. Let d = 2σ 2/(hc −
a), where hs = hc → ∞ and σ 2/hc → 0. Then, under
assumptions A and B,

maxP∈P (μ,d ) EP [NH ]

nkh−2k+n1
c

→ r(1)E�3,�3

Aut(H )

(
σ 2r(1) + μ2

)n2,1

× (
σ 2r(1)2 + μ2

)n2−n2,1
μn1σ 2n�3 ,

(24)

where ni and n�i denote the number of vertices of degree i
or degree at least i in H , and E�3,�3 denotes the number of
edges between vertices of degree at least 3 in H . Furthermore,
n2,1 denotes the number of degree-2 vertices in H that are
connected to a degree-1 vertex.

This theorem again shows that in the extremal random
graph with d = 2σ 2/(hc − a), subgraph counts are dominated
by subgraph counts in specific formations of the extremal ran-
dom graph. For example, subgraphs with minimal degree at
least 3 almost exclusively appear in the core of

√
μn vertices.

Degree-1 vertices in a subgraph on the other hand typically
appear at the vertices of degree μ.

As an example, take the Chung-Lu model with hs = √
μn,

a = 1 and p(h, h′) = min(hh′/(μn), 1). Then (24) gives
for k > 3,

EP [NK3 ] ≈ 1

6μ3
(μ2 + σ 2)3,

EP [NKk ] ≈ σ 2k

k!μk
, k > 3. (25)

This is an intuitive result, because when maximizing E[X 2]
while keeping the variance and the mean degree fixed, we
expect to end up with some function of E[X 2].

For other subgraphs H , we can obtain similar results. When
H has s1 vertices of degree 1, s2 of degree 2, and denote s�3

vertices with degree at least 3, (24) becomes

EP [NH ] ≈ ns1/2

Aut(H )μk−3/2s1
(μ2 + σ 2)s2σ 2s�3 . (26)

Thus, the more degree-1 vertices a subgraph has, the more
often it appears, as a scaling in n. When the number of degree-
1 vertices remains unchanged, the scaling in n of the subgraph
count remains the same. However, having more degree-2 ver-
tices increases the leading order term of the subgraph count
and, as before, subgraphs with more automorphisms appear
less often.

VI. POWER-LAW RANDOM GRAPHS

We now compare the results on the maximal clique counts
among all weight distributions with the subgraph counts in
the frequently used power-law weights to answer the question
of how close power-law degrees are to the extremal random
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graph. Thus, we assume a power-law distribution with cutoff
for the weights

P (h) = Ch−τ , (27)

for h ∈ [1, hc] and some τ and C. Then,

d = C
(
2μ2−τ − 1 − h2−τ

c

)
τ − 2

+ Cμ
( − 2μ1−τ + 1 + h1−τ

c

)
τ − 1

.

(28)
Observe that for τ > 2, d is approximately constant, whereas
for τ < 2 it grows as h2−τ

c (as there μ also grows as h2−τ
c ). We

split the comparison into two classes for τ : so-called sparse
(2 < τ < 3) and dense (1 < τ < 2) scale-free networks.

A. Sparse scale-free networks

We now compare the number of subgraphs in power-law
random graphs in the regime 2 < τ < 3 with the extremal
number of subgraphs among all random graphs with equal
mean and MAD. When 2 < τ < 3, under a cutoff at hs =
hc = √

μn, the expected number of cliques in a power-law
random graph with degree-exponent τ equals [[39], Eq. (1.7)]

Epl [NKk ] ≈ nk/2(3−τ )μk/2(1−τ )

k!

( C

k − τ

)k

. (29)

The MAD maximizer with the same μ and d as this power-law
distribution for 2 < τ < 3 becomes, according to (19),

max
P∈P(μ,d )

EP [NKk ]

≈ nk/2

k!2kμk/2

(C(2μ2−τ − 1)

τ − 2
− C(2μ2−τ − μ)

τ − 1

)k
. (30)

This scaling in n of nk/2 is larger than the scaling of nk/2(3−τ ) in
power-law random graphs. Thus, the extremal random graph
is asymptotically more dense than power-law random graphs
in terms of cliques.

Let us then compare the expected number of cliques in
a power-law random graph (29) with the extremal number
of subgraphs with d = 2σ 2/(

√
μn − 1), where μ and σ 2

denote the mean and variance of the power-law distribu-
tion. This ensures that the variance of the MAD extremal
random graph is equal to the variance of the power-law dis-
tribution. The variance of power laws with cutoff at

√
μn

equals σ 2 = C
3−τ

√
μn3−τ . Then, (25) yields for the variance-

maximal number of cliques that

max
P∈P

(μ, σ2√
μn−1 )

EP [NKk ] = nk/2(3−τ )μk/2(1−τ )

k!

( C

3 − τ

)k

. (31)

The leading order constant exactly agrees with the one com-
puted for power-law random graphs with cutoff at

√
μn for

k = 3, so for triangles. Therefore, (31) suggests that power-
law random graphs contain the maximal amount of triangles
among all Chung-Lu models with the same variance. In other
words, power-law random graphs are the most clustered ran-
dom graphs among all Chung-Lu models with given variance.
For larger cliques, the constant in (31) is higher than the one
for the power-law random graph with cutoff. Thus, power-law
random graphs do not contain the maximal amount of larger
cliques among all Chung-Lu random graphs with the same

variance in terms of leading order constant. The scaling in n,
nk/2(3−τ ), however, still agrees between the power-law number
of cliques and the variance-extremal random graph, so in order
of magnitude, power-law random graphs achieve the largest
possible number of cliques among all graphs with the same
variance. Proving this, however, needs the proof of equality in
the lower bound of (31), which is an open problem due to the
difficulties that arise when switching from fixed MAD to fixed
variance.

Figure 4(a) illustrates these observations: The MAD-
extremal random graph contains a number of triangles that
grows significantly faster in n than the power-law random
graph. The MAD-extremal graph with equal variance as the
power-law distribution, on the other hand, contains the same
number of triangles as the power-law random graph.

B. Dense scale-free networks

In the regime 1 < τ < 2, setting hs is not as straightfor-
ward as in the previous regime. Taking hs = hc = √

μn gives
a convex connection probability, but μ grows in hs as well.
This results in hs = hc ∼ n1/τ and μ ∼ n2/τ−1 [24]. Under this
cutoff [24], the expected number of cliques in a power-law
random graph scales as

Epl [Kk] ∼ nk/τ . (32)

Now for 1 < τ < 2, (28) yields d ∝ μ ∝ n2/τ−1. Then, (19)
gives that the maximal number of cliques among all subgraphs
with the same MAD as the power-law distribution with expo-
nent τ ∈ (1, 2) scales as

max
P∈P(μ,d )

EP [NKk ] ∼ nk/2μ−k/2

k!2k
∼ nk/τ , (33)

which has the same scaling in n as (32). Thus, under the
MAD framework, power-law random graphs with 1 < τ < 2
achieve the maximal clique scaling in network size n and
power-law networks are the densest possible networks in
terms of cliques.

As in the 2 < τ < 3 regime, σ 2 ∼ h3−τ
s , so σ 2/hs ∼

h2−τ
s ∼ d . With μ ∝ d , (25) yields

max
P∈P

(μ, σ2
hs−1 )

EP [Kk] ∝ (dhs)k

dk
∝ nk/τ , (34)

which again has the same scaling as the number of cliques
in the corresponding power-law random graph obtained
from (32). Thus, this suggests that power-law random
graphs contain the maximal amount of triangles among all
Chung-Lu models with the same variance, similarly to the
2 < τ < 3 case.

Figure 4(b) illustrates that indeed the MAD extremal ran-
dom graph contains a larger number of triangles than a power
law with the same MAD and average degree but that these
numbers scale the same in n. The extremal random graph with
equal variance as the power-law random graph contains the
same number of triangles. For 2 < τ < 3, on the other hand,
power laws do not achieve the maximal triangle count scaling
under fixed MAD.

Figure 5 summarizes our findings. For 1 < τ < 2, power-
law Chung-Lu random graphs achieve the maximal clique
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FIG. 4. The number of triangles against the network size n in a power-law random graph, an MAD-optimal model with same μ and d as
the power-law model, an MAD-optimal model with equal μ, and σ 2 as the power-law model. Dots are simulated values, whereas the blue and
the orange curves are the MAD-optimal predictions from (19) and (25), respectively, for (a) τ = 2.5 and (b) τ = 1.5.

scaling among all Chung-Lu random graphs with the same
MAD or variance. For 2 < τ < 3, Chung-Lu power-law ran-
dom graphs achieve a lower number of k cliques than the
maximal number of k cliques among all Chung-Lu random
graphs with the same MAD. In fact, the maximal number
cliques among all Chung-Lu random graphs with the same
MAD as power laws with 2 < τ < 3 scales as the number of
cliques in a power-law Chung-Lu random graph for τ = 2.

Furthermore, Fig. 5 suggests that for 1 < τ < 3, power-
law random graphs achieve the maximal number of cliques
among all weight distributions with the same variance. How-
ever, this is only based on a lower-bound technique.

VII. DATA

We now investigate the performance of the predicted upper
bounds on subgraph counts for nine network data sets that

1 1.5 2 2.5 3
0

1

2

3

4

τ

E[K4]pl

E[K4]d
E[K4]σ

FIG. 5. Scaling of the expected number of 4-cliques in n. E[K4]pl

denotes the number of cliques of a power-law random graph with
specified degree exponent τ . E[K4]d denotes the maximal number
of cliques in a Chung-Lu network with the same MAD as a power-
law random graph with specified degree exponent τ . E[K4]σ denotes
the maximal number of cliques in a Chung-Lu network with d =
2σ 2/(hs − 1), where σ 2 is the variance of a power-law random graph
with specified degree exponent τ .

have cutoff below
√

μn [40]. The data summary statistics are
described in Table I. Using only these summary statistics, we
can compute the bound on the maximal number of subgraphs
in networks with the same μ, d , and n using Theorem IV.2.

In Fig. 6(a), we plot the ratio between the actual subgraph
counts in the data sets and this bound on the maximal number
of subgraphs for all subgraphs of size four. All subgraphs
appear significantly less than the bound predicted by Theo-
rem IV.2. For the collaboration network in network science,
the subgraph counts are the closest to the MAD maximizer;
most other subgraphs appear significantly less than the largest
MAD bound. Thus, this ratio shows that 4-point subgraphs in
the collaboration network of network scientists are closer to
maximal than in the other data sets.

In Fig. 6(b), we now compare the number of subgraphs
with the lower bound on the maximal subgraph count under
fixed variance instead of fixed MAD that we obtain from
Theorem V.1. Again, this figure plots the ratio between the
actual subgraph counts and the predicted bound from The-
orem V.1. We see that most clustered subgraphs typically
appear more often than the predicted bound: the ratios signifi-
cantly exceed one for several data sets and several subgraphs.
One reason for this deviation is that Thoerem V.1 assumes
that the largest degree in these networks is equal to

√
μn.

However, Table I shows that for all data sets, this assumption

TABLE I. Summary statistics of the network data. hmax denotes
the maximal network degree.

Name n μ d hmax σ 2

Amazon 334863 5.53 3.01 549 33.19
Douban 154908 4.22 5.07 287 138.02
DBLP 317080 6.62 5.3 343 100.15
PGP 10680 4.55 4.18 205 65.24
Yeast 1870 2.44 1.72 56 10.01
Gnutella31 62586 4.73 4.49 95 32.5
US power grid 4941 2.67 1.28 19 3.21
Netscience 1461 3.75 2.28 34 11.96
airtraffic 1226 4.27 2.82 37 18.72
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FIG. 6. Ratio of the number of subgraphs of size 4 in nine data sets and the Chung-Lu maximal value of (a) (18) (MAD-based) and *b)
(26) [MAD-based with d = σ 2/(2(

√
μn − 1))]. The red line indicates the MAD maximal bound.

does not hold. We therefore again compare the number of sub-
graphs with the bounds from Theorems IV.2 and IV.2 but now
using hc = hmax instead, where hmax is the maximal degree of
the data set. This yields Fig. 7(a), which shows that, indeed,
using the correct cutoff in those networks explains a large
part of these large values: now almost all subgraph counts are
below the predicted maximal bounds, also for the variance-
based lower bound in Fig. 7(b). Still, in three networks, some
subgraphs appear more often than the MAD-variance based
maximizer. In particular, this happens for the more clustered
subgraphs, such as the complete graph on four vertices. This
therefore shows that, indeed, these networks are not generated
by hidden-variable models and are more clustered in terms of
their numbers of complete graphs and cycles.

VIII. DISCUSSION AND OUTLOOK

We have established distribution-free bounds on subgraph
counts, using an optimization method that needs as input only
the mean, MAD, and range of the degrees. The bounds do
not depend on detailed assumptions on a particular network
degree distribution, and in fact hold for a wide class of degree
distributions.

The bounds are the sharpest possible and attained by an
extremal random graph with a three-point degree distribution.
This extremal random graph contains more subgraphs than
the popular sparse graphs with power-law degree distributions
with τ > 2. For dense graphs with τ < 2 on the other hand,

power-law random graphs match the subgraph bounds. This
implies that dense power-law random graphs have the highest
possible subgraph counts among all possible degree distribu-
tions with the same mean and MAD.

Furthermore, our bounds indeed bound the subgraph
counts of nine real-world data sets, even though these data
contain power-law and non-power-law degree distributions
and are not generated by hidden-variable models, demonstrat-
ing the robustness of our approach.

We believe that the optimization method in this paper can
be employed for robust analysis of other network statistics as
well, such as clustering coefficients and degree correlations.
Another avenues concern the relation of the MAD extremal
random graph to the maximal possible eigenvalue of graphs
with given mean degree and MAD. Cycle counts can be
linked to the maximal eigenvalue of the adjacency matrix [41].
Therefore, our bounds on the maximal number of subgraphs
may also provide bounds on the maximal possible eigenvalue
of a network with given average degree and MAD. Investigat-
ing these eigenvalue bounds further would be an worthwhile
topic for further research, especially as the largest eigenvalue
of an adjacency matrix is strongly linked to epidemic proper-
ties on the network [27].

While hidden-variable models have proven useful for mod-
eling many types of networks, one of their disadvantages is
that they often lead to locally treelike networks with little clus-
tering. However, this paper shows that when maximizing over
all possible hidden-variable distributions, they may contain

10−6 10−4 10−2 100

(a)

10−6 10−4 10−2 100 102

(b)

FIG. 7. Ratio of the number of subgraphs of size 4 in nine data sets and the Chung-Lu maximal value of (a) (18) (MAD-based) and (b) (26)
[MAD-based with d = σ 2/(2(

√
μn − 1))]. The red line indicates the MAD maximal bound. In these plots, instead of the default choice of

hc = √
μn, hc is set to hmax, the largest degree of the corresponding data set.
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more clustered subgraphs than real-world networks. Several
extensions of hidden-variable models to include clustering
exist, including those that add geometry or higher-order inter-
actions. It would be interesting to apply the MAD framework
to these types of models as well. For geometric hidden-
variable models, this would lead to difficult optimization
problems, as it contains two sources of randomness: the
hidden variables and their geometric positions. Investigating
if these generally more clustered models also lead to more
clustering when maximizing over the variables is an interest-
ing question for further research.
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APPENDIX A: DOMINATING CONTRIBUTIONS IN THE
EXTREMAL RANDOM GRAPH

We now investigate the behavior of (13) when f satisfies
assumption B. In that case, when hs = hc,

EP [NH ] = nk

Aut(H )

∑
i1∈{a,μ,hc}

. . .
∑

ik∈{a,μ,hc}

k∏
j=1

pi j

∏
{s,t}∈EH

isit
h2

c

r
( isit

h2
c

)

= nk

Aut(H )h2EH
s

∑
i1∈{a,μ,hc}

. . .
∑

ik∈{a,μ,hc}

k∏
j=1

pi j i
d j

j

∏
{s,t}∈EH

r
( isit

h2
c

)
. (A1)

We then show that for every vertex j, the summation over i j ∈ {a, μ, hc} is dominated by the term containing hc, so the other
terms may be ignored. Writing out this sum over i j ∈ {a, μ, hc} and plugging in (10) gives

∑
i j∈{a,μ,hc}

pi j i
d j

j

∏
{ j,t}∈EH

r
( i j it

h2
c

)
= d

2(μ − a)
adj

∏
{ j,t}∈EH

r
(ait

h2
c

)

+
(

1 − d

2(μ − a)
− d

2(hc − μ)

)
μd j

∏
{ j,t}∈EH

r
(μit

h2
c

)
+ d

2(hc − μ)
h

dj
c

∏
{ j,t}∈EH

r
( it

hc

)
. (A2)

This is an equation with three terms. We now investigate the
scaling of these three terms in n and show that the last term,
containing hc, dominates. Indeed, for the first two terms we
obtain

d

2(μ − a)
adj

∏
{ j,t}∈EH

r
(ait

h2
c

)
= O(1) (A3)

and(
1 − d

2(μ − a)
− d

2(hc − μ)

)
μd j

∏
{ j,t}∈EH

r
(μit

h2
c

)
= O(1),

(A4)

as r(x) � 1 under assumption B. We now show that the third
term, on the other hand, grows in n. There we obtain

d

2(hc − μ)
h

dj
c

∏
{ j,t}∈EH

r
( it

hc

)
∼ dh

dj−1
c

2
. (A5)

Indeed, as hc → ∞ and hc 
 μ, (hc − μ) ∼ hc. Furthermore,
by our assumptions on r(x), r(c/hs) = 1 + o(1), while r(1)
is constant, so the product term does not contribute to the
scaling. Thus, when dj � 2, the contribution to (A1) from
i j = hc grows in n, and therefore dominates the contributions
from i j = a, μ. Therefore, for subgraphs with minimal degree
at least 2, we can ignore the terms in (A1) with i j = a or
i j = μ, yielding

EP [NH ] ∼ nk

Aut(H )h2EH
s

k∏
j=1

d

2(hc − μ)
h

dj
c

∏
{s,t}∈EH

r(1)

= nkdkh2EH −k
c

h2EH
c 2kAut(H )

r(1)EH . (A6)

When d j = 1, all contributions in (A3)–(A5) have constant
order of magnitude in n. Therefore, for those vertices, all
terms in the summations in (A1) have to be included, which
gives

EP [NH ] ∼ nk

Aut(H )h2EH
c

∏
j:d j�2

d

2hc
h

dj
c

∏
j:d j=1

(
dhc

2hc
r(1) +

(
1 − d

2(μ − a)

)
μ + da

2(μ − a)

) ∏
{s,t}:ds,dt �1∈EH

r(1)

= nkdn−n1 h2EH −k
c

Aut(H )h2EH
c 2n−n1

(
d

2
(r(1) − 1) + μ

)n1

r(1)EH −n1 . (A7)

Taken together, we obtain Theorem IV.2.
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FIG. 8. The leading constant cn1/Aut(H ) for the maximal scaling of the number of subgraphs in n for all subgraphs on five vertices, where
c = 2μ/d .

APPENDIX B: DOMINATING CONTRIBUTION FOR DIMINISHING d

We start from (A2) and assume that σ 2/hc → 0. Again, we investigate which of the three terms in the summation over
a, μ, hc dominates. We therefore investigate the scaling in n of all three terms and start with the terms containing a and μ.
Because r(x) � 1 under assumption B,

d

2(μ − a)
adj

∏
{ j,t}∈EH

r
(ait

h2
c

)
= O

(
σ 2

hc

)
(B1)

and again (
1 − d

2(μ − a)
− d

2(hc − μ)

)
μd j

∏
{ j,t}∈EH

r
(μit

h2
c

)
= O(1). (B2)

We now turn to the term containing hc. Because hc → ∞ and r(x) is continuous, we have that r(0) = 1, r(c/hs) = 1 + o(1),
while r(1) is constant. Therefore,

d

2(hc − μ)
h

dj
c

∏
{ j,t}∈EH

r
( it

hc

)
= �

(
σ 2h

dj−2
c

)
. (B3)

This shows that when dj � 3, the contribution to (14) from i j = hc dominates the contributions from i j = a, μ. On the other
hand, when dj = 2, the contribution from i j = hc and from i j = μ have the same order of magnitude. Finally, when dj = 1, the
contribution to (14) from i j = μ dominates the other contributions. Using that r(μ2/h2

c ) = 1 + o(1) and r(μ/hc) = 1 + o(1),
(14) becomes

EP [NH ] ∼ nkr(1)E�3,�3

Aut(H )h2EH
c

∏
j:d j�3

σ 2

h2
c

h
dj
c

∏
j:d j=2

(σ 2r(1)n j,�3 + μ2)
∏

j:d j=1

μ

= nkr(1)E�3,�3

Aut(H )h2EH
c

(σ 2r(1) + μ2)n2,1 (σ 2r(1)2 + μ2)n2−n2,1μn1σ 2n�3 h
∑

j:d j �2(d j−2)
c

= nkh2EH −2k+n1
c r(1)E�3,�3

Aut(H )h2EH
c

(σ 2r(1) + μ2)n2,1 (σ 2r(1)2 + μ2)n2−n2,1μn1σ 2n�3 (1 + o(1)), (B4)
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where ni and n�i denote the number of vertices of degree i or degree at least i in H , and E�3,�3 denotes the number of edges
between vertices of degree at least 3 in H .

APPENDIX C: ORDERING OF SUBGRAPHS OF SIZE 5

Figure 8 provides the subgraph ordering in terms of their maximal frequency for all subgraphs on five vertices.
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