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Amplitude death in coupled replicator map lattice: Averting migration dilemma
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Populations composed of a collection of subpopulations (demes) with random migration between them are
quite common occurrences. The emergence and sustenance of cooperation in such a population is a highly
researched topic in the evolutionary game theory. If the individuals in every deme are considered to be either
cooperators or defectors, the migration dilemma can be envisaged: The cooperators would not want to migrate to
a defector-rich deme as they fear of facing exploitation; but without migration, cooperation cannot be established
throughout the network of demes. With a view to studying the aforementioned scenario, in this paper, we set up
a theoretical model consisting of a coupled map lattice of replicator maps based on two-player—two-strategy
games. The replicator map considered is capable of showing a variety of evolutionary outcomes, like convergent
(fixed point) outcomes and nonconvergent (periodic and chaotic) outcomes. Furthermore, this coupled network of
the replicator maps undergoes the phenomenon of amplitude death leading to nonoscillatory stable synchronized
states. We specifically explore the effect of (i) the nature of coupling that models migration between the maps, (ii)
the heterogenous demes (in the sense that not all the demes have the same game being played by the individuals),
(iii) the degree of the network, and (iv) the cost associated with the migration. In the course of investigation, we
are intrigued by the effectiveness of the random migration in sustaining a uniform cooperator fraction across a

population irrespective of the details of the replicator dynamics and the interaction among the demes.
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I. INTRODUCTION

Large, spatially distributed populations more often than
not form clusters of several subpopulations connected through
migration, which is one of the important mechanisms in
shaping the evolution and bringing forth the emergence of
cooperation [1-12]. It is easy to envisage that the availabil-
ity of better opportunities [11] elsewhere lead individuals
to abandon their home and migrate. Moreover, individu-
als may want to migrate to satisfy their aspirations [5,7].
Furthermore, the migration can depend on the expecta-
tions [9] of the individuals. Risk-driven migration [10] and
success-driven migration [3,6] can also promote coopera-
tion effectively. While a random migration arguably weakens
the emergence of cooperation by favoring the invasion by
defection [13,14], very mildly incentivizing cooperating be-
havior [15] can overcome this drawback of the random
migration.

Theoretically, the emergence and sustenance of coopera-
tion in a collection of subpopulations or demes with active
migration between them can be conveniently studied within
the paradigm of the evolutionary game theory by using cou-
pled map lattice (CML) models [16,17]. In fact, in such a
setting, the phenomena of cooperation, chaos, and synchro-
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nization come together to overcome the migration dilemma
[15]: In a CML of subpopulations of replicators with two
actions (cooperate or defect) if all but a few subpopulations
have defectors exclusively, the cooperators would not want
to migrate lest they should be exploited by the defectors;
however, in the absence of any migration, cooperation would
not be established across the network of subpopulations and
therefore the collective utility gain for the population is denied
in the light of cooperators’ not risking their relatively higher
payoffs.

The nonlinear dynamics and network dynamics of the
evolutionary systems in the context of the interplay between
synchronization and cooperation have motivated quite a few
recent studies, e.g., the ones on the evolutionary Kuramoto
dilemma [18-20] and the one on chaotic agent dynamics
[21]. In the setting of the CML with chaotic replicator maps,
the amplitude variations of the chaotic oscillations of the
fraction of the cooperators in the subpopulations are sup-
pressed due to synchronization onto a fixed point of the CML
[15]. It is natural to draw an analogy with the amplitude
death [22] in coupled oscillators whenever the CML syn-
chronizes onto a fixed point [23-29]. Technically, the term
amplitude death refers to the situation when the oscillations,
either periodic or quasiperiodic or chaotic, of an entire sys-
tem of coupled oscillators ceases, leading to the stationarity
[30-32]. The amplitude death occurs in a wide variety of
systems, whether interacting systems are identical [33-36],
mismatched [32,37], dynamically coupled [38], or nonlinear
[39]. Apart from diffusive coupling, the nonlinear coupling
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is also used in achieving the amplitude death [39,40]. In the
presence of the nonlinear coupling, the amplitude death occurs
in the absence of parameter mismatch and also in the absence
of time delay [39,41].

In this paper, we investigate the migration dilemma in the
setup of the CML of replicators’ subpopulations and investi-
gate the nonlinear dynamics of the amplitude-death-induced
synchronization. Specifically, we ask the following relevant
questions. First, what happens if the interaction between the
demes is not simple diffusive coupling, but some, more gen-
eral, nonlinear coupling? Second, does the amplitude death
synchronize the replicator dynamics at the demes that have
nonchaotic but periodic dynamics? Third, how is cooperation
across the population supported as the degree of the network
varies? Furthermore, costly interactions in networks while
studying the coevolution of synchronization and cooperation
has gathered a lot of recent interest [18,20,21]. In such a
scenario, the deme (based on the payoff it receives) can decide
whether to participate in the process of migration or not.
Migration, which is usually costly for different reasons, is
seen in the population of different kinds of insects [42], birds
[43], fish [44], and mammals [45]. One can find interesting
investigations about migration cost in the populations, such as
that of insects [42], white storks [46], and spoonbills [47,48].
In light of these studies, in our setup, another crucial theoret-
ical question can be addressed: How can a costly interdemic
interaction affect the cooperation levels in the network? It is
of interest for us to understand the effect (if present at all) of
such costly migration on averting the migration dilemma via
the amplitude death.

Before we present the results that we found while inves-
tigating the above-mentioned problems, let us first succinctly
set up the CML (on which the results are based) in the follow-
ing section.

II. COUPLED MAP LATTICE

Mathematically, our model comprises a CML network
whose nodal dynamics is governed by a replicator map,
which for the two-player—two-strategy games are the most
convenient, yet nontrivial proving ground for our idea. The
one-dimensional replicator map [49-57] is given by

g1 = () ==X, + X, [(AXp)1 — (Xn)TAXn]v (D)

where subscript “1” denotes the first component of vector
Ax,, n denotes the time step, and

Player 2
Cooperate Defect

.. Cooperate[ R S
Player 1 Defect | T P

exhibits the strategies involved and the real-valued payoff ma-
trix A for Player 1 in the two-player—two-strategy symmetric
game. X = (x, | — x) is the state of the population such that
x is the fraction of the cooperators and 1 — x is the fraction
of the defectors. For consistency, it is required that the one-
dimensional replicator map be such that 0 < x, < 1 for all
n. This strictly depends on the values of the elements of the
payoff matrix. It should be borne in mind that the discrete
replicator equation is concerned with the replication-selection

across the generations of a vast well-mixed collection of the
cooperators and the defectors.

We judiciously choose the above form of the replica-
tor equation because (a) it phenomenologically models the
replication-selection dynamics that is in line with the Dar-
winian tenet of the natural selection, (b) its fixed points
correspond to the Nash equilibria [58] and the evolutionarily
stable strategies or states [59] through the folk and related the-
orems of the evolutionary game theory [55,60], and (c) most
importantly, it is endowed with chaotic attractors [54,55,57].
Another, more popular form of the discrete replicator equation
possible [61] that, however, is not conducive to our study
as it does not show [55] nonconvergent dynamics for the
simple two-player—two-strategy symmetric game. While rel-
atively less in vogue in the biological systems, Eq. (1), as
itself or in related forms, also appears in modeling inter-
generational cultural transmission [51,53], boundedly rational
players’ imitational behavior in bimatrix cyclic games [50],
and reinforcement learning [49]. It is interesting to recall that
a good behavior rule does not require the aggregate population
behavior implicit in the natural selection to induce the repli-
cator map; instead, the map is arrived at based on the rational
behavior of the players [52].

The basic CML considered in this work is a linear lattice
with N lattice sites or nodes and periodic boundary condition
such that each lattice site (or in our case deme) is connected
to its two nearest neighbors. The individuals interact with
each other within the deme via a strategic interaction modeled
by the replicator map, and there is migration between the
connected demes. The dynamics on the CML is given by

fo_l =(1- e)f(xj,) + %[g(xffl) +g(xf;+1)], 2)

where, the superscript i denotes the ith lattice site and € is the
coupling strength measuring the rate of migration to the ith
node from the (i — 1)th and (i + 1)th nodes. We must restrict
€ between 0 to 1 so that x/, does not become either negative or
greater than 1. In the model under consideration, the migration
can be modeled as a linear term or, more generally, as a
nonlinear term depending on the function g(x).

We must remark that the coupled continuous replicator
dynamics (as opposed to the discrete one used herein) with
migration included was studied [62] for a system of two demes
in which the individuals play symmetric two-player games
such that there exist two evolutionary stable states (ESSs):
one payoff dominant (maximal payoff state among the equi-
libria) and the other risk-dominant (less risk of loss for the
players). It was concluded that due to the migration, most of
the individuals play the payoff-dominant strategy even if both
the demes are initiated in the basin of attraction of the risk-
dominant equilibrium. Our system is far richer dynamically
since the discrete replicator equation can lead to noncon-
vergent attractors that are clearly not connected with the
game-theoretic concepts like the evolutionary stable strategy
(and hence, the Nash equilibrium). Because of the prevalence
of nonfixed point dynamics in the dynamical systems, we
must address them in spite of rather limited understanding of
their connection with the game theory. Needless to say, in the
scenario where two or more discrete replicators coupled via
migration, evolutionary stable strategies (whether payoff- or
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risk-dominant) are rendered unachievable in the evolutionary
dynamics since these equilibrium strategies, by construction,
can only be connected with some convergent fixed point at-
tractors.

III. NONLINEAR COUPLING

Now, let us consider a class of nonlinear coupling, a power-
law coupling with & > 0, such that the dynamics of the CML
is given by

S = £ A=+ S + (65T B

where, i =1,2,...,N. This CML has two homogeneous
fixed points: x* = 0 or x* = 1 at all the demes, they, respec-
tively, correspond to all defector or all cooperator states. The
choice of power-law coupling is mostly to illustrate the pos-
sible effects of nonlinear coupling in a mathematical tractable
setting. However, a physical motivation for using the power-
law coupling may be sought in the seminal work by Zipf [63]
where such a power law in the growth of city population (due
to the immigration of people) was predicted. Furthermore, in
a recent work [64] based on US census data, a power law in
the migration of people from city to city was observed.

We perform the linear stability analysis [65] about a ho-
mogeneous fixed point x* by substituting x/ = x* + A’ and
expanding the resultant equation up to the first order to get

. . o€ . .
Bo=0—ef W + 7(h;j1 + . 4)

Now expressing the small perturbations as a sum of its Fourier
components, i.e., h, = Zq hiexp(~/—1gqi), where ¢q is the
wave number, and substituting in Eq. (4), we arrive at the
following expression:
q
hn+1
I

For perturbation amplitude to decrease with time, i.e., in order
for the fixed point to be stable, we need

= f'(x*)(1 — €) + aecosgq. (5)

I
h

Therefore, to find the condition for establishing full coop-
eration in the CML when the same game is played at all the
demes, we necessarily need to find the condition for x* = 1
to be stable. In the case of 0 < o < 1, the critical coupling
strength, € (the minimum coupling strength required to
impart full cooperation), in the CML of the replicator maps
is given by

=|f'(x*)1 —€)+aecosq| < 1. (6)

1

€crit = (7)
where we explicitly used that fact that for the replicator map
f'(1) =T — R+ 1. We verified this result for different values
of o using the numerical simulations as presented in Fig. 1.
From this expression [Eq. (7)], we can clearly see that if we
have the CML where at every deme the prisoner’s dilemma
(PD) game (T > R and P > §) is played, the emergence of
cooperation is possible because €. can be less than unity.
However, if « > 1, then the CML with only the PD at each

12 T T T T T T T

1.0

0.8
506

0.4

FIG. 1. Emergence of cooperation in the CML with only the PD,
nonlinear coupling, and no rewiring. The average cooperation (¥) at
each deme is plotted as a function of coupling strength € for the repli-
cator map. The black, green, blue, and red solid lines correspond to
the average cooperation as obtained from the numerical simulations
done with @ = 0.2, 0.8, 0.95, and 1.0, respectively. Circular markers
denote the homogeneous fixed points for the respective combination
of the parameters o and €. The black, green, blue, and red dashed
lines are the theoretically predicted critical coupling strength beyond
which one gets full cooperation for o = 0.2, 0.8, 0.95, and 1.0,
respectively. Here we setR = 1.1, § = 0.0, T = 1.2, P = 0.1 inthe
payoff matrix of PD.

deme cannot lead to cooperation because f'(1) =T — R +
1 > 1 for the PD and hence we cannot have x* = 1 stable [see

Eq. (6)].

IV. RANDOM REWIRING

Evidently, in the CML consisting of only one kind
of demes, each having individuals playing the prisoner’s
dilemma game and linear coupling (¢« = 1) among them, the
emergence of cooperation (x* # 0) requires dynamic rewiring
as a possible mechanism [65]. To implement the random
migration in the system under investigation, we modify the
couplings in the CML. At every time step, any node can
either allow migration from its two nearest neighbors or two
other demes picked randomly from a uniform distribution.
The probability of remaining coupled to the nearest neighbors
is 1 — p, where p is called the dynamic rewiring probability;
“dynamic” emphasizes that the rewiring is happening at every
time step.

Mathematically, the mean-field equation for the CML with
the random coupling is given by

. ; 1- ; ;
T = (1= f (x,) + %[g(xﬁ:l) + (6]

+ 5 [a(sf) +5(0)] ®)
where £ and 5 are the indices of the two randomly cho-
sen demes and are not equal to i — 1, i, or i + 1. Note that
while the in-degree of every node remains fixed at 2, the
out-degree of every node may not remain 2. See Fig. 2(b)
for a schematic representation. We would like to spell out
that, in effect, there are two edges, incoming and outgoing,
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Rewiring

FIG. 2. Schematic diagram of the coupled map lattice with dy-
namic random rewiring. We see in left panel (a) the base CML with
eight demes each having six representative individuals for illustrative
purpose. Every deme has a game, say the PD or the LG, played by
the individuals in it. The arrowheads point towards the destinations
of respective migration. In the right panel (b), as the dynamic ran-
dom rewiring is employed, some of the directed edges (shown by
blue arrows) of the base CML are randomly broken (shown by brown
arrows with scissors) and new incoming edges (shown by green
arrows) are created.

between two nearest neighbors [see, e.g., Fig. 2(a)]. From a
deme’s perspective, an incoming edge indicates immigration
and an outgoing one denotes emigration. The parameter p in
Eq. (8) can also be interpreted as a measure of how strong
the long-range migration (or nonnearest neighbor migration)
is compared to the short-range migration (nearest neighbor
migration) since e€p/e(l — p), the ratio of the coefficients
in the third and the second terms in the right-hand side of
Eq. (8), is a monotonically increasing function of p in the
range O to 1.

In the model, there is a possibility that the dynamics at
all the demes may be completely synchronized to an interior
fixed point, i.e., x' = x/ = x* for all i and j. As done in the
immediately preceding section (Sec. III), one could do a linear
stability analysis to find if this synchronized state is at all
stable and hence attainable. It can be shown that such a stable
state in fact exists when € > €. which can be explicitly given
as

! k
€crit = M &)
Lf/e)l = 14+p
In passing, we note that with ¢ =1 in Eq. (7) and with
rewiring probability p = 0 in Eq. (9), both of them reduce to
the same value of critical coupling strength, viz, unity, as they
should.

We quantify the extent to which the system is syn-
chronized by defining a global order parameter [66], rg :=
| Zi\;l e2”ﬁx'|/N , that asymptotically reaches unity as the
system attains complete synchrony. For large N and uniformly
distributed x’ in the interval [0,1], we can easily observe that
rg = 0. Thus, any partially synchronized state have a nonzero
value of r¢ that is less than unity. The system is completely
synchronized when rg = 1 that corresponds to the state of
the population where x’ = x/ for all i, j € {1, 2, ..., N}. Fig-
ure 3(a) presents the verification that the critical coupling
strength depends on the rewiring probability p exactly as
predicted by Eq. (9) for the Leader game (LG) [67,68], a

1.0 (re)
1.00
0.8
5 0.75
0.6
2,
0.50

J | LTy FiE ) .
0'8.00 . . 0.75 1.00 0.00 0.25 0.50 0.75 1.00— 0.00
€ €

FIG. 3. Numerical validation of critical coupling strength for the
CML with dynamic rewiring. We show the order parameter (rg) as
a function of coupling strength € and the rewiring probability p. In
subplot (a), every deme has the LG, whereas in subplot (b), only half

of the demes have the LG (payoff matrix (é (7))) and the rest have

the PD (payoff matrix (i; g:?)). The white dashed line corresponds
to Eq. (9) specifying how the critical coupling strength varies with
the rewiring probability in the CML with exclusively leader games at
all demes. The average in- and out-degree of the network is 2. Here,
N = 100 demes and the system has been evolved for 2000 time steps.

game with chaotic solutions [55]. What is even more sat-
isfying is that the prediction is quite good even when the
CML has mixed kinds of demes, half playing the PD and
the rest the LG [see Fig. 3(b)]. In the figure, and henceforth,
¢ € [0, 1] denotes the fraction of the demes at which the LG is
played.

A. Twelve ordinal class of games: Periodic orbits and chaos

There are 12 ordinally equivalent classes of two-player—
two-strategy symmetric normal form games [55,68] that can
be represented by the following general payoff matrix:

1 S
A (T 0). (10)

One must work with only those values of S and T for which
0< xil < 1 for all values of i and n. In the S-T plane, the 12
classes of games are clearly demarcated by the straight lines:
$S=0,T=0,S=1,T =1,and T = S. The physical region
for the replicator map given by Eq. (1) is shown in Fig. 4(a).

Without any loss of generality, for the sake of concrete-
ness, we choose S = —0.1 and T = 1.1 in the PD where
obviously a player is better off defecting irrespective of what
the opponent chooses from the two strategies available to
her. We note that this form of the PD corresponds to the
additive model studied by Hamilton [69] and Trivers [70].
We have already seen that the replicator map corresponding
to the PD game displays solutions that asymptotically reach a
fixed point attractor. Also, when some of the demes playing
the PD, transform into the LG, which has chaotic solutions,
the entire CML tries to synchronize to impart cooperation in
all the demes. Historically [67], the LG’s name comes from
the fact that if a player shifts its strategy from cooperation
to defection, it rewards both the players but herself more
so, and hence, is a leader. The LG has a symmetric mixed
Nash equilibrium [58] that is an unstable fixed point of the
corresponding replicator map.

To explicitly see that the PD with altruism rewarded is the
LG, we look at the following two specific payoff matrices
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D1: Deadlock I i [ I

H3: Harmony III ’ E

C2: Coordination IT 08k E

C1: Coordination I !

D2: Deadlock II 06k |

H2: Harmony II o i H

H1: Harmony I 8 04k !

SH: Stag Hunt ’ E

BS: Battle of Sexes 02k !

LG: Leader Game i

SD: Snowdrift ol—— i

PD: Prisoner’s Dilemma i i ! i |
-1 0 1 2 3 4

FIG. 4. Classification of 12 symmetric games. In subplot (a), we show how the region of the S-T parameter space is separated in 12
well-known games whose names are specified in the figure. The interior of the white dashed leaf-like boundary corresponds to the region
where the replicator map has physical solutions. On taking the payoff matrices from the line 7 = S + 1 and evolving the replicator map, we
find period doubling route to chaos as depicted in subplot (b) where the vertical dashed lines, from left to right, respectively, correspond to

Apl, Apz, Ap4, and AC.

where subscripts indicate that the matrices are respective that
for the PD and the LG:

1 -0l I —01+115
APD=<1.1 o)andALGz(l.l 0 >

It is explicitly evident that on giving a cooperator playing
against a defector some extra reward, say, +1.15 in the above,
can turn the PD game to the LG (as now 7 > S > 1 > 0).
The LG can have different entries in the matrix as long as the
required defining condition is satisfied. It is interesting to note
that as one varies the parameters along the line 7 =14 S,
starting from (S, T') = (—1, 0), the replicator map undergoes
period-doubling route to chaos as shown in Fig. 4(b). Hence, it
is natural to be curious about how other the LGs, whose repli-
cator dynamics lead to other nonchaotic asymptotic solutions,
affect the cooperators in the CML with most demes playing
the PD.

To this end, we choose three LGs [marked in Fig. 4(b)]
with following payoff matrices:

1 2 1 5
AP] = <3 O)a AP2 = (6 O)’ and
1 63
Ars = <7.3 0 )
that, respectively, correspond to replicator dynamics with
asymptotically stable period one (fixed point) orbit, period-
two orbit, and period-four orbit. We set parameters S =7
and T = 8 to choose another LG [also marked in Fig. 4(b)]
endowed with a chaotic attractor. We denote its payoff matrix
by Ac.

B. Mixed games in demes

We set the rewiring probability to p = 0.5. If the CML
only has an LG with fixed payoff matrix at all the demes then
synchronization (rg =~ 1) onto (¥) =~ 0.5 occurs at threshold
critical coupling parameters that, respectively, are 0, 0.5, 0.7,
and 0.75 for Ap;, Apa, Aps, and Ac. It should be noted that
this effectively is amplitude death because all the periodic

or chaotic oscillations die when the synchronized state is
reached.

Just like the case of mixed demes with the PD and the
chaotic LG (with Ac¢) [15], if the chaotic LG is replaced
by any of the other aforementioned LGs, one can see that,
starting from the infinitesimal cooperator fraction, enough
cooperation can be established in the demes playing the PD
if the random migration is strong enough. Figure 5 exhibits
this fact in detail and transparently. The symmetry in the sub-
plots of the figure about the line x = 0.5 is easily explained.
Along the line T = 1 + § in the parameter space if one recasts
Eq. (8) using x/ — y! = x! — 0.5, the dynamics in terms of y
variable, whose range is [—0.5, 0.5] for all i, appears to be
symmetric about zero: y, 1 = Y, + Sy, (4y,> — 1)/2.

The emergence and sustenance of cooperation is further
depicted in Fig. 6. Note that remarkably high degree of syn-
chronization, viz., (rg) ~ 1, the angular brackets denoting
average over many realizations of random migration, is seen
for the very low values of ¢ for all coupling strengths and
for coupling strength more than a critical value for almost all
¢. The reason for the former is that the demes with the PD
dominate and defectors cannot be replaced, and the reason for
the latter is that the synchronization of the chaotic LG pulls
the cooperator fraction of all the demes with the PD up. The
high values of sustained cooperation, viz, (¥) & 0.5, with the
overbar denoting the average over demes, owe to the high val-
ues of coupling strength (mostly around and beyond €.) for
almost all ¢ (except for very low values). Note that (x) ~ 0.5
at the intermediate and lower values of € is accompanied with
a low degree of synchronization, meaning that at any given
instant cooperator-fraction at a given deme can either be lower
or higher than (X), and this averages out to give the high values
of cooperation.

V. VARYING DEGREE

In the CML that we considered so far, the in-degree of
every node is always 2 even when the dynamic rewiring is
in action. However, one could think of a situation where
the in-degree is more than 2: A straightforward generalized
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FIG. 5. Amplitude death: The demes with the LG induce cooperation in the demes with the PD. When all the demes of the CML are
playing the LG with (a) Apy, (b) Apy, (c) Apy, or (d) Ac after the respective critical values of the coupling strength (vertical dashed line) all the
demes’ trajectories (black, brown, light brown, and red dots, respectively, for the four aforementioned LGs) synchronize onto the fixed point
x* = 0.5 of the CML. As we introduce the PD in some of the demes with no (or few) cooperators, then the corresponding trajectories (blue

dots) are pulled onto the synchronized state x*

~ 0.5 for all demes beyond €,,;; as exhibited in the rest of the subplots for the LG game fraction,

¢ = 0.7, 0.3, and 0.1. Subplots (a), (e), (i), and (m) correspond to Ap;; subplots (b), (f), (j), and (n) correspond to Ap,; subplots (c), (g), (k),

and (o) correspond to Apy; and subplots (d), (h), (1), and (p) correspond to Ac. Here, N =

time steps.

scenario would be when the in-degree of every node is same
k € {2,4,6, ...} such that each node can be connected with
another node at most once and every stage of rewiring is done
with probability p. We conveniently choose k to be an even
number so that in absence of any rewiring each node has k
incoming edges, one each from its nearest k/2 neighbors on
each side. The mean-field equation for node i is

6(1— ) k/2

X = fO1 -+ 3
I=—k2
140

(1)

k
€p £

100 demes and the system has been evolved for 2000

& are the randomly chosen neighbors other than the node i and
its nearest k/2 neighbors on the either sides. For notational
convenience, we denote the k/2 neighbors on the clockwise
direction by i 4+ where I = 1,2,...,k/2 and on the anti-
clockwise direction by i — /.

Assuming that an interior fixed point exists such that at
each deme x = x*, we find its stability by putting x/ =
x* 4R +1 in Eq. (11), and subsequently keeping only up to
the linear order terms for the perturbations. We arrive at

k/2

Z ht+l

I=—k/2
1#0

B = (1= f @+ 4P

12)
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FIG. 6. Synchronization order parameter and emergence of cooperation. For the CML with mixed types of demes, some playing the PD
and some the LG (with Ap;, Ap,, Apy, and Ac from left to right columns, respectively), we plot order parameter (rg) and average cooperation
(%,) (averaged over 64 realizations) as functions of coupling strength € and the leader game fraction ¢ for the cases where the LG has period
one (or fixed point) attractor [(a) and (e)], period two attractor [(b) and (f)], period four attractor [(c) and (g)], and chaotic attractor [(d) and
(h)] when plugged into the replicator map. The vertical black dashed line corresponds to € = €. when the CML has only the LG at all the
lattice points. Here, N = 100 demes and the system has been evolved for 2000 time steps.

Note that we neglected the randomly changing neighbors’
contribution to this equation because that should average out
to zero. Again, we make the ansatz: h\ = Zq hiev=1di and
Eq. (12) yields

h? 2e(1 — p) &L
n+l
ﬁ =1-ef ")+ — ,EZI coslgq. (13)

A stable fixed point, or in other words, a stationary
synchronous state (akin to amplitude death in coupled oscilla-
tors), exists when the perturbations die out, i.e., the modulus
of the right-hand side in Eq. (13) is less than unity.

The critical coupling strength beyond which it so hap-
pens can easily be found numerically, as shown in Fig. 7.
We remark that, although the above calculations are for the
case of single kind of demes in the CML, it gives close-
enough estimates even when we have mixed kinds of demes,
some playing the PD and some playing the LG as evident
from Figs. 7(b) and 7(d). The most important outcome of
increasing the degree is that it can overcome the necessity
of random wiring for effecting cooperation through amplitude
death (contrast the upper row with the lower row in Fig. 7).
However, the effect of the degree saturates quite quickly;
we note that the figures are almost identical beyond k = 10.
Since we have already seen in the preceding section that all
types of LGs have effectively similar qualitative outcomes,
here we illustrated our results only for the chaotic LG; the
degree-dependence of the other LGs are qualitatively similar,
as expected.

(ra)

1
1
: 1.00
|
1
1
1
\ 0.75
\
Y
50 0.50
38
< 26 0.25
14
D e N A \ 0.00
600 0.25 050 075 100 0.00 025 050 075 100
€ €

FIG. 7. Amplitude-death-induced cooperation saturates with de-
gree. We plot the order parameter (r¢) as a function of the coupling
strength € and the in-degree of the nodes of the network k. In subplots
(a) and (c), every deme in the network has the LG (with Ac), while
in subplots (b) and (d) only half of the nodes have the LG (the rest
have the PD). Viewed from the perspective of the rewiring proba-
bility, subplots (a) and (b), and subplots (c) and (d), respectively,
correspond to p =0 and p = 0.5. The white dashed lines exhibit
the analytically estimated critical coupling strength (beyond which
amplitude-death-induced synchronization is expected) as a function
of the in-degree for the case where the network has the LG exclu-
sively. Here, N = 100 demes and the system has been evolved for
2000 time steps.
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VI. STRATEGIC INTERDEMIC INTERACTION

As mentioned in the Introduction of this paper, migration
is known to be costly [42,46-48]. The subpopulations may
decide whether to cooperate by participating in the migration
or to avoid migration because the migration is costly. Here we
study the effect of costly migration on intrademic cooperation
and synchronization in our model, where cooperation is estab-
lished through random migration. As done in the case of the
evolutionary Kuramoto dilemma [18], we introduce a strategic
interdemic interaction that models whether the demes par-
ticipate in migration based on their acquired payoffs. Note
that this effectively introduces an idea of cooperation at the
level of demes on top of the idea of cooperation between the
replicators of any particular deme.

Mathematically, we modify Eq. (8) to incorporate the
costly interdemic interaction

St = F) (1= spe) + 2O )
2

Here sﬁ, is the action of the ith deme at the nth time step; it can
take binary values: 0 and 1. From Eq. (14) we can see if s/, is
zero then the ith deme does not participate in migration. The
demes with strategy s' = 0 are not cooperators; they do not
participate in migration to set up a fixed synchronized level
of intracooperation in the entire network through amplitude
death. On the other hand, demes with s’ = 1 are coupled
to other demes through migration; they may be said to be
cooperating in trying to establish cooperation throughout the
entire network of the subpopulations. Therefore, while the in-
trademic cooperation level is quantified by (), the interdemic
cooperation level at nth time step can conveniently be defined
as

+ (x5 + 7). (14)

1
Ci=— s (15)

We are interested in this section to see how (X) and rg depend
on Cj (the initial interdemic cooperation fraction).

Of course, in order for s, to be a nontrivial game theoretic
action, one has to associate some payoffs for the correspond-
ing player. In the present context, it is straightforward because
on choosing to cooperate (or equivalently, participate in mi-
gration), the deme has to pay a cost that we take as the rate of
the deviation [18,21] from its state:

6= |- )] - [ - A a6

Obviously, the demes with s' = 0 incur no cost. We quantify
the benefit of each deme as a measure of how much in syn-
chrony it is with its neighbors, and hence, it is aptly measured
by the local order parameter [18,21] given by

b — 2 Tijdij
> aij
Here, r;; = %|(62””"’ + 75| (with 1 = /—1) is the pairwise

order parameter. The quantity g;; is adjacency matrix that
takes value 1 if ith and jth demes interact through migration;

A7)

otherwise, it is zero. Therefore the benefit is nothing but the
average pairwise order parameter over the neighbors of the
deme. In conclusion, the total payoff acquired by a deme
should be given by, U’ = b’ — ac, where « is the relative cost
modulating the effect of the cost.

Like in all evolutionary games, the actions s', must also
evolve in time in accordance with an update rule. In some of
the simplest possible update rules, any focal player (deme, in
our context) would compare (in some way) its payoff with that
of its neighbors to decide whether to change its action in the
subsequent time step so as to reap more payoff. This strategy
update can be done stochastically using the myopic rationality
factor B, such that the probability of changing the strategy s’
of ith deme to the strategy of its neighbor (say, s/ of jth deme)
is given by Py_,; = (1 4+ ¢fU'=U")=1 [71-73]. In the analo-
gous deterministic rule (8 — oo, effectively), the focal player
simply imitates the most successful strategy of its neighbors;
since the deterministic rule alters no result qualitatively, we
exclusively use the deterministic rule for the strategy update
in this paper.

We simulate Eq. (14) with N = 100 demes and employ
the aforementioned deterministic update rule. In general, we
work with inhomogeneous demes meaning that ¢ is a variable
in our simulations. For PD, we set T = 1.1 and § = —0.1,
whereas we set T = 8, § = 7 for the demes with the (chaotic)
LG. We start our simulations with random initial intrademic
cooperation. We keep o = 0.01 in our simulations. The initial
actions s}, for the interdemic interaction is assigned randomly
such that the initial interdemic cooperation fraction Cj is fixed
to some predecided small value. We saw in the preceding
sections that the random migration helps to synchronize the
intrademic cooperation beyond a critical coupling strength
€.t 1n the absence of interdemic interaction. It is clear from
the strategy update rule that the case Cy = 1 effectively cor-
responds to the absence of any effect of costly interdemic
interaction at any point of time because the only strategy
available is to cooperate.

As presented in Fig. 8, we numerically find contrasting
effects of the costly interdemic interaction on the intrademic
cooperation and the synchronization as ¢ changes. We fix
the initial interdemic cooperation fraction as Cyp = 0.1 for
concreteness; and we contrast the results found in this case
with the case when the costly interdemic interaction (or in
other words, the strategy update rule) is absent (realized in
the numerical simulation by putting Cy = 1).

We note that some general gross features are independent
of p: The degree of synchronization [see Figs. 8(a) to 8(d)]
is lower for higher fraction (¢) of demes with the chaotic
LG, whereas the intrademic cooperation level [see Figs. 8(e)
to 8(h)] is higher for higher ¢. This can be attributed to the
fact that when interdemic cooperation level is not unity, it
effectively means that some demes are isolated, i.e., they do
not participate in the interdemic interaction (or migration);
therefore, higher values of ¢ means possibility of higher
fraction of isolated demes with the LG that ensures some
intrademic cooperation but, being chaotic and uncoupled,
asynchronous dynamics. Moreover, the intrademic coopera-
tion level is always lower (at any p, ¢, or €) when strategic
interdemic interactions are in action than when they are absent
[see Figs. 8(e) to 8(h)]. This is again because the isolated
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FIG. 8. Effect of ¢ on synchronization and intrademic cooperation. The order parameter (rg) [(a)—(d)] and the average intracooperation
(%) [(e)—(h)] is plotted for the entire range of the coupling strength € for a fixed initial cooperating deme fraction (Cy = 0.1). The four
columns present the simulation results for the rewiring probability, p = 0.25, p = 0.5, 0.75, and 1.0, respectively. Blue, red, and green colors
correspond to ¢ = 0.1, 0.5, and 0.9, respectively. The dashed lines are used for the case of C; = 1.0 where strategy update, and hence, costly
interdemic interactions are effectively absent. Here, we use N = 100 demes and evolve the system for 2000 time steps. All the results are

averaged over 512 realizations. The critical coupling strength for case ¢ = 1 is shown by black dotted lines.

demes with the LG cannot interact with the demes with the
PD to effect a higher cooperator-fraction in them. For sim-
ilar reasons, we also observe that above €. (p) (the critical
coupling strength at ¢ = 1 and Cy = 1 as a function of p), at
which we expect synchronized dynamics (hence, (rg) — 1)
in the absence of any interdemic strategy update rule, the
degree of synchronization is lower when strategic interdemic
interactions are in action than when they are absent [see
Figs. 8(a) to 8(d)].

Obviously, high values of ¢ are good for intrademic co-
operation but not as good for synchronization, whereas low
values of ¢ are good for synchronization but not good for
intrademic cooperation. Thus, as hinted by Fig. 8, we expect
an optimal regime in the parameter space of ¢, where both
the intrademic cooperation and the synchronization are sup-
ported. We quantify the degree of this co-evolution by the
product (rg)(x) which should be low if either (rg) or (X)

is very low. We plot (rg)(X) versus ¢ in Fig. 9 for various
initial interdemic cooperation level, Cy, including for Cp = 1
which corresponds to the permanent absence of any effect
of costly interdemic interaction. We do note that, irrespec-
tive of the rewiring probability p, the higher is the initial
costly interdemic cooperation, the higher is the degree of
co-evolution.

To understand the nature of the curves in Fig. 9, we first
consider the trivial case of Cy = 0, which corresponds to the
absence of any interdemic interaction at all, costly or other-
wise; in fact, even at any later time, the interdemic cooperation
level remains zero because the only available strategy is de-
fection. Thus, for the case of mixed (isolated) demes (with
the PD and the LG) in the CML, (x) and (rg) vanish for
¢ =0 and ¢ = 1, respectively. With the increase in ¢, one
expects (X) to increase but (rg) to decrease as the number
of demes with the LG increases; thus, clearly, one expects a

p=0.50 p=0.75 p=1.00
(b) — Cy=10 " (¢) — Cy=10 () — Cop=1.0 |
— Cy=0.1 — (Cy=0.1 — (Cp=0.1
— (=001 — (=001 — (Cp=0.01
00 Il Il Il
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
¢ ¢ [ o

FIG. 9. Optimal region for the coevolution of intrademic cooperation and synchronization. The degree of coevolution of intrademic
cooperation and its synchronization (¥)(rs) is plotted with the fraction ¢ of demes where cooperation is rewarded. We fix the coupling
strength, € = 0.9 and study for different rewiring probability p = 0.25, 0.5, 0.75, and 1.0, respectively, in four different columns. In each
subplot, we have three different curves corresponding to three different initial intercooperation levels, viz., C; = 1.0, 0.1, and 0.01. All the
results are averaged over 512 realizations.
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maximum for (rg)(X) because (rg)(X) is zero at the two end
points, ¢ = 0 and ¢ = 1. With the increase in the value of Cy,
some interdemic connections are established. At ¢ = 0, one
still has zero intrademic cooperation as only the PD is present.
However, at ¢ = 1, because of the interdemic couplings intro-
duced, some synchronization ({rg) # 0) is established beyond
€qrit (this is the reason we choose high € value in Fig. 9 for
illustrating our point). Consequently, (rg)(X) # 0 at ¢ =1
although (rg)(X) = 0 at ¢ = 0 since the demes with the PD
do not allow for any intrademic cooperation ({(x¥) = 0) even
in the presence of interdemic cooperation. The less is the
set of isolated demes (higher Cy), the more is the degree of
synchronization; and hence, the more is the degree of co-
evolution of cooperation and synchronization. One sees this
fact validated in Fig. 9 when one compares the two curves
corresponding to Cp = 0.01 and Cy = 0.1. Of course, Cp = 1
leaves no demes isolated and hence establishes full synchrony
for ¢ = 1, leading to high value of intrademic cooperation as
well.

In summary, the take-home message from the studies
presented in this section would be the following: The co-
emergence and sustenance of the intrademic cooperation and
synchronization, effected by incentivizing the cooperators in a
few demes with the PD, is hampered in the presence of costly
interdemic interactions.

VII. SUMMARY

The interplay between emergence of cooperation and syn-
chronization is an intriguing phenomenon and a recent fertile
direction of research in the evolutionary game theory. In this
paper, we put forward our insights on this interplay by using
the coupled map lattice of replicator maps where noncon-
vergent outcomes, like the periodic orbits and the chaotic
orbits, are present even in the evolutionary games with only
two strategies. In the model, the emergence of cooperation
occurs as the replicator maps synchronize onto a fixed point,
a phenomenon very similar to the amplitude death in coupled
nonlinear oscillators. The migration dilemma that arises in the
system under consideration presents a well known situation,
just like in other social dilemmas such as the tragedy of com-
mons [74], the prisoner’s dilemma [75], and agglomeration
dilemma [7], where an individual’s interest is at odds with the
entire population’s interest as a whole. We discussed many
factors that can lead to the aversion of the migration dilemma
in the model.

The general form of the model, taking into consideration
all the factors investigated in this paper, may be summarized
by the following equation:

k2

i i i swe(1 = p) e
M = F)(1 = she) + BEAZD SNy
= —k/2
140
Sy

k
Y W) G=12N) (8
=1

+

There are five main parameters in our model: (i) the coupling
strength €; (ii) the rewiring probability p; (iii) the strategy s',
of the ith node at the nth time step; (iv) the degree of the

network k; and (v) the exponent « that makes the migration
nonlinear. The model used in Sec. III for nonlinear coupling is
obtained by fixing p = 0, k = 2, and s/ = 1 Vi, n in Eq. (18).
The model used in Sec. IV is obtained by putting o = 1, k =
2, and sfl = 1 Vi, nin Eq. (18). Similarly, in Sec. V, the degree
k of the network is greater than 2; and « = 1 and sﬁl =1Vin.
Finally, we introduced the costly migration between the demes
in Sec. VI where we calculated s/, for each node i at each time
stepn withk =2 and ¢ = 1.

We showed that the migration modeled with a nonlinear
power-law function can impart full cooperation even if the
whole population is playing only the PD. Moreover, when
the migration is modeled with a linear function, a little ini-
tiative in rewarding altruism in a few of the demes, thus,
transforming the PD to the LG, goes a long way in raising the
cooperator-fraction of the population. The network’s degree
also plays an essential role as we do not require random
migration to establish cooperation across the network when
the network’s degree is greater than 2. If the degree is high
enough, then the critical coupling strength for synchroniza-
tion becomes effectively independent of the network’s degree.
We also presented in detail how the interdemic interaction
due to the costly migration affects the order of synchrony
quite nontrivially. The extent of the simultaneous emergence
of cooperation and synchrony depends on the fraction of
demes where altruism is rewarded. Interestingly, the mag-
nitude of this simultaneous emergence of cooperation and
synchrony is maximum at a finite value (not unity) of the
fraction ¢. It is also important to note that the interdemic
cooperation is required for cooperation to be sustained in the
individual subpopulations. Such a multilevel interaction can
be thought of as a potential model for studying group selection
[76-79].

VIII. DISCUSSION

The random migration, which has been crucial in arriving
at the results in this paper, may be seen in a different light:
For the individuals in a particular deme when migrating to
another deme, there is a chance to get involved in a different
game than what they have been playing before migration.
Specifically, for the payoff matrices chosen in this paper, a
player previously playing the PD when migrates to a deme
playing the LG, it gets a chance to reap more payoff. Thus,
effectively, the CML with random migration is somewhat akin
to a stochastic game [80,81]; however, it is more intriguing
as the fraction of players jumping into a neighboring deme
with different payoff matrix is determined by a nonconver-
gent deterministic dynamics. In passing, we mention that the
fact that the random migration helps in establishing a higher
cooperation state is interestingly at odds with what happens in
the case of demes with a finite population where an increase in
the migration rate, for the same benefit-to-cost ratio, decreases
the probability of fixation by the cooperators [79].

We would also like to contrast our migration-based model
with other diffusion-based models in the literature. In a model
[4] with asymmetric diffusion rate for the cooperators and the
defectors in a population with the ecological public goods
games played in subpopulations leads to pattern formations
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in the densities of the cooperators and the defectors. When
a third strategy, loner (the agent who does not participate in
public goods game) is incorporated [82] in the optional public
goods game along with the two usual strategies (viz. cooperate
and defect), the frequencies of the strategies undergo global
oscillations. In contrast, we use a single (in effect, symmetric)
diffusion coefficient, with the agents in the subpopulations
playing two-player games (LG or PD), to bring about the
coexistence of the cooperators and the defectors over the en-
tire population homogeneously. Regardless of the differences,
it would be interesting to incorporate multi-player games like
the public goods games and also multistrategy games [83]
within subpopulations in our model.

Our model is technically a multilayer network [84-87]
where inside each node the individuals have an undirected
all-to-all connection being modelled by the one-shot games,
and between two nodes there is directed connection fashioned
by the migration. Moreover, since the edges between any two
nodes are stochastic functions of time, one could consider our
directed multilayer network as temporal. Consequently, the
emergence of cooperation in it could be seen as an extension
of similar enhancement of cooperation in temporal networks
[88]. A possible extension of our work could be to investi-
gate how different multilayered network structures affect the
emergence of cooperation in multiplayer games with many
strategies.

The random rewiring scheme used in the CML could
remind the readers about similar works done with the small-
world networks. Previous works on small-world networks,
with agents placed on the nodes and playing the PD game,
focus on the role of topology [89,90], the introduction of a
new strategy [91], and the aspiration level of the agents [5] in
promoting cooperation in the network. In contrast, we focus
on building the simplest possible model to showcase the role
of nonconvergent dynamics and synchronization in bringing
about cooperation in the entire network. Another key differ-
ence is that we placed subpopulations (and not individual
agents) on the nodes of the network. Placing individual agents
on nodes of a small world network yields a lower fraction
of cooperators for a higher rewiring probability [89,90]. This
is at odds with our results, where the system attains full
cooperation beyond the critical coupling strength regardless
of the rewiring probability when the power-law exponent « is
less than 1; and for ¢ = 1, one can have stable coexistence
of cooperation and defectors, and the stability depends on
rewiring probability p.

We emphasize once again that the replicator map used
in this paper does not consider the network structure within
the subpopulation, i.e., it is assumed that an agent interacts
with all other agents within a subpopulation. Interestingly, a
formalism of the replicator equation on graphs was proposed
[92] where the underlying structure of the population was
taken into consideration. It would be interesting to extend our

model by considering structured subpopulations in line with
this formalism. Also, we realize that the replicator map being
a deterministic equation should be seen as the mean-field limit
of a microscopic stochastic process [93]; in a finite population,
stochastic effects must have an impact on the evolution of
cooperation and its evolutionary stability [94,95]. A stochastic
differential equation approach [96] was adopted to deal with
the finiteness of the deme size where the direction and the
strength of the selection varied from deme to deme. Naturally,
in the future, one may envisage investigating the stochastic
phenomena, like fixation probability, in the CML with finite
subpopulations.

Besides the pairwise interaction, multiplayer interactions
where more than two individuals are involved is ubiquitous
and very relevant in the study of the evolution of cooperation
[97-101]. The multiplayer interactions cannot be reduced to
the sum of pairwise interactions that makes it quite fasci-
nating [95,102]. Naturally, nonlinear fitness gets introduced
through multiplayer interactions. Several studies on the effect
of interacting group size have been performed and they high-
lighted the detrimental impact on the evolution of cooperation
[97,98]. Realistic interactions are spatially structured and are
conveniently modeled by means of networks without all-to-
all interactions; as could be guessed, their topologies have
inevitable effects on the corresponding results. On a square
lattice, enhanced spatial reciprocity can additionally promote
cooperation in large groups [103]. Our study can be extended
for the multiplayer interactions by introducing the multiplayer
replicator maps using public goods game or multiplayer PD
[4,104-106]. The d-player n-strategy interaction gives rise
to (d — 1)"~! number of internal equilibria at maximum for
continuous replicator dynamics [99,101]. The distribution and
the number of stable equilibria was investigated for d-player
two-strategy game with random payoff matrix; it was found
that the number of stable equilibria is v/d — 1 asymptotically
[107]. It is easy to see that the discrete replicator map can have
a maximum of (d — 1)"~! internal equilibria if it is extended
for d-player n-strategy game. Thus, there is a possibility that
with only two strategies, multiplayer PD can give rise to
internal equilibria which imply the coexistence of cooperation
and defection, and this could trigger even higher degree of
cooperation in the CML with LG in some demes.

Before we conclude, we would also like to point out that
some variants of the coupled replicator equations [108—112]
model the dynamics of collective learning in a group of agents
who may be faced with the social dilemmas [113]. They show
quasiperiodicity, limit cycles, intermittency, and chaos, among
other rich dynamical features. In this setting, one should be
able to explore collective phenomena like synchronization
onto an attractor. Furthermore, one could also ponder upon
how bounded rationality [114—116], mutation [117] and delay
[118], and hypergames [119] in a deme would modify the
results of this paper.
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